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Preface

All stakeholders associated with clinical drug developments are longing for breakthrough ther-
apy designation. To satisfy this requirement, clinical trials should be conducted efficiently and
biostatisticians need to provide innovative clinical trial designs.

In recent years, adaptive clinical trial designs have been attractive to pharmaceutical spon-
sors, regulatory agencies, and medical investigators. Adaptive designs in early phase clinical
trials got to be applied in real clinical trials in the last ten years owing to their exploratory
aspects. In contrast, adaptive designs in late phase clinical trials were rarely applied in real
clinical trials. In comparison to the early phase clinical trials, in our opinion, more pragmatic
methodologies have been expected because the late phase clinical trials correspond to confir-
matory ones and need to satisfy the agreement between pharmaceutical sponsors and regulatory
agencies.

In consideration for the current trend in clinical drug developments, we focus on adaptive
designs in developing molecular targeted therapies and biosimilars. Although there has been a
proliferation of research articles on the adaptive clinical trial designs, little research that is more
pragmatic has been done. The aim of this dissertation is to investigate three focal issues of the
adaptive designs in confirmatory clinical trials as follows.

Issue 1: Utility-based interim decision rule planning in adaptive designs for population
selection

The use of adaptive population selection designs has spread in response to the emergence of nu-
merous molecular targeted therapies. Such a design provides an opportunity to stop recruitment
for a population in midcourse when this population does not benefit from the treatment being
tested. However, there are no well-established procedures to setting the thresholds in an interim
decision when applying a design to a clinical trial. We propose a novel utility-based approach
to guide the construction of the interim decision rule of an adaptive population selection design
for the setting of the survival endpoint.

Issue 2: Interim decision-making strategies in adaptive designs for population selection

As an extension of Issue 1, we consider an interim analysis using overall survival (OS), progression-
free survival (PFS), and both OS and PFS, to determine whether the whole population or only
the biomarker-positive population should continue into the subsequent stage of the trial, whereas
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the final decision is made based on OS data only. In order to increase the probability of selecting
the most appropriate population at the interim analysis, we propose an interim decision-making
strategy in adaptive designs with correlated endpoints considering the post-progression survival
(PPS) magnitudes. In our approach, the interim decision is made on the basis of predictive
power by incorporating information on OS as well as PFS to supplement the incomplete OS
data.

Issue 3: State of the art: Adaptive seamless design in developing biosimilars

Recently, numerous pharmaceutical sponsors have expressed a great deal of interest in the de-
velopment of biosimilars, which requires clinical trials to demonstrate the equivalence of phar-
macokinetics (PK) and clinical efficacy. Pharmacodynamics (PD) may be used in evaluating
efficacy if there are relevant PD markers available. However, in their absence, it is necessary
to design the associated clinical trials to include efficacy measures as the primary endpoint.
Hence, we propose a novel adaptive seamless PK and efficacy design with an efficient frame-
work to remedy the risk of misspecification of efficacy parameters and to discontinue the trial
evaluating the efficacy for futility based on the PK evaluation. Here, we consider the clinical
development of biosimilars including their evaluation in patients rather than healthy volunteers
under a situation where both PK and efficacy parameters are required to demonstrate the equiva-
lence. The original idea of the proposed method was to organize a clinical trial that includes the
statistical analysis of PK as an interim analysis, with sample size recalculation of the efficacy
data.

This doctoral dissertation consists of five chapters. Chapter 1 presents background such as
clinical trial development and an outline of the adaptive designs in confirmatory clinical trials.
In Chapter 2, we propose a novel utility-based approach to guide the construction of the interim
decision rule of an adaptive population selection design for the setting of the survival endpoint
(Uozumi and Hamada, submitted). Chapter 3 provides the interim decision-making strategies
in adaptive designs with correlated survival endpoints considering the post-progression survival
(PPS) magnitudes (Uozumi and Hamada, 2017b). In Chapter 4, we propose an adaptive seam-
less PK and efficacy design in developing biosimilars (Uozumi and Hamada, 2017a). Finally,
Chapter 5 discusses the issues associated with this work, and Chapter 6 provides a conclusion.
We wish to accelerate the use of adaptive designs in real clinical trials through this work.
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Chapter 1

Introduction

1.1 Clinical trial development

Clinical trials are experiments on human subjects to demonstrate the efficacy and safety of new
therapies. Typically, clinical trials mainly consist of three distinct phases. If an experimental
therapy is considered to be effective through phases I, II, and III, it will be approved by the
regulatory agency for use on the pharmaceutical market. Among the clinical trial phases, phase
I clinical trials are conducted with healthy volunteers to evaluate the safety of the experimen-
tal therapy whereas phase II clinical trials are conducted with patients to evaluate the efficacy.
Phases I and II are also called early phase clinical trials. Finally, phase III clinical trials are
called confirmatory clinical trials, and generally large randomized, controlled trials, with the
endpoint being a direct measure of patient benefit. To conduct the phase III clinical trials, phar-
maceutical sponsors have to pay extravagant resources owing to the large number of patients
required. According to the report by Martin et al. (2017), the median costs of conducting a
study from protocol approval to final clinical trial report were 3.4 million US dollars for phase I
trials involving patients, 8.6 million US dollars for phase II trials and 21.4 million US dollars for
phase III trials, in the data set collected from 7 major companies on 726 interventional studies
conducted in patients from 2010 to 2015. Nevertheless, the proportion of successful phase III
clinical trials is the lowest among all phases (DiMasi and Grabowski, 2007). As a more recent
report, the proportion of failure in phase III clinical trials is relatively higher in oncology among
all therapeutic areas (Arrowsmith and Miller, 2013; Harrison, 2016). This work focuses on the
issues in the confirmatory clinical trials in response to expectation for the improvement.

Recently, numerous pharmaceutical sponsors have expressed a great deal of interest in the
development of molecular targeted therapies. Molecular targeted therapies investigated partic-
ularly in oncology are beneficial only in a subgroup of the overall population. The European
Medicines Agency (EMA) has published the regulatory guidance on the investigation of sub-
groups in confirmatory clinical trials (European Medicines Agency, 2014b). To identify the
subgroup, a biomarker is driven to indicate the biological state. For example, the patients with
HER2 amplification are approximately 15 to 20% of patients with breast cancer and can benefit
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from the administration of paclitaxel after adjuvant chemotherapy with doxorubicin plus cy-
clophosphamide (Hayes et al., 2007). Table 1.1 shows the selected molecular targeted therapies
approved in Japan in the last ten years. If a pre-defined biomarker hypothesis from exploratory
studies exists, clinical trial designs should be set up considering the heterogeneity of patient
subgroups by using the biomarker at the planning stage, as the U. S. Food and Drug Adminis-
tration (FDA) has provided the enrichment strategies in developing molecular targeted therapies
(Food and Drug Administration, 2012).

Table 1.1: Selected molecular targeted therapies approved in Japan

Drug Type of cancer Biomarker Approved year

Cetuximab Colorectal cancer K-ras 2008
Gefitinib Non-small-cell lung cancer EGFR 2009
Crizotinib Non-small-cell lung cancer ALK 2012
Pertuzumab Breast cancer HER2 2013
Ipilimumab Melanoma CTLA4 2015
Regorafenib Hepatocellular carcinoma VEGFR 2017

Similarly, developing biosimilars has recently become an important issue for pharmaceuti-
cal sponsors and regulatory agencies owing to the anticipation of the impending expiration of a
number of patents for biological medicinal products in numerous countries. Table 1.2 cited from
Rémuzat et al. (2017) shows the list of best-selling biologics with patent expiry in the years to
come. According to the guidelines, a biosimilar is defined as a biological medicinal product that
contains an active substance that is similar to that of an original previously authorized biolog-
ical medicinal product (European Medicines Agency, 2014a; Food and Drug Administration,
2015). Biological medicinal products are large and complex molecules that include vaccines,
gene therapies, and cellular therapies. Thus, most are important life-saving products but are ex-
tremely expensive, which makes it difficult to reach the general patient population. A reduction
in healthcare costs for patients can be expected if a biosimilar is approved by regulators and
placed on the market. For example, biosimilar trastuzumab is expected to be priced at a level at
which patients who otherwise would not have access to expensive therapies such as trastuzumab
could receive needed therapy (Bauchner et al., 2017).

Therefore, this work mainly focuses on two issues in confirmatory clinical trials: the de-
velopments of molecular targeted therapies and biosimilars. Since we handle survival data in
oncology in the former development, statistical inference for survival endpoints is described in
Section 1.2. In Section 1.3, we briefly illustrate statistical inference for superiority, equivalence,
and non-inferiority trials since the latter development is typically conducted with equivalence
trials rather than superiority trials. Finally, in Section 1.4, we overview and propose adaptive
designs applied in confirmatory clinical trials.
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1.2 Statistical inference for survival endpoints

Statistical analysis for survival endpoints is called survival analysis that summarizes and ana-
lyzes the length of time until the occurrence of an event, e.g., death, as time-to-event process.
Clinical trials are generally conducted to assess the effectiveness of new therapies. Hence, in-
vestigators usually apply survival analysis in clinical trials to compare the risk of events among
population groups receiving different therapies.

1.2.1 Summarized statistics

For survival analyses, the median is the preferred summary measure of the location of the dis-
tribution since a distribution constructed from survival data typically tends to be positively
skewed, that is, the distribution has a longer tail to the right of the interval that contains the
largest number of observations. Lett denote the actual survival time of an individual. Once
the survival functionS(t) has been estimated by the Kaplan and Meier (1958) method, it is
straightforward to obtain an estimate of the median survival time (MST), i.e., the time beyond
which 50% of the individuals in the proportion are expected to survive. In most clinical studies,
survival data are summarized using the MST by group.

Suppose that survival data are exponentially distributed with parameterλ whereλ > 0. Let
T denote a random variable. Then, the probability density functionf (t) is given by

f (t) = λexp(−λt), (1.1)

wheret > 0. The expectation and the variance forT can be written as

E[T] =
∫ ∞

0
t · f (t)dt =

1
λ

E[T2] =
∫ ∞

0
t2 · f (t)dt =

2
λ2

V[T] = E[T2] − E[T]2 =
1
λ2
.

