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ABSTRACT. Let G be a finite multigraph without loops. A subset S of
V(G) is called r-sparse if the number of edges joining vertices in S’is at
most r - (|S} — 1). Nash-Williams proved that E(G) can be decomposed
into r forests if and only if every nonempty subset of V(G) is r-sparse. In
this paper, we give a simple proof of this result.
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_ In this paper, we consider finite undirected graphs that may contain
parallel edges, but no loops. That is, a graph G = (V(G), E(G), ¢c)
consists of the vertex set V(G), the edge set E(G), and the map p¢g from
E(G) to (V(zc)), where (V(zc)) denotes the set of all the unordered pairs
of vertices. For a vertex z, Ng(z) denotes the set of vertices adjacent to
z, and Eg(z) denotes the set of edges incident to z, i.e.,

Eg(z) = {e € E(G)|z € ve(e)},

and dg(z) := |Eg(z)| is the degree of z in G. The minimum degree §(G)
is defined as

8(G) := min{d¢(z)|z € V(G)}.

For two vertices = and y, [z, Y] denotes the set of edges joining z and y,

- 2,3l = {e € B@)lpa(e) = {z,4}}-

For a subset S of V(G), (S)¢ denotes the subgraph induced by S. That
is, : ‘

(S = (8, Ea(S), ¢l5a(s)):
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122 ARBORICITY OF A GRAPH -

where Eg(S) := {e € E(G)|pc(e) C S}. Similarly, for a subset F of
E(G), ,

C R = (V(G), Fopalr).
A decomposit\ibr_f ST o
E(G)=FUFRU---UF,
is called a forest decomposition of G if (F;)¢ is a forest for 1 <7 < r. The

arboricity of G, denoted by a(G), is the minimum number of forests that
decompose E(G). For disjoint subsets Sy, ;Sm (m > 2),

o (S . G de e wg(e) TS 1 U---US, ) -
'EG_(SIZ : ,Sm’) B { € 5(G) |s0G(e) ns; I <1 }
— Bo(8:1U++USm) - | Ec(S:)

=1

i.e., the set of edges joining vertices in different S;s. A subset S of V(G)
is called r-sparse if |Eq(S)| < - (|S| — 1), and if the equality holds, S
is called r-critical. For a real number z, [z] denotes the least integer not
less than z.

Tutte [4] and Nash-Wllhams 2] 1ndependently proved the follomg the-
orem.

Theorem 1. A graph G cont:ams T edge—dLSJomt spanmng trees, if and
only if . o ST .
|EG(Sl,-~ Sm)lZ (m—l)-r

for any part1t1on V(G U .S'

Using Theorem 1, Nash-Williams [3] proved the following theorem.

Theorem 2. The arboricity of a graph G is at most r if and only if every
nonempty subset of V(G)-is r-sparse, i.e.,

“o=a({[FS] 5T

In this paper, we give a simple self-contained proof of Theorem 2.
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a.nd let

= (V(6) - s'> U{vs},
= E(G) - Ee(5), |
e) = { (pale) =) Ufvs} iflpe(e)NS| =1
P pate) if pa(e) NS = @.

Then (V', E', ¢'), denoted by G/S is called the graph ob't'a;ined from G

by contractlng S

Lemma 3. Suppose that every nonenibty subset of a graphC is-r-:spafée,- :

and that S is an r-critical subset of V/(G).. Then every nonempty subset
of V(G/S) is r-sparse.

Proof. Let T be a nonempty subset of G/S "fI:f vs'é Tv,'t'h'en“EG'/ s(Tf:
Eg(T). Hence T is r-sparse. If: vs €T, then EG/s(T) Ec((T—{vs}HU
S) — Eg(S). Hence .

|[Eg/s(T)| < (I(T —{vshuS|-1)-r-(IS|-1)
=r-(T|-1). O

Proof of Theorem 2. Suppose ) N
. BO=RU-UF,
is a forest decomposition, and S a nonempty subset of V(G). Let
- Ff =F ﬁEg(S)

Then (S, F}) is a forest and so |F}| < |S| = 1 Hence
Ea($) = FI|
=17
< ra(|Sfi—=1):

In the rest of the proof, we assume that every nonempty subset of V(G)
is r-sparse, and prove that a(G) < r. We use induction on |V(G)|. The

. For a subset S of- V(G), let us be a new vertex not contained in V(G),~
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conclusion is obvious if |V(G)| = 1 or [V(G)| = 2. Hénce we may assume
that [V(G)| > 3. o
Claim 1. |[z,y]e| < r for any {z,y} € (V(G))

Proof. Let S := {z,y}. Then

Ea(S)] = lle,ylel < r- (18] = 1) =,

since S is r-sparse. 0O -

Claim 2. We may assume that dg(z) > r for all z € V(G). :
Proof. Suppose Eg(z) = {e1,--- ,e5}, s < 7. Let H := (V(G) {a:})c
Since every nonempty subset of V(H) is r-sparse, E(H) can be decom-
posed into r forests by 1nduct10n Let

E(H) = 1 e Y Fr
be a forest decomposition. Define
F,_{Fiu{ei} 1<i<s
R s<i<r.

Then : ~
E(G)=F| U---U F]
is a forest decomposition of E(G). O

Claim 3. 6(G) < 2r.