Using Equation (1.1), the survival functionS(t) is illustrated as follows:

S(t) = P(T ≥ t) = P(T < t)

= 1− F(t) = 1−
∫ t

0
f (u)du= exp(−λt).

Note that the MST is given by MST= log2/λ when the survival time is assumed to be expo-
nentially distributed.

1.2.2 Log-rank tests

In the comparison of two groups of survival data, there are a number of nonparametric tests
that can be used to quantify the extent of the coincidence of between-group differences (Ohashi
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et al., 2016). Among these methods, the log-rank test is most frequently used in clinical trials. In
practice, the p-value obtained from the log-rank tests for survival data is reported. The p-value
is given by

p = Φ

(
UL√
VL

)
,

whereΦ(·) denotes the cumulative distribution function of the standard normal distribution,UL

is the log-rank score, andVL is the variance estimate ofUL (Collett, 2015). Note thatUL/
√

VL

has a normal distribution with zero mean and unit variance denoted byN(0,1) under the null
hypothesis that there is no treatment difference.

Furthermore, consider a randomized clinical trial in which patients are assigned to each
group stratified according to variables such as age, sex, performance status, and other potential
risk factors for the disease under study. In this case, a stratified log-rank test may be employed.
Essentially, this involves calculatingUL and VL for each stratum, and then combining these
values over the strata. LetUL,s andVL,s denote the log-rank score and the variance estimate of
UL,s, respectively, obtained from thesth of S strata. The p-value based on the stratified log-rank
test is then based on the statistic is given by

p = Φ


∑S

s=1 UL,s√∑S
s=1 VL,s

 .
Note that

∑S
s=1 UL,s/

√∑S
s=1 VL,s has a normal distribution with zero mean and unit variance

denoted byN(0,1) under the null hypothesis that there is no treatment difference.
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1.2.3 Cox proportional hazards model

In addition to the hypothesis testing like the log-rank test, the proportional hazards model (Cox,
1972) is widely used in clinical trials to illustrate the treatment effect. This model is referred
as a semi-parametric model since no particular type of probability distribution is assumed for
survival data.

In summarizing survival data, the hazard functionh(t) is widely used to express the risk or
hazard of event at timet. Under the assumption of a continuous distribution with differentiable
survival function, the hazard function, also known as the ”force of mortality” (Klein et al.,
2013), is defined by

h(t) = lim
∆t→0

P(t ≤ T < t + ∆t | T ≥ t)
∆t

,

where∆t is the time interval andT is a random variable. Note that the relationship withf (t)
andS(t) is given by

h(t) =
f (t)
S(t)

.

Suppose that patients are randomly assigned to either a control (C) or an experimental (E)
arms. Lethj(t) be the hazard of events at timet for patients on armj ∈ {C,E}. According to a
simple model for survival data of the two groups of patients, the hazard at timet for a patient on
E is proportional to the hazard at that same time for a patient onC. This proportional hazards
model can be expressed in the form

hE(t) = HR · hC(t) (1.2)

for any non-negative value oft, whereHR is a constant. This assumption means that the corre-
sponding true survival functions for individuals onC andE do not cross. Note that the score test
obtained from the proportional hazards model is identical to the log-rank test (Collett, 2015).

The value ofHR is the hazard ratio at any time for an individual onE relative to an individual
on C. If HR < 1, the hazard is smaller for an individual onE, relative to an individual onC.
That means thatE is an improvement onC. On the other hand, ifHR> 1, the hazard is greater
for an individual onE, andC is superior.

Suppose that survival data are exponentially distributed with parameterλ whereλ > 0.
Then,h(t) is expressed asλ. By using the value of MST and transforming Equation (1.2),HR

is also given by

HR=
hE(t)
hC(t)

=
λE

λC
=

MSTC

MSTE
,

whereλ j is the hazard and MSTj is the MST on armj ∈ {C,E}.
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1.2.4 Survival endpoints

Table 1.3 describes survival endpoints employed in clinical trials with progressive cancer pa-
tients. According to the Food and Drug Administration (2007) guidelines, OS is defined as the
time from randomization to death from any cause and is usually measured in the intent-to-treat
population. With respect to the clinical trials to confirm the effectiveness for a new therapy in
oncology, the gold standard endpoint is OS. The reason is that it is simple to measure clinical
importance, easy to interpret, and measurement is unbiased. OS is accepted as the most reli-
able cancer endpoint and therefore is preferred by regulatory agencies. However, OS generally
requires long-term follow-up after disease progression. Consequently, it will be expensive to
conduct clinical trials since we need quite long time and large number of patients when em-
ploying and evaluating OS as a primary endpoint. Thus, short-term survival endpoints such as
progression-free survival (PFS) are often set as an alternative to OS in some therapeutic areas.

Table 1.3: Survival endpoints in progressive cancer and their definitions

Endpoint Definition

Overall survival (OS) Death from any cause
Time-to-progression (TTP) Objective tumor progression

It does not include deaths.
Progression-free survival (PFS) Objective tumor progression or death from any cause
Time-to-treatment failure (TTF) Discontinuation of treatment for any reason,

including disease progression, treatment toxicity,
and death from any cause

PFS is defined as the time from randomization until objective tumor progression, i.e., time-
to-progression (TTP), or death from any cause, whichever occurs first. PFS has recently gained
much importance in oncology clinical trials particularly in phase II because objective response
rate (ORR) based on the Response Evaluation Criteria in Solid Tumors (RECIST) criteria
(Eisenhauer et al., 2009), frequently used in real phase II trials as a primary endpoint, is not
surrogate for OS in the development of molecular targeted therapies (Seymour et al., 2010). In
Chapter 3, we focus on PFS as a short-term endpoint for OS.
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1.3 Statistical inference for different types of comparisons

There are various types of comparisons between the experimental (E) and control (C) arm.
Figure 1.1 illustrates each type of comparisons. Typically, in developing new therapies through
the clinical trials, the main purpose is to confirm superiority. That means that the experimental
arm is better than the control arm. In this case, the experimental arm is also non-inferior to
the control arm. However, under the non-inferiority hypothesis, it is unnecessary to confirm
superiority. The non-inferiority objective is fulfilled once the experimental arm is inferior to the
control arm by less than some prespecified margin (Rothmann et al., 2011). Thus, the choice of
the margin has important practical consequences (Food and Drug Administration, 2016b). In
contrast, the absolute difference between the experimental and control arms is smaller than a
prespecified margin to meet the equivalence objective.

The equivalence objective is usually set in a bioequivalence trial to develop generic drugs
(Food and Drug Administration, 2001). A generic drug is a product which has the same quali-
tative and quantitative composition in active substances and the same pharmaceutical form as a
brand-name product (European Medicines Agency, 2010). In addition, the equivalence trial has
recently been conducted to develop biosimilars. A biosimilar is defined as a biological medic-
inal product that contains an active substance that is similar to that of an original previously
authorized biological medicinal product (European Medicines Agency, 2014a). It differs from
generic products, e.g., with respect to the complexity and heterogeneity of the molecular struc-
ture (Berghout, 2011; Chow, 2013). Nowadays, the development of biosimilars is attractive
to pharmaceutical sponsors because healthcare costs for patients are expected to be reduced.
As shown in the development of biosimilar insulin glargine (Blevins et al., 2015; Rosenstock
et al., 2015), non-inferiority trials are also applied in the development of biosimilars. However,
most biosimilars have been developed with equivalence trials. In Chapter 4, we focus on the
statistical issues in equivalence trials.

Figure 1.1: Relationship of each type of comparisons
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1.4 Adaptive designs for confirmatory clinical trials

Randomized controlled clinical trials with two arms are commonly applied in confirmatory clin-
ical trials. In recent years, adaptive clinical trial designs have been attractive to pharmaceutical
sponsors, regulatory agencies, and medical investigators, in response to the expectation for con-
ducting clinical trials efficiently. Adaptive designs mean the extension of group sequential de-
signs. Group sequential designs include interim analyses before the formal completion of a trial
and possible early stopping for either positive or negative results (Jennison and Turnbull, 2000).
In addition to the option for early stopping, adaptive designs also provides decisions based on
data accumulated until the interim analyses how to modify design facets without undermining
the validity and integrity of the trial (Food and Drug Administration, 2010, 2016a). The aim of
the adaptive designs is to increase the likelihood of a successful trial and lower the number of
patients exposed to an inferior or harmful treatment (Bretz et al., 2009). However, we have to
note that many clinical scientists conceptually misuse or abuse the adaptive design methods in
clinical trials (Cheng and Chow, 2010; Wittes, 2010). The relative performance over alternative
design options depends on the scenarios, assumptions, and trial objectives (Bretz et al., 2017).

Adaptive designs encompass every phase of clinical trials. In early phase clinical trials,
adaptive designs are often applied in real clinical trials in the last ten years owing to their
exploratory aspects. Currently, adaptive designs in consideration for biomarker information
have been applied in real phase II clinical trials. For example, the I-SPY (Investigation of
Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis) 2
trial using adaptive randomization was reported (Park et al., 2016; Rugo et al., 2016) and the
innovative clinical trial designs are expected in a confirmatory stage. Hence, we focus on the
adaptive designs for confirmatory clinical trials.

Figure 1.2: Top: traditional development with two separate phases, Bottom: seamless phase
II /III design
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Clinical trials with multiple phases can be conducted seamlessly with adaptation in the com-
mon protocol when applying adaptive seamless designs in clinical drug developments. With
respect to confirmatory clinical trials, adaptive seamless phase II/III designs are increasingly
explored in the current research articles to solve the problem for late stage failures and rising
costs of phase II/III clinical trials. As shown in Figure 1.2, the adaptive seamless phase II/III
designs can minimize the period, white space, between the analysis of phase II data and recruit-
ment of phase III patients, while the seamless approach also allows the flexibility to investigate
other crucial issues, without the need for separate trials (Schmidli et al., 2006).

The variety of the adaptive seamless phase II/III designs is roughly divided into an adaptive
treatment selection design and an adaptive population selection design. The adaptive treatment
selection design could be used for the development comparing a control arm with multiple com-
peting experimental treatments. Any experimental treatments that appear no better than control
are quickly rejected in a late phase II trial and those that are significantly better than control are
identified in a phase III confirmatory trial. On the other hand, the adaptive population selection
design could be used for the development of molecular targeted therapies. any hypotheses for
each population are identified in a late phase II trial and confirmed in the selected hypotheses
in a phase III trial.
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Chapter 2

Utility-based interim decision rule
planning in adaptive designs for
population selection

2.1 Introduction

As many molecular targeted therapies whose treatment effect notably differs among subgroups
of patients based on biomarker information in oncology have recently been developed by nu-
merous pharmaceutical sponsors (Aggarwal, 2010), various clinical trial designs considering
patient heterogeneity have been proposed (Biankin et al., 2015). Often a benefit is found only
for a subgroup in the confirmatory clinical trial report without any pre-specification in statis-
tical planning; for example, see Karapetis et al. (2008). To deal with this issue, some clinical
trials pre-specify a subpopulation in the statistical analysis plan in addition to the overall popu-
lation, in accordance with a multiple testing procedure (Goteti et al., 2014). In most instances,
a fixed clinical trial design is applied in the setting of targeted therapy development. However,
some patients recruited in the development of molecular targeted therapies cannot help being
exposed to unfavorable treatments during a trial with such a traditional design. In particular,
even worse, some molecular targeted therapies show a positive effect only for the subpopulation
but a negative effect otherwise; for example, see Mok et al. (2009). From an ethical viewpoint,
patients who are likely to be harmed by the therapy, as identified by biomarker information,
must be dropped from the trial, even though such information from the clinical trial is required
by regulatory agencies.

In this work, we consider that the full population comprises biomarker-positive and biomarker-
negative populations categorized based on a promising biomarker, as shown in Figure 2.1, in
a setting wherein a promising biomarker exists and in which the targeted therapy is beneficial
only for the biomarker-positive population. If there are a sufficient number of patients assigned
to each population, adaptive population selection designs are highly attractive, with the aim
of developing molecular targeted therapies. Figure 2.2 illustrates the schematic representation
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of the adaptive population selection design. In this context, an interim analysis is conducted
in midcourse to identify whether the entire population or a subpopulation is benefitting (Food
and Drug Administration, 2010). Thus, interim analysis can play a role in determining whether
the targeted population is restricted to only the biomarker-positive population owing to futility
for the biomarker-negative population or is continued as the full population. For the sake of
simplicity, we consider the interim analysis that discontinues the trial early only for futility.

Figure 2.1: Assumed populations driven by a biomarker

We consider a design setting in which the endpoint is of the time-to-event type, such as
overall survival or progression-free survival. In this context, one of the simple measures used
for an interim decision is the hazard ratio for each population. For instance, Jenkins et al.
(2011) and Friede et al. (2012) incorporated hazard ratios into the interim decision in their
methodology. As an example of a real clinical trial, the futility criteria for the interim analysis
were set to be achieved if the estimated hazard ratio at interim exceeded 1.00, and then, futility
stopping was consequently fulfilled at the interim analysis, i.e., the estimated hazard ratio was
1.09 (Fujitani et al., 2016). However, a point estimate of a hazard ratio is not reasonable, since
the immature sample size at interim could possibly result in a misleading decision. In particular,
if this criterion is applied to an interim decision with adaptive population selection, the sample
size in the biomarker-positive group is even more inadequate than the overall sample size.

Alternatively, stochastic curtailment, based on the conditional or predictive power, is also
frequently used in practice (Jennison and Turnbull, 2000). In the context of adaptive popula-
tion selection design, Brannath et al. (2009) and Uozumi and Hamada (2017b) considered the
use of predictive power in the setting of survival endpoints, whereas Wang et al. (2009) and
Götte et al. (2015) evaluated performance using conditional power. Predictive power is rela-
tively preferred as an interim decision feature because conditional power is highly dependent
on the interim result, regardless of having an insufficient sample size in midcourse (Spiegel-
halter et al., 1986). Even if either statistic is employed in the interim decision, searching the
thresholds is not straightforward, and a thorough investigation to confirm the operating charac-
teristic depending on the setting would be required via simulation to pre-specify the thresholds
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for each population at the planning stage. However, there are no well-established procedures
for setting the threshold to select the population at interim in the context of adaptive population
selection design.

Figure 2.2: Schematic representation of the adaptive population selection design

In this chapter, we propose a novel approach to setting the thresholds in an interim decision
rule constructed on the basis of utility functions in the context of adaptive population selection
design. The utility functions are motivated by the work of Graf et al. (2015) in which several
trial designs for the development of molecular targeted therapies were compared with consid-
eration of the gain for sponsors and public health. We use utility functions that consist of gain
and loss functions solely to help in formulating the interim decision rule to determine whether
the entire population is continued or only the promising population is selected. Following the
formulation of an interim decision rule based on the proposed approach, we consider the situa-
tion in which the interim analysis is performed based on the hazard ratios or predictive powers
for each population and the final analysis is performed using a log-rank test. We further ex-
amine the proposed approach by using the difference and ratio of the restricted mean survival
time within the interim and final decisions. To assess the proposed approach, we evaluate the
operating characteristics with respect to the probability of selecting each population and the
probability of rejecting the hypotheses for each population in the setting in which the targeted
therapy is considered.

The remainder of this chapter is structured as follows. In Section 2.2, we introduce the set-
ting of the adaptive design considered in this chapter in the case in which the type of endpoints
is time-to-event. In Section 2.3, we specify the measures used within the interim decision rule
as follows: hazard ratio, predictive power, and difference and ratio of restricted mean survival
times. In Section 2.4, we provide the utility functions and describe how to incorporate those
functions into the method for setting the thresholds in the interim decision. Section 2.5 presents
a simulation study, and we provide concluding remarks in Section 2.6.
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2.2 Setting of adaptive population selection design with two

stages using survival endpoints

In this chapter, we focus on adaptive population selection design for the development of molec-
ular targeted therapies. We assume, for the sake of simplicity, that the full population (F)
comprises biomarker-positive (P) and biomarker-negative (N) populations without any consid-
eration of an unknown group. LetHg denote the null hypothesis for populationg ∈ {F,P}.
We consider one interim analysis in midcourse to identify whetherF or only P is to continue
into the subsequent stage. This means that the interim analysis provides an opportunity to stop
recruitment forN in the case in which the targeted therapy is deemed as promising only forP.
Multiple testing problems with respect to the interim analysis do not arise because we consider
the interim analysis only for futility.

With respect to the final analysis, we consider two null hypotheses,HF andHP. Both HF

andHP are tested ifF is determined to be continued. On the other hand, onlyHP is tested if
only P is determined to be continued andN is terminated at the interim analysis. Letpk,g denote
the p-value for stagek (k = 1,2) in populationg ∈ {F,P}. We use combination methods to
perform the hypothesis testing at the final analysis. There are two methods: the Fisher’s product
combination method (Bauer and Köhne, 1994) and the weighted inverse normal combination
method (Lehmacher and Wassmer, 1999). To construct the combined p-value, we employ the
weighted inverse combination method,

C(p1,g, p2,g) = 1− Φ{w1Φ
−1(1− p1,g) + w2Φ

−1(1− p2,g)} ,

whereΦ(·) denotes the cumulative distribution function of the standard normal distribution and
wk denotes the weight for each stage chosen bywk =

√
dk/

∑
j dj, where 0≤ wk ≤ 1 and∑2

k=1 w2
k = 1, with pre-specified number of events,dk, at stagek on the assumption thatp1,g and

p2,g are independent and uniformly distributed under the null hypotheses. The weighted inverse
combination method can be extended to the setting with multiple stages.

To solve multiple testing issues forHF andHP, the use of Simes (1986) procedure is ap-
plied to the p-value for the intersection hypothesisHFP = HF ∩ HP given by pk,FP = min[2 ·
min(pk,F , pk,P),max(pk,F , pk,P)], since the familywise type I error rate is controlled in the situa-
tion in which pk,F and pk,P are non-negatively correlated or independent (Samuel-Cahn, 1996;
Sarkar and Chang, 1997). Using the weighted inverse combination method, the final decision
for each hypothesis is made in accordance with the closure principle (Marcus et al., 1976). That
is, HF is rejected ifC(p1,FP, p2,FP) < α andC(p1,F , p2,F) < α are satisfied andHP is rejected
if C(p1,FP, p2,FP) < α andC(p1,P, p2,P) < α are satisfied in case whereF is determined to be
continued, whereasHP is rejected ifC(p1,FP, p2,P) < α andC(p1,P, p2,P) < α are satisfied in case
where onlyP is determined to be continued andN is terminated at the interim analysis, where
α denotes a one-sided significance level. For a one-sided significance level ofα = 0.025, we set
the critical value asΦ−1(1− α) ≒ 1.96. Note that it is vital to specify the combination function
and the design of stage 1 at the planning stage.
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Figure 2.3: Handling survival data with two-stage designs

To handle the setting in which the endpoint is time-to-event, the p-values are derived follow-
ing the framework of Jenkins et al. (2011) to control the familywise type I error rate. As shown
in Figure 2.3, if the patient accrued in the first stage has an event during the second stage, then
this event is handled as the p-value for the first stage.

2.3 Types of measures used in the interim decision

The aim of this work is to propose a novel utility-based approach to guide the construction of
the interim decision rule of an adaptive population selection design in the setting of survival
endpoints. This section describes how to assist in constructing the interim decision rule using
utility functions. With regard to the final analysis of survival data, the traditional method is to
perform a log-rank test and Cox proportional hazard model to show the treatment effect through
the hazard ratio and its confidence interval. In particular, the Cox proportional hazard model
is popularly applied even in the situation where the proportional hazard assumption is violated
(Schemper, 1992).

2.3.1 Simple hazard ratio

Because we assume that the final analysis will be performed using the Cox proportional hazard
model to show the treatment effect by the hazard ratio and its confidence interval, the midcourse
hazard ratio can be used as the measure within the interim decision. Derivation of the hazard
ratio was described in Section 1.2.3. Jenkins et al. (2011) and Friede et al. (2012) used an
interim decision using the point estimate of the interim hazard ratiôHRI ,g for populationg ∈
{F,P}. Let ηHR

g denote the threshold of the hazard ratio forg ∈ {F,P} at interim. Based on
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previous work (Friede et al., 2012; Jenkins et al., 2011), we consider the interim decision rule
as follows. (i) ContinueF if ĤRI ,F < ηHR

F , regardless of the value of̂HRI ,P. (ii) Continue
only P if ĤRI ,F ≥ ηHR

F and ĤRI ,P < ηHR
P . (iii) Stop the trial for futility if ĤRI ,F ≥ ηHR

F and
ĤRI ,P ≥ ηHR

P , where the experimental treatment is beneficial against the control if the hazard
ratio is less than 1.00. Note that this decision rule is constructed using the point estimate, rather
than the confidence interval, of the hazard ratio.