Proof. Since V(G) itself is r-sparse,

[E(G)| <r-(IV(G)| - 1).
On the other hand,
|E G)I—— Y de(z) > 5(G) [V(G)I.
zGV(G)

Hence

2r(V(G) - 1)
V(G)|

Choose any vertex z of degree less than 2r, and let

: ]VG(:I:)= {y'l‘a"" 1yt}a
EG(m) = {ela cte 1e7‘+s}'a

6(G) < <2r. O
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where r + s = dg(z). o : 4 L
Claim 4. We may assume that ¢(e;) # p(er4i) for 1 <7 < s.
Proof. We arrange the edges incident to z as

[z, 1]c = {e1, - ,ej }s

[mvy,?]-G = {¢j1+11 tte ’ejz}a,
[z, 36 = {esi_y+1 s €5}
[SC, yt]G = {ejt—1+1’ o ’ejt}’

Then j; —j;—1 < r by Claim 1. This implies the conclusion of Claim 4. O

Let 1(e;) be the end vertex of e; other than z, that is, pg(e;) =

{z,9(e:)}, and , o
Gi = (V(G), E(G), i),
where : , ,
0 ifi=0
wi(e) =< pi—1(e) . ifi>0ande#e;
{¥(e),¥(erti)} ife=e

That is, Go = G and G is obtained from G;_; by removing the edge e;
and adding an edge joining ¥(e;) and ¥(e,4;). R
Case 1. Every nonempty subset of V(G,) is r-sparse.

In this case, let S := V(G) - {z}:
Case 2. Every nonempty subset of V(G;) is r-sparse, but a nonempty
subset S of V(Gi41) is not r-sparse for some i < s — 1.

In this case, S is r-critical in G;, because S is not r-sparse in Gy, and

|EG,, (S)] < |EG,(S) + 1.

If = is contained in S, then |Eg,,,(S)| = |Eg(S)|. This contradicts the
assumption. Hence z is not contained in S. By renumbering the edges
incident to z, if necessary, we may assume that ¢;(e;) is contained in S
for1<j<i.

In case 1, let ¢ := s. Then in either case, every nonempty subset of
G;/S is r-sparce. Also, every nonempty subset of (S)g, is r-sparse. Hence
both E((S)g,) and E(G;/S) can be decomposed into r forests. Let

E{(S)¢,)=FRU---UE,
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be a forest decomposmon of (S) . We may assume that
F, ﬂ{el, . e,}#@for1<p<u

and , . |
F,n{e, - ,ei}=@foru<p<r.
By renumbering the edges, we may assume that ep € Fpforl1 <p<u
Let
E(G /S) = U F'

be a forest decomposition of G; i/S. Note that e,ﬂ (1 < j < s) are parallel
edges joining z and vg in G;/S. Hence

|F;ﬂ {61-+1, e "‘a€r+s}|‘s I

for 1°<j'< r. So, wé may assume-that e,,; € "F (1 <35 <s) Let
F] :== FjUFjfor 1 < j<r. Then F} is a forest in G Furthermore, F;’
(u <ji< < 7)1 1s a forest in G, because 1t contains no e (1<p<i). Suppose
F/1<j<u contams a cycle C in Gg-1 but no cycles in Gq4. Then
C’ passes through e,. In (Fj" ~{eDe; G,_1» = and 9(e,) are in the same
component, and ¥(eq) and '(p(e,urq) are in different components. Note that
this in particular implies e41.. ¢ F}, and hence ¢ > u. Thus (Ff —{esH U
{eq+r} and (Fy = {egs+r ) U {es} are forests in Gg-1. Contmulng this way,
we may assume that F}/ is-a.forest/in G, by 1nterchang1ng the roles of ¢,
and.€pr, if necessary, for some p with u < p < 4. :
This completes the proof of Theorem 2. 0O,

We can prove Theorerh 1 usiné 'Theoremj2. So, thls ‘giv,es‘.a simpie
self-contained proof of Theorem 1. . ., .. .
Proof of Theorem 1: It is‘easily seen that if G contains r edge-disjoint
spanning trees, then |[Eg(Sy, -, m)| > (m - 1) T holds So, suppose

|Eg(51, )| 2. ( m = ) T for any partltlon V(G’ U S;. We may,
assume: tha.t G is edge-mmlmal .That i 1s, o .
S NEo(S1,+, Sm)| = (m=1)-7

for some- Sy, =+, Sm with m > 2. If |S;| > 2.for some i,. we eaﬁ apply
induction-to:G/S; and (S;)¢. Hence we may assume that |S;|-= 1 for.
1 € 7 <.m. This means that . e W e

IE(G)| =7 -(IV(G)| -1),
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that is, V(G) is r-critical. Let S be any nonempty subset of V(G), and
suppose V(G) — S = {z1, -+ ,zx}. Let

T __{{IILL} for1<i<k
Tl s for i = k+ 1.
Then
|Ec(S1,-+ , Sks1)| = |E(G) — Eg(S)| > kr.

Hence

|Ee(S)] < |E(G)| - kr |
= (V@) - 1) =7 (V(&)] - IS])
=7 (18] 1)

This proves that every nonempty subset of V(G) is r-sparse. By Theorem
2, we can decompose E(G) into r forests. Since V(G) is r-critical, each
forest contains [V(G)| — 1 edges. This means that it is a tree. This
completes the proof of Theorem 1. 0O
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