However, an interim decision using the point estimate rather than the confidence limit would
become unstable because the sample size at interim is insufficient, particularly forP. Therefore,
we further consider the interim decision rule based on the upper limit of the confidence interval
for the hazard ratio estimated from the interim data denoted byĤR

U

I ,g for g ∈ {F,P} as follows.

(i) ContinueF if ĤR
U

I ,F < η
HR
F , regardless of the value of̂HR

U

I ,P. (ii) Continue onlyP if ĤR
U

I ,F ≥
ηHR

F andĤR
U

I ,P < ηHR
P . (iii) Stop the trial for futility if ĤR

U

I ,F ≥ ηHR
F andĤR

U

I ,P ≥ ηHR
P , where the

experimental treatment is beneficial against the control if the hazard ratio is less than 1.00.

2.3.2 Predictive power

Alternatively, stochastic curtailment based on the conditional or predictive power is often used
to make an interim decision for early stopping owing to futility in the context of a group se-
quential design. Since the conditional power must be obtained for a specified treatment effect,
which might not be supported by the final data (Jennison and Turnbull, 2000), we focus on the
predictive power as an alternative to the hazard ratio. Because we assume that the final anal-
ysis will be performed using a log-rank test to derive the p-value, calculation of the predictive
power is conducted based on the result of the test statistic by the log-rank test and the assump-
tion that non-informative priors for the treatment effect are employed for the sake of simplicity
(Dmitrienko and Wang, 2006). That is, the predictive power for populationg ∈ {F,P} is given
by

PPg = 1− Φ
[(

1− Πg

)−1/2 (
Φ−1(1− α) ·

√
Πg − zg

)]
(2.1)

whereΠg represents the event fraction at the interim analysis andzg is the observed test statistic
based on the log-rank test using stage 1 data.

If the predictive power based on interim results is greater than the threshold for one hypoth-
esis, then the possibility of rejection is high for the corresponding hypothesis when continuing
with the corresponding population. In a manner similar to that of the interim decision using
the hazard ratio, we use the predictive powerP̂Pg for g ∈ {F,P} in the interim decision rule as
follows. (i) ContinueF if P̂PF > ηPP

F , regardless of the value of̂PPP. (ii) Continue onlyP if
P̂PF ≤ ηPP

F andP̂PP > ηPP
P . (iii) Stop the trial for futility if P̂PF ≤ ηPP

F andP̂PP ≤ ηPP
P , where

ηPP
g is the threshold of predictive power forg ∈ {F,P}.
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2.3.3 Restricted mean survival time

As an alternative to hazard ratio for survival data between treatment groups, the measure con-
structed using the restricted mean survival time is recommended, when the proportional hazard
assumption is violated (Royston and Parmar, 2011; Uno et al., 2014). Furthermore, as com-
plementary information on summarizing the survival endpoints, presentation of the restricted
mean survival time is currently recommended in oncology clinical trials (A’Hern, 2016). The
restricted mean survival time was first proposed by Irwin (1949) and then extended to adjust
covariates (Karrison, 1987; Zucker, 1998).

Let RMDg andRMRg denote the difference and ratio, respectively, of the restricted mean
survival times forg ∈ {F,P}. The interim estimates,̂RMDg andR̂MRg, of RMDg andRMRg,
respectively, are given by

R̂MDg =

∫ t∗

0
Ŝg,E(t)dt−

∫ t∗

0
Ŝg,C(t)dt (2.2)

and

R̂MRg =

∫ t∗

0
Ŝg,E(t)dt/

∫ t∗

0
Ŝg,C(t)dt (2.3)

wheret∗ is the time point when the interim decision is made andŜg,E andŜg,C are the estimated
survival functions forg ∈ {F,P} in experimental (E) and control (C) groups. As described by
Equations (2.2) and (2.3), the restricted mean survival time in each group is calculated by the
area under the survival curve up tot∗.

In a manner similar to that of the interim decision using the hazard ratio, we useRMDg

andRMRg for g ∈ {F,P} solely in the interim decision rule. First, using the lower limit of

R̂MDg denoted byR̂MD
L

g, the interim decision rule is defined as follows. (i) ContinueF if

R̂MD
L

F > ηRMD
F , regardless of the value of̂RMD

L

P. (ii) Continue onlyP if R̂MD
L

F ≤ ηRMD
F and

R̂MD
L

P > ηRMD
P . (iii) Stop the trial for futility if R̂MD

L

F ≤ ηRMD
F and R̂MD

L

P ≤ ηRMD
P , where

ηRMD
g is the threshold ofRMDg for g ∈ {F,P}. Second, similar toRMDg, the interim decision

rule using the lower limit ofR̂MRg denoted byR̂MR
L

g is considered as follows. (i) ContinueF

if R̂MR
L

F > ηRMR
F , regardless of the value of̂RMR

L

P. (ii) Continue onlyP if R̂MR
L

F ≤ ηRMR
F and

R̂MR
L

P > ηRMR
P . (iii) Stop the trial for futility if R̂MR

L

F ≤ ηRMR
F andR̂MR

L

P ≤ ηRMR
P , whereηRMR

g

is the threshold ofRMRg for g ∈ {F,P}.
As noted, we assume that the final analysis will be performed in the traditional manner

using a log-rank test and Cox proportional hazard model. However, eitherRMDg or RMRg can
be used similarly, instead of the hazard ratio, in the final analysis, when the interim decision is
made by the interimRMDg or RMRg, but the required sample size is increased, because using
RMDg or RMRg is less powerful than using the hazard ratio (Trinquart et al., 2016).
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2.4 Formulation of an interim decision rule based on utility

functions

In the interim decision rule presented in Section 2.3, sponsors are required to set the thresh-
olds for each measure beforehand. Currently, there are no statistical approaches for setting the
thresholds. Hence, sponsors tend to decide each threshold based on thorough simulation results
considering the cost and benefit for the development.

Here, we use gain and loss functions as utility functions to construct the optimal decision
rule at interim. Letηg denote the general expression of the threshold of a particular measure,
such as the hazard ratio forg ∈ {F,P}. We provide utility functions in terms of sponsors (Sp)
and patients (Pat) given by

Uζ(ηF , ηP) = Gζ(ηF , ηP) − Lζ(ηF , ηP)

whereGζ andLζ denote the gain and loss functions, respectively, forζ ∈ {Sp,Pat}. We assume
that each function is constructed on the basis of pseudo clinical trial results via simulation. With
the use of the expected utility,E

[
Uζ(ηF , ηP)

]
, the optimal thresholds ˜ηF andη̃P are explored via

grid search to satisfy

arg maxηF ,ηP
E

[
Uζ(ηF , ηP)

]
(2.4)

for ζ ∈ {Sp,Pat}, whereηF andηP are subject to the restrictions depending on the measure. For
instance, whenηg is considered asηHR

g , i.e., the threshold of the hazard ratio,ηHR
g is set to be

greater than 1.00 in order to prevent the situation in which the decision rule at interim is stricter
than that at the final analysis.

Here, we describe the gain and loss functions in terms of sponsors and patients. First,
sponsors have a great deal to be concerned about in rejectingHg for g ∈ {F,P}. Thus, each
function is shown as

GSp(ηF , ηP) = {δF I (Ω = F) + δPI (Ω = P)}I (rF = 1)I (rP = 1)

+ δF I (Ω = F)I (rF = 1)I (rP = 0)+ δPI (Ω = P)I (rF = 0)I (rP = 1)

= δF I (Ω = F)I (rF = 1)+ δPI (Ω = P)I (rP = 1) (2.5)

and

LSp(ηF , ηP) = δF{I (Ω = P) + I (Ω = ϕ)}I (rF = 1)I (rP = 1)

+ {δPI (Ω = P) + δF I (Ω = ϕ)}I (rF = 1)I (rP = 0)

+ {δF I (Ω = F) + δPI (Ω = ϕ)}I (rF = 0)I (rP = 1)

+ {δF I (Ω = F) + δPI (Ω = P)}I (rF = 0)I (rP = 0),

(2.6)

respectively, whereI (·) is the indicator function that takes the value one if· is true and zero
otherwise,Ω denotes the selected population determined based on the interim analysis,δg de-
notes the discount parameter for populationg ∈ {F,P}, rg denotes an indicator variable such that

18



rg = 1, if Hg for populationg ∈ {F,P} is rejected at the final analysis regardless of the interim
results, andϕ indicates that neitherF nor P is selected. On the one hand, Equation (2.5) says
that the gain function is achieved in the case that the correct population is selected at the interim
analysis in the situation in which eitherHF or HP or bothHF andHP are rejected at the final
analysis. With regard to the population,P is obviously narrower thanF. If the sponsors corre-
spond to a pharmaceutical company, then their interest includes the market size after regulatory
approval. Hence, we incorporate the discount parameters asδF = 1.0 and 0≤ δP ≤ 1.0 into each
function. Each term of Equation (2.5) shows that gain is accumulated withδg in case where the
corresponding populationg ∈ {F,P} is selected at the interim analysis, denoted byΩ = g, in
the situation in whichHg is rejected at the final analysis, denoted byrg = 1. On the other hand,
Equation (2.6) indicates that loss is accumulated, if the appropriate population is terminated
at the interim analysis, regardless of the situation in which eitherHF or HP is rejected, or an
inappropriate population is continued to the following stage, even though neitherHF nor HP is
rejected. Note that the first term of Equation (2.6),δF{I (Ω = P) + I (Ω = ϕ)}I (rF = 1)I (rP = 1),
shows that loss is accumulated withδF if only P is determined to be continued or the trial is de-
termined to be discontinued at interim, regardless of the situation in which bothHF andHP can
be rejected at the final analysis. In the same way, the second and third terms of Equation (2.6),
{δPI (Ω = P)+δF I (Ω = ϕ)}I (rF = 1)I (rP = 0) and{δF I (Ω = F)+δPI (Ω = ϕ)}I (rF = 0)I (rP = 1),
denote that loss is accumulated if the appropriate population is terminated at interim in the situ-
ation in which the hypothesis for the terminated population can be rejected at the final analysis.
Finally, the fourth term of (5),{δF I (Ω = F) + δPI (Ω = P)}I (rF = 0)I (rP = 0), indicates that
loss is accumulated if eitherF or P is determined to be continued at interim even though neither
hypothesis can be rejected at the final analysis.

Second, patients are concerned with the targeted range of an approved therapy. For in-
stance, the patients whose population isN are harmed in a situation in which marketing ap-
proval reachesF since the fact in which the onlyP is beneficial was not observed in the relevant
trial, although the true treatment effect should have been restricted toP. This case discounts as
lossδF in LSp of Equation (2.6). To handle the issue above, the loss function in terms of patients
is given by

LPat(ηF , ηP) = {δNI (Ω = P) + δF I (Ω = ϕ)}I (rF = 1)I (rP = 1)

+ {δPI (Ω = P) + δF I (Ω = ϕ)}I (rF = 1)I (rP = 0)

+ {δNI (Ω = F) + δPI (Ω = ϕ)}I (rF = 0)I (rP = 1)

+ {δF I (Ω = F) + δPI (Ω = P)}I (rF = 0)I (rP = 0).

(2.7)

Note thatLPat is less thanLSp because the discount parameter 0≤ δN ≤ 1.0 is incorporated
into Equation (2.7), whenF is selected even if onlyHP is intrinsically rejected, denoted by
δNI (Ω = F)I (rF = 0)I (rP = 1) obtained from the third term of (2.7), or onlyP is selected even
if HF is rejected as well asHP, denoted byδNI (Ω = P)I (rF = 1)I (rP = 1) obtained from the
first term of (2.7).LPat is comparable toLSp, if δP = δN = 1.0. With regard to the gain function,
GPat is identical toGSp. Therefore,UPat is comparable toUSp as well, ifδP = δN = 1.0.
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2.5 Simulation study

We have described how to optimize the thresholds in an interim decision using utility functions
in the context of adaptive population selection designs. We evaluated the performance of the
proposed approach to derive thresholds that maximized the utility in an interim decision and to
calculate the probability of selecting the population at the interim analysis based on specifying
thresholds. The design assumptions and simulation setting we assume for the development of
a targeted therapy are illustrated in Section 2.5.1. The operating characteristics based on the
simulation results are presented in Section 2.5.2.

2.5.1 Simulation setting

First, we consider a two-stage randomized, parallel-group clinical trial with two arms, com-
prising experimental (E) and control (C) groups. We assume that the final analysis is to be
conducted with a one-sided significance level of 2.5% following the closure principle as de-
scribed in Section 2.2. In addition, an interim analysis is conducted to determine whether the
population continues asF or is restricted toP, as described in Section 2.3. The interim analy-
sis is conducted after half of the pre-specified events set as 300 occur among the pre-specified
sample size of 400. The median time forC is set as 6.5 months for bothP andN and that forE
is derived via the hazard ratio, where the distribution is assumed to be exponential.

Let HRg denote the assumed hazard ratio forg ∈ {F,P}. With respect to the treatment effect
difference betweenE andC, we employ the hazard ratio forg ∈ {F,P} as Scenarios 1 to 4.
We assume that the treatment effect forP is promising across every scenario, i.e.,HRP = 0.50.
Regarding the treatment effect forN, as shown in Figure 2.4, Scenario 1 is assumed to indicate
a tendency similar to that ofP, i.e., HRN = 0.50, whereas Scenario 2 assumes thatE is more
beneficial inP than inN, i.e., HRN = 0.90. Scenario 3 assumes thatE is beneficial only inP,
but not inN, i.e.,HRN = 1.00. We further assume Scenario 4, in whichE is remarkably harmful
in N, i.e.,HRN = 1.43. The hazard ratio forF is handled as exp{ψ · logHRP+ (1−ψ) · logHRN},
whereψ denotes the prevalence ofP under the assumption thatF is categorized asP andN,
without consideration of an unknown group for simplicity. Even if we employ eitherRMDg

or RMRg at the interim analysis, we assume that the hazard ratio derived by using the Cox
proportional hazard model is to be used at the final analysis.

Regarding the utility functions, we setδP = δN = 1.0,0.5 in accordance withψ being
assumed to be 50%, in addition to the setting ofδF = 1.0. Thus, we treatedδP as a relative
discount ofP to F with respect to the setting ofδP = 0.5. In the case that there are multiple
values satisfying Equation (2.4), the mean value was used as a threshold in the interim decision.
In the interim decision, each threshold, viz.,ηm

g , wherem ∈ {HR,PP,RMD,RMR}, of ĤR
U

I ,g,

P̂Pg, R̂MD
L

g, and R̂MR
L

g for g ∈ {F,P}, has the restrictionsηHR
g ≥ 1.00, 0 ≤ ηPP

g ≤ 0.80,
ηRMD

g ≤ 0, andηRMR
g ≤ 1.00 during the grid search on the basis of Equation (2.4). If we assume

the treatment effect forP under null hypothesis, i.e.,HRP = 1.00, we confirmed that the optimal
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thresholds are found with lower or upper limit of aforementioned restrictions. Hence, we solely
assume that the treatment effect forP is promising across every scenario.

Figure 2.4: Assumed scenarios of survival distribution comparingE (solid) andC (dashed) in
N

2.5.2 Simulation results

Calculation was performed based on 10,000 simulations to obtain all subsequent results per
scenario.

First, Tables 2.1 to 2.4 show the results for the optimal thresholds that maximized Equation
(2.4) by grid search under the restrictions described in Section 2.5.1, wherein ˜ηm

g usingm ∈
{HR,PP,RMD,RMR} is the optimal thresholds forg ∈ {F,P}, and the interim decision was
conducted with ˜ηm

g . There is an opposite tendency when comparing ˜ηHR
g with η̃PP

g , η̃RMD
g , and

η̃RMR
g since the direction of positive or negative effects ofĤRI ,g is the reverse of that of̂PPg,

R̂MDg, andR̂MRg. Note that in our rule at the interim decision,HP is at any rate tested, even if
F is continued at the interim analysis. Hence, the optimal threshold forP was stricter than that
for F, regardless of the difference in the sample size in each population in midcourse, especially
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in Scenario 1, in which we assumed that the treatment effect was observed in bothF andP.
Moreover, the optimal threshold forF was stricter than that forP, when the treatment effect
in F was diluted in Scenarios 2 to 4. In particular, the optimal threshold forF was searched
as the strictest value under the restriction as mentioned in Section 5.1 whenδP is set to 1.0 in
Scenario 4, in which there is actually a harmful effect in N. However, the optimal threshold
for F was de-escalated whenδP was set to 0.5, since we considered the discount forP by δP,
whereinP is evidently narrower thanF, affecting both the sponsors who pay the trial cost and
who attempt to obtain a benefit and the patients who are exposed to the targeted therapy. With
regard to the type of utility functions, it can be confirmed that the thresholds constructed using
utility functions between sponsors and patients are comparable, sinceUPat is identical toUSp

whenδP = δN = 1.0.

Table 2.1: Results of optimal thresholds of interim hazard ratio, ˜ηHR
g , for g ∈ {F,P}, full (F)

and biomarker-positive (P) populations, derived by grid search when the interim decision rule
is constructed from utility functions in terms of sponsors (Sp) and patients (Pat)

η̃HR
F η̃HR

P

Scenario HRN Sp and Pat Sp Pat Sp and Pat Sp Pat
(δP = 1.0) (δP = 0.5) (δP = 0.5) (δP = 1.0) (δP = 0.5) (δP = 0.5)

1 0.50 1.68 1.68 1.68 1.50 1.50 1.50
2 0.90 1.25 1.35 1.35 1.83 1.63 1.65
3 1.00 1.20 1.25 1.25 1.75 1.60 1.78
4 1.43 1.00 1.05 1.05 1.60 1.60 1.60

HRN is the assumed hazard ratio for biomarker-negative (N) population;HRP is the assumed hazard ratio forP

and is set to 0.50;δP is the discount parameter forP; δN is equal toδP since we assume that the prevalence ofP,
ψ, is set to 50%.
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Table 2.2: Results of optimal thresholds of predictive power, ˜ηPP
g , for g ∈ {F,P}, full (F) and

biomarker-positive (P) populations, derived by grid search when the interim decision rule is
constructed from utility functions in terms of sponsors (Sp) and patients (Pat)

η̃PP
F η̃PP

P

Scenario HRN Sp and Pat Sp Pat Sp and Pat Sp Pat
(δP = 1.0) (δP = 0.5) (δP = 0.5) (δP = 1.0) (δP = 0.5) (δP = 0.5)

1 0.50 0.03 0.03 0.03 0.40 0.40 0.40
2 0.90 0.20 0.05 0.05 0.00 0.00 0.00
3 1.00 0.25 0.15 0.15 0.00 0.00 0.00
4 1.43 0.80 0.70 0.70 0.05 0.05 0.05

HRN is the assumed hazard ratio for biomarker-negative (N) population;HRP is the assumed hazard ratio forP

and is set to 0.50;δP is the discount parameter forP; δN is equal toδP since we assume that the prevalence ofP,
ψ, is set to 50%.

Table 2.3: Results of optimal thresholds of interim difference of restricted mean survival times,
η̃RMD

g , for g ∈ {F,P}, full (F) and biomarker-positive (P) populations, derived by grid search
when the interim decision rule is constructed from utility functions in terms of sponsors (Sp)
and patients (Pat)

η̃RMD
F η̃RMD

P

Scenario HRN Sp and Pat Sp Pat Sp and Pat Sp Pat
(δP = 1.0) (δP = 0.5) (δP = 0.5) (δP = 1.0) (δP = 0.5) (δP = 0.5)

1 0.50 −5.38 −5.38 −5.38 −4.50 −4.50 −4.50
2 0.90 −1.25 −1.50 −1.50 −6.25 −6.10 −6.25
3 1.00 −0.75 −1.25 −1.25 −2.50 −2.50 −2.50
4 1.43 0.00 −0.25 −0.25 −2.50 −2.50 −2.50

HRN is the assumed hazard ratio for biomarker-negative (N) population;HRP is the assumed hazard ratio forP

and is set to 0.50;δP is the discount parameter forP; δN is equal toδP since we assume that the prevalence ofP,
ψ, is set to 50%.
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Table 2.4: Results of optimal thresholds of interim ratio of restricted mean survival times, ˜ηRMR
g ,

for g ∈ {F,P}, full (F) and biomarker-positive (P) populations, derived by grid search when the
interim decision rule is constructed from utility functions in terms of sponsors (Sp) and patients
(Pat)

η̃RMR
F η̃RMR

P

Scenario HRN Sp and Pat Sp Pat Sp and Pat Sp Pat
(δP = 1.0) (δP = 0.5) (δP = 0.5) (δP = 1.0) (δP = 0.5) (δP = 0.5)

1 0.50 0.65 0.65 0.65 0.75 0.75 0.75
2 0.90 0.85 0.85 0.85 0.58 0.58 0.58
3 1.00 0.90 0.85 0.85 0.58 0.61 0.58
4 1.43 1.00 0.95 0.95 0.75 0.75 0.75

HRN is the assumed hazard ratio for biomarker-negative (N) population;HRP is the assumed hazard ratio forP

and is set to 0.50;δP is the discount parameter forP; δN is equal toδP since we assume that the prevalence ofP,
ψ, is set to 50%.

Second, Table 2.5 illustrates the probabilities of selecting each corresponding population
at the interim analysis, where the interim decision rule was constructed in terms of sponsors
and patients, respectively, and whereδP is set to 1.0 and 0.5, respectively. ForδP = δN = 1.0,
comparable results were obtained regardless of the type of utility function for constructing the
interim decision rule. The more diluted the treatment effect inF was, the higher the probability
of selecting onlyP was. However, the probability of continuingF was higher, whenδP was set
to 0.5, especially in Scenarios 2 and 3, regardless of the type of utility function, since the utility
for P was discounted considering the population size. Furthermore, with respect to the interim
decision rule by either̂RMDg or R̂MRg, the probability of continuingF was less than that using
either ĤRI ,g or P̂Pg, notably in Scenarios 2 and 3. If the treatment effect in P is weaker, this
probability would be de-escalated, owing to the augmentation for the probability of stopping
the trial for futility.

Finally, Table 2.6 represents the probabilities of rejecting each hypothesis at the final anal-
ysis, where the interim decision rule was constructed in terms of sponsors and patients, respec-
tively, and whereδP is set to 1.0 and 0.5, respectively. Note that the probability of rejecting the
hypothesisHF ∪ HP shows the power. Prior to the description of Table 2.6, we confirmed that
the familywise type I error rate was controlled at less than 2.5% across all scenarios, regard-
less of every interim measure and the type of utility function, where calculation did not include
the possibility of stopping for futility at the interim analysis. Here, the probability of rejecting
HF was greater than that of rejectingHP and comparable to the power notably in Scenario 1,
whereas the probability of rejectingHP was greater than that of rejectingHF and comparable to
the power when the treatment effect inF was diluted in Scenarios 2 to 4. Similar to the results
of the interim analysis, the probabilities of rejectingHF whenδP was set to 0.5 were higher than
those whenδP was set to 1.0.
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Table 2.5: Probabilities of each decision at the interim analysis based on utility functions in
terms of sponsors (Sp) and patients (Pat) when each measure (HRI , hazard ratio;PP, predic-
tive power;RMD, difference of restricted mean survival times;RMR, ratio of restricted mean
survival times) for full (F) and biomarker-positive (P) populations is used at the interim analysis

Scenario HRN Measure Sp and Pat (δP = 1.0) Sp (δP = 0.5) Pat (δP = 0.5)
Ω ∈ F Ω ∈ P Ω ∈ ϕ Ω ∈ F Ω ∈ P Ω ∈ ϕ Ω ∈ F Ω ∈ P Ω ∈ ϕ

1 0.50 HRI 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
PP 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

RMD 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
RMR 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

2 0.90 HRI 0.95 0.05 0.00 0.98 0.02 0.00 0.98 0.02 0.00
PP 0.93 0.07 0.00 0.98 0.02 0.00 0.98 0.02 0.00

RMD 0.97 0.03 0.00 0.99 0.01 0.00 0.99 0.01 0.00
RMR 0.98 0.02 0.00 0.98 0.02 0.00 0.98 0.02 0.00

3 1.00 HRI 0.86 0.14 0.00 0.91 0.09 0.00 0.91 0.09 0.00
PP 0.84 0.16 0.00 0.90 0.10 0.00 0.90 0.10 0.00

RMD 0.83 0.17 0.00 0.95 0.05 0.00 0.95 0.05 0.00
RMR 0.86 0.14 0.00 0.96 0.05 0.00 0.96 0.05 0.00

4 1.43 HRI 0.09 0.91 0.00 0.15 0.85 0.00 0.15 0.85 0.00
PP 0.08 0.91 0.01 0.13 0.87 0.01 0.13 0.87 0.01

RMD 0.13 0.87 0.00 0.21 0.79 0.00 0.21 0.79 0.00
RMR 0.12 0.88 0.00 0.27 0.73 0.00 0.27 0.73 0.00

HRN is the assumed hazard ratio for biomarker-negative (N) population;HRP is the assumed hazard ratio forP

and is set to 0.50;Ω is the selected population determined based on the interim analysis;ϕ indicates that neitherF
nor P is selected;δP is the discount parameter forP; δN is equal toδP since we assume that the prevalence ofP, ψ,
is set to 50%.
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Table 2.6: Probabilities of rejecting the hypothesisHF (rF = 1), HP (rP = 1), or HF ∪ HP

{(rF = 1)∪ (rP = 1)} at the final analysis, when each measure (HRI , hazard ratio;PP, predictive
power;RMD, difference of restricted mean survival times;RMR, ratio of restricted mean sur-
vival times) for full (F) and biomarker-positive (P) populations is used at the interim analysis
and when the interim decision rule is constructed from utility functions in terms of sponsors
(Sp) and patients (Pat)

Sp and Pat (δP = 1.0) Sp (δP = 0.5) Pat (δP = 0.5)
Scenario HRN Measure rF = 1 rP = 1 (rF = 1) rF = 1 rP = 1 (rF = 1) rF = 1 rP = 1 (rF = 1)

∪ (rP = 1) ∪ (rP = 1) ∪ (rP = 1)

1 0.50 HRI 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00
PP 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00

RMD 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00
RMR 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00

2 0.90 HRI 0.90 0.97 0.98 0.92 0.97 0.98 0.92 0.97 0.98
PP 0.88 0.97 0.98 0.91 0.97 0.98 0.91 0.97 0.98

RMD 0.91 0.97 0.98 0.92 0.97 0.98 0.92 0.97 0.98
RMR 0.91 0.97 0.98 0.91 0.97 0.98 0.91 0.97 0.98

3 1.00 HRI 0.77 0.97 0.97 0.80 0.97 0.97 0.80 0.97 0.97
PP 0.76 0.97 0.97 0.79 0.97 0.97 0.79 0.97 0.97

RMD 0.75 0.97 0.97 0.81 0.97 0.97 0.81 0.97 0.97
RMR 0.77 0.97 0.97 0.82 0.97 0.97 0.82 0.97 0.97

4 1.43 HRI 0.07 0.96 0.96 0.11 0.96 0.96 0.11 0.96 0.96
PP 0.07 0.96 0.96 0.10 0.96 0.96 0.10 0.96 0.96

RMD 0.10 0.96 0.96 0.14 0.96 0.96 0.14 0.96 0.96
RMR 0.10 0.96 0.96 0.17 0.96 0.96 0.17 0.96 0.96

HRN is the assumed hazard ratio for biomarker-negative (N) population;HRP is the assumed hazard ratio forP

and is set to 0.50;δP is the discount parameter forP; δN is equal toδP since we assume that the prevalence ofP, ψ,
is set to 50%;rg is the indicator variable such thatrg = 1, if the hypothesisHg for populationg ∈ {F,P} is rejected
at the final analysis.
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2.6 Summary and discussion

In this chapter, we proposed a novel approach to set the thresholds within the interim decision
rule in the context of adaptive population selection design. The proposed approach used gain
and loss functions as utility functions in terms of sponsors and patients, solely to assist in
formulating the interim decision rule to determine whether the entire population is continued or
only the promising population is selected.

Simulation results revealed that the proposed approach can guide the setting of thresholds
considering the benefits and risks for sponsors and patients. Under the situation assumed at the
planning stage, this can minimize the possibility of terminating the appropriate population at
the interim analysis, regardless of the scenario in which either hypothesis can be rejected, and
the possibility of continuing the inappropriate population to the following stage even though
neither hypothesis can be rejected. We further considered the population size that represents
the market size for sponsors and the number of patients who are benefited or harmed by the
targeted therapy by incorporating the discount parameters into the utility functions.

In our simulation study, we considered that the targeted therapy is beneficial only in the
biomarker-positive population, but is harmful in the biomarker-negative population. In this set-
ting, the treatment effect for the full population is diluted. Note that we would hardly apply the
setting for the thresholds when the therapy is considerably harmful, i.e., Scenario 4 in Section
2.5.1, since the optimal thresholds based on pseudo clinical trial results via simulation were crit-
ically searched to be strict, and the interim thresholds were close to the boundaries at the final
analysis, even if we employed the discount parameters for the biomarker-positive population
that were less than one. In implementing the clinical trial that also includes the biomarker-
negative population with belief that the therapy might be harmful for that population, the as-
sumption that it is not beneficial rather than harmful, i.e., Scenarios 2 and 3 in Section 2.5.1,
would be plausible. Hence, setting thresholds must be carefully considered on the basis of the
results of using the proposed approach, as Gallo et al. (2014) pointed out that the thresholds for
stopping the trial for futility should be viewed as guidelines, rather than rules, in the context of
group sequential designs. Moreover, in this chapter, we solely considered the scenario in which
the therapy is unalterably beneficial inP and the sample size to reject the null hypothesis for
P is sufficient. If an insufficient sample size is considered, the strict thresholds for the interim
decision rule would be obtained. These results would guide whether the sample size at interim
or final analysis is sufficient or not when considering the utility in terms of sponsors or patients,
although, in this case, the thresholds should not be applied without doubt.

With respect to the use of the utility functions in the development of molecular targeted
therapies, Graf et al. (2015) used the utility functions in terms of the views of sponsors and
public health to compare the fixed design, enrichment design, and adaptive population selection
design. Krisam and Kieser (2014) used a utility function to construct the decision rule, even in
the situation in which the population is considered on the basis of an imperfect biomarker. On
the other hand, we incorporated utility functions constructed from gain and loss functions into
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the method for setting the thresholds within the interim decision. Moreover, with regard to the
decision making based on the utility functions, this would be controversial to apply to the final
decision making of a clinical trial. However, we solely incorporate the utility functions into
only the interim decision for selecting the population in order to assist in setting the thresholds.
As far as it relates to the interim decision, as possible future work, the proposed approach would
be extended to the use of informative priors herein if any knowledge were obtained preceding
the planning for the trial. Note that we do not encourage the use of utility functions for the
decision of the final analysis.
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Chapter 3

Interim decision-making strategies in
adaptive designs for population selection

3.1 Introduction

In the development of molecular targeted therapies for progressive cancer patients, both progression-
free survival (PFS) and overall survival (OS) have been shown in clinical trial reports. For
instance, both OS and PFS significantly improve in patients who have advanced colorectal can-
cer, receive cetuximab, and have the wild-type K-ras gene, whereas no improvement is seen
in patients with mutated K-ras tumors (Karapetis et al., 2008). Several authors have discussed
the issues involved in using PFS (Booth and Eisenhauer, 2012; Fleming et al., 2009; Kay et al.,
2011; Saad et al., 2010). Figure 3.1 describes the definition of OS and PFS. PFS is defined as the
minimum time from randomization until tumor progression or death from any cause, namely,
time-to-progression (TTP) or OS, while PPS is defined as the time from progression to death
(Food and Drug Administration, 2007; Saad and Buyse, 2012). Although OS is the most com-
monly used endpoint required in phase III trials by regulatory agencies, PFS is also frequently
used in phase II trials, especially those conducted for evaluation of molecular targeted therapies.
However, OS generally requires a long follow-up period after tumor progression. Therefore, a
long study and a large number of patients are required, making it expensive to conduct clinical
trials using OS as the primary endpoint measure.

This chapter also investigates an adaptive design for population selection when using corre-
lated survival endpoints. Although we did not clarify any specific survival endpoints in Chapter
2, we handle both OS and PFS in this chapter. Brannath et al. (2009) presented an adaptive de-
sign method for population selection by using a single survival endpoint. Following this, Jenkins
et al. (2011) proposed a similar method using correlated survival endpoints; OS was used as the
final outcome and PFS as a short-term endpoint. Friede et al. (2012) then demonstrated a more
powerful method for a final analysis by using a conditional error function approach (Müller and
Scḧafer, 2001). Subsequently, Stallard et al. (2014) compared the method of Friede et al. (2012)
with that of Jenkins et al. (2011) so as to investigate the properties of the adaptive population
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selection design methods.

Figure 3.1: Definition of OS and PFS

As shown in Figure 3.2, the interim analysis involves the use of PFS data from stage 1 pa-
tients only, whereas the final analysis is conducted based on OS data from each stage, assuming
that OS is set as the primary endpoint at the end of stage 2 (Jenkins et al., 2011). However, the
method requires the strong assumption that OS and PFS are strongly correlated. For instance,
PFS significantly improved in patients who had pulmonary adenocarcinoma, tested positive
for epidermal growth factor receptor (EGFR) inhibitor, and received gefitinib, whereas no im-
provement was seen in OS (Mok et al., 2009). The inconsistent results are derived from OS
traits in which OS generally requires long-term follow-up to accumulate events because it can
be affected by post-progression survival (PPS) magnitudes.

In this chapter, we propose an interim decision-making strategy in adaptive designs for
population selection. We extend the previous methods (Brannath et al., 2009; Jenkins et al.,
2011) in two aspects. First, the interim analysis is conducted by incorporating information on
PFS as well as OS. Second, we consider a scenario in which OS is calculated based on PPS, if
the progression is observed before death. The combination test approach will be applied with
respect to final decision-making in a manner similar to Section 2 in Chapter 2. We use the
weighted inverse normal combination method for the OS data since OS is a primary endpoint.

The rest of this chapter is structured as follows. In Section 3.2, we discuss the interim
decision-making strategies using correlated survival endpoints. Section 3.3 presents a simula-
tion study. Finally, Section 3.4 provides concluding remarks.
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Figure 3.2: Schematic representation of the p-values from each stage

3.2 Interim decision-making

The aim of study is to extend the recent methods (Brannath et al., 2009; Jenkins et al., 2011) for
interim decision-making in two aspects. First, both OS data and PFS data are incorporated into
the interim analysis in the adaptive population selection design. Generally, OS requires a long
follow-up period after tumor progression and a long study and a large number of patients, and
results in making it expensive to conduct clinical trials using OS as the primary endpoint mea-
sure. Hence, it would be practical to use PFS data for interim decision-making when deemed
as a short-term intermediate survival endpoint, because it can be observed in a shorter period
of time than OS. Furthermore, it would also be pragmatic to consider the impact based on PPS
data; therefore, we assume a scenario in which OS is calculated considering PPS after tumor
progression, if progression is observed before death.

3.2.1 Procedures for interim decision-making

An interim analysis is conducted to identify whether the full populationF or only the pre-
defined biomarker-positive populationP would benefit from a given treatment based on stage 1
only. In addition, interim analysis can be used to determine whether or not it is worth contin-
uing a clinical trial; the trial can be discontinued early only for futility, when interim analysis
deems that the success of the trial is unpromising. This enables sponsors and investigators to
optimize the investment of resources. For interim decisions, the sponsor has to be blinded to
any results at the interim stage and the Independent Data Monitoring Committee (IDMC) makes
the recommendation based on an interim decision rule.

3.2.2 Simple exponential model for dependence between OS and PFS

Among several methods available to measure the correlation between time-to-event variables
such as OS and PFS, we use the statistical models developed by Fleischer et al. (2009) to
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account for correlation with censoring. Fleischer et al. (2009) have demonstrated some possible
applications for the proposed models. According to the example from a phase II trial with two
arms for patients with non-small-cell lung cancer (NSCLC), the estimated survival function for
OS based on the data given versus the predicted survival function for OS based on the proposed
models show quite a good agreement with 95 patients, particularly in the period until 3 months.

Let D denote the survival endpoint, i.e., the time to death without tumor progression. They
used exponential models for each survival endpoint based on the assumption that TTP and D
are completely independent and that PFS is given by the minimum values of TTP and OS. Then,
OS is calculated as follows:

OS=

 PFS i f PFS, TTP
TTP+ PPS otherwise

.

Suppose that each survival endpointa ∈ {TTP,PPS,D} is exponentially distributed with param-
eterλa whereλa > 0. Then, the Pearson correlation coefficient between OS and PFS is given
by

ρ = Corr(OS,PFS)=
λPPS√

λ2
TTP+ 2λTTPλD + λ

2
PPS

. (3.1)

The derivation of Equation (3.1) is provided in Appendix A. Note thatρ = 1.0 if no tumor
progression occurs before death; in other words, PFS= OS.

3.2.3 The illness-death model for semi-competing risks data

The model proposed by Fleischer et al. (2009) for each survival endpointa ∈ {TTP,PPS,D}
assumes an exponential distribution, which could be simplified regardless of the complicated
outcomes between survival endpoints. In addition, it is necessary to consider thatλa is limited
owing to λa > 0; for example, whenλTTP = 0.347 andρ = 0.5, λPPS ≳ 0.200 is required
to satisfyλD > 0 based on Equation (3.1). Thus, we further consider a semi-competing risks
framework (Fine et al., 2001). Each endpoint, TTP and D, is considered to be a nonterminal
and terminal event, respectively. On the upper wedge, i.e., TTP≤ D, Fine et al. (2001) describe
the copula model developed by Clayton (1978) with the joint survival function expressed as

S(TTP,D) = (S−θTTP+ S−θD − 1)−1/θ, (3.2)

whereSTTP andSD denote the marginal survival function for TTP and D, respectively, andθ ≥ 0
represents a parameter measuring the correlation. The parameterθ is approximately related to
Kendall’sτ asτ = θ/(θ + 2).

Similarly, the approach by Xu et al. (2010) considers a class of illness-death models, as
shown in Figure 3.3, with a shared frailty as follows:

λTTP|γ = γλ0,TTP,

λD|γ = γλ0,D,

λPPS|γ = γλ0,PPS,

32



whereλ0,a is a baseline hazard fora ∈ {TTP,PPS,D} andγ denotes the gamma frailty with
mean 1 and variance 1/θ. Under the assumptionλ0,PPS= λ0,D, the restricted illness-death model
is intrinsically equivalent to the semi-competing risks framework.

Figure 3.3: Illustration of illness-death models

3.2.4 Interim decision rule using predictive power

In this study, the decision tool applied at the interim analysis relies on the predictive power
approach. Assume non-informative priors for the treatment effect and the interime ∈ {OS,PFS}
data can be obtained. As an extension of the predictive power as described in Equation (2.1) in
Chapter 2, the predictive power,PP{e}l , for each populationl ∈ {F,P,N} is given by

PP{e}l = 1− Φ
[(

1− Π{e}l

)−1/2
(
Φ−1(1− α) ·

√
Π
{e}
l − z{e}l

)]
whereΦ(·) denotes the cumulative distribution function of the standard normal distribution,
Π
{e}
l represents the event fraction at the interim analysis,α is a one-sided significance level at

the final analysis, andz{e}l is the observed test statistic based on the log-rank test using stage
1 data. In contrast to Equation (2.1) in Chapter 2, we consider two endpoints: OS and PFS.
Further we evaluate the predictive power forN.

In the context of adaptive population selection designs, Brannath et al. (2009) have demon-
strated the decision rule by using the predictive power at the interim analysis, whereas Jenkins
et al. (2011) have proposed the use of the rule based on the estimated hazard ratios. For the
clinical development of molecular targeted therapies, when we consider a scenario in which the
experimental treatment is beneficial forP but is actually harmful forN, the problem of cross-
ing hazard rates might be observed due to the violation of the proportional hazard assumption.
Hence, we provide an interim decision rule using predictive power by extending the rule demon-
strated by Brannath et al. (2009) for a single endpoint, and by considering the use of multiple
endpoints at the interim analysis. The following decision rule is defined for the interim stage:
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(Case 1): ∩
l=F,P,N,e=OS,PFS

PP{e}l > κe · η1,l → Go with F

(Case 2): if Case 1 is not met,∩
e=OS,PFS

PP{e}P > κe · η2,P → Go with P

(Case 3): if both Case 1 and Case 2 are not met,
Otherwise. → Stop for futility

whereηi,l denotes the threshold of the predictive power for each populationl ∈ {F,P,N} in Case
i, andκe denotes the relative importance assigned to the corresponding endpointe ∈ {OS,PFS}.
Because of the nature that PFS data are more quickly observed than OS data, we should re-
flect the expected number of events accrued up to the interim analysis. For adaptive treat-
ment selection design, Di Scala and Glimm (2011) combined the predictive probabilities us-
ing weights similar toκe, such asκOS · PP{OS}

l + κPFS · PP{PFS}
l , and have shown the simula-

tion results. However, we evaluate multiple endpoints, i.e., OS and PFS, separately in con-
sidering the inconsistency as well as the correlation between OS and PFS due to the im-
pact of PPS. To justify the heuristic decision rule, we consider the development of a tar-
geted therapy: for example, when (PP{PFS}

F ,PP{PFS}
P ,PP{PFS}

N ) = (0.94,0.99,0.11), κPFS = 1,
and (η1,F , η1,P, η1,N, η2,P) = (0.10,0.05,0.05, 0.20), F is selected at the interim, whereas when
(PP{OS}

F ,PP{OS}
P ,PP{OS}

N ) = (0.37,0.98,0.01) andκOS = 1/2, F is not selected, becausePP{OS}
N >

κOS · η1,N is not met, andP is selected. This numerical example could be observed when the
correlation between OS and PFS is not very strong. In addition, whenPP{PFS}

N andPP{OS}
N are

combined, as in the method of Di Scala and Glimm (2011),F is selected despite the targeted
therapy. In practice, a series of simulations is needed to set the thresholds to be used by the
IDMC.
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3.3 Simulation study

In this section, we describe a simulation study to show the operating characteristics of adaptive
designs for population selection based on the interim decision-making strategies presented in
Section 3.2. The design assumptions and simulation setting are presented in Section 3.3.1.
Furthermore, each probability at the interim or the final decision is shown in Section 3.3.2.

3.3.1 Design assumptions and simulation setting

As with the simulation study in Chapter 2, we shall consider a randomized parallel-group clin-
ical trial with two arms: experimental (E) and control (C). Assume that patients classified as
either biomarker-positive (P) or biomarker-negative (N) are included in the trial in order to con-
sider the efficacy of a targeted therapy. A single one-sided null hypothesisHg is assumed for
each populationg ∈ {F,P}. The prevalence ofP amongF, ψ, is set to 50%. LetHR{a}P andHR{a}N

denote the hazard ratio using the interima ∈ {TTP,PPS,D} data forP andN, respectively. We
consider several scenarios for the treatment effect:

(Scenario 1): HR{a}P = 0.50 and HR{a}N = 0.90

(Scenario 2): HR{a}P = 0.50 and HR{a}N = 1.00

(Scenario 3): HR{a}P = 0.50 and HR{a}N = 1.11

(Scenario 4): HR{a}P = 0.50 and HR{a}N = 1.43

where a hazard ratio less than 1 indicates an increased benefit fromE. Scenarios 1 to 4 represent
those in which the experimental treatment is extremely beneficial forP, i.e., HR{a}P = 0.50,
and the hazard ratios forP for TTP, PPS, and D are considered to be similar for the sake of
simplicity. In Scenario 1,E is more beneficial forP than it is forN. Scenario 2 is the scenario
in which E is beneficial forP but not forN. In Scenarios 3 and 4,E is beneficial forP but is
actually harmful forN. In particular, Scenario 4 is that in whichP is notably counterproductive
for N. Note that Scenarios 1 to 4 are roughly set based on the motivating examples outlined
in Table 3.1. For instance, Scenario 2 above is roughly based on an actual trial conducted
for patients with advanced colorectal cancer that were receiving cetuximab (Karapetis et al.,
2008). The result showed that the hazard ratio among patients with the wild-type K-ras gene
wasHR{OS}

P = 0.55, whereas the hazard ratio among patients with mutated K-ras tumors was
HR{OS}

N = 0.98. In calculating the predictive power in Section 3.2.4, it is necessary to take
into accountN as well asF andP in these scenarios. Furthermore, the hazard ratio forF is
considered asHR{a}F = exp{ψ · logHR{a}P + (1− ψ) · logHR{a}N }.

The clinical trial consists of two stages with an interim analysis. We assume that the final
analysis is performed after 300 OS events occur in reference to the example (Karapetis et al.,
2008). An interim analysis is conducted after OS events reach 50% of the pre-planned OS
events. Here, we assume that the overall number of patients is 400.
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In terms of interim decision-making, the thresholds that needed to be pre-specified at the
planning stage are roughly set as (η1,F , η1,P, η1,N, η2,P) = (0.10,0.05,0.05,0.20) with weights of
κOS = 1/2 andκPFS = 1, respectively, because OS is a primary endpoint whereas PFS data are
more rapidly observed than OS data.

With respect to data generation within the simulation, we used the models from Equations
(3.1) and (3.2), respectively. Assume that the median TTP forC is 2 months. Then, let us
consider the following four models (a) to (d): (a) Equation (3.1), where the correlation between
OS and PFS isρ = (0.9, 0.7,0.5), and the corresponding median PPS forC is (0.5,0.5,0.5)
or (0.5,2.0,3.0) months for small or large effects of PPS, respectively. (b−d) Equation (3.2),
where the correlation of TTP and D isτ = (0.9,0.7,0.5), and the corresponding median PPS
for C is (0.5,0.5,0.5) or (1.0,5.0,10.0) months for small or even larger effects of PPS, respec-
tively, using (b) an exponential baseline hazard distribution (λ0,a = log(2)/median(a)) or (c, d)
a Weibull baseline hazard distribution (λ0,a = log(2)/(median(a))ν) with the shape parameterν,
where (c)ν = 0.5 and (d)ν = 2.0, for a ∈ {TTP,PPS,D}. Note thatτ is set for reference only
and does not correspond toρ.

Representative results for the simulation are presented in Figures 3.4 to 3.7. Details of the
simulation results are shown in Tables B.1 to B.5 of Appendix B. Furthermore, the comparison
of approaches that use OS data only or PFS data only at the interim analysis is also given.

3.3.2 Simulation results

First, we confirmed that the familywise type I error rate is controlled at less than 2.5% across
all scenarios, regardless of the model type, based on the probabilities of rejecting at least one
null hypothesis forF or P. Calculation of the familywise type I error rate did not include the
possibility of stopping for futility in the interim decision rule. The assumptions of the Simes’
procedure and the weighted inverse normal combination method were met since the correlation
of p-values betweenF andP was positive and the independence between stage 1 and stage 2
was also confirmed under all scenarios. All subsequent results were obtained based on 10,000
simulation replications per scenario.

Figures 3.4 and 3.5 show the probabilities of selecting each corresponding population at the
interim analysis outlined in Scenario 2. A lower probability is better with respect to the prob-
abilities of selectingF in Figure 3.4, whereas a higher probability is better with respect to the
probabilities of selectingP in Figure 3.5, because of the simulation setting in which the targeted
therapy is considered. With model (a), a greater probability of selecting each population is ex-
pected when using both OS and PFS under the assumption that the effect of PPS is considerable,
particularly when the correlation between OS and PFS is not very strong, i.e.,ρ = (0.7, 0.5).
Likewise, greater probabilities were also observed when evaluating model (b), under the as-
sumption that the effect of PPS is even more considerable. These points indicate that, rather
than the correlation between OS and PFS, PPS has a greater effect on misspecification of the
population. On the other hand, each probability is similar under the assumption that the effect
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of PPS is small. These insights can also be seen for other scenarios as illustrated in Appendix
B, regardless of the model type, especially in Scenarios 1 to 3. In addition, the probability of
discontinuing the trial early owing to futility was less than 10% under every scenario outlined in
Table A.3. Although this would be valid in terms of the targeted therapy setting for simulations,
it nonetheless depends on the pre-specified thresholds.

Finally, Figures 3.6 and 3.7 show the probabilities of rejecting the null hypothesis, i.e.,
power, for each population at the final analysis in Scenario 2. The weighted inverse normal
combination method was used for this calculation. Note that lower power is better with respect
to the probabilities of selectingF in Figure 3.6, because this indicates a benefit only forP under
every scenario considered herein. Therefore, incorporation of information for both OS and PFS
results in good performance with no dependence on the type of models employed, as illustrated
in Appendix B.

38



Figure 3.4: Probabilities of selectingF at the interim analysis using PFS only (squares), OS only
(triangles), or OS and PFS (circles) under the assumption that the effect of PPS is small [median
PPS forC is (0.5,0.5,0.5) months (left panel)] and large [median PPS forC is (0.5,2.0,3.0)
(upper-right panel) or (1.0,5.0,10.0) (lower-right panel) months] based on 10,000 simulation
replications in Scenario 2.
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Figure 3.5: Probabilities of selectingP at the interim analysis using PFS only (squares), OS only
(triangles), or OS and PFS (circles) under the assumption that the effect of PPS is small [median
PPS forC is (0.5,0.5,0.5) months (left panel)] and large [median PPS forC is (0.5,2.0,3.0)
(upper-right panel) or (1.0,5.0,10.0) (lower-right panel) months] based on 10,000 simulation
replications in Scenario 2.
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Figure 3.6: Probabilities of rejectingHF at the final analysis using PFS only (squares), OS only
(triangles), or OS and PFS (circles) at the interim analysis under the assumption that the effect
of PPS is small [median PPS forC is (0.5,0.5, 0.5) months (left panel)] and large [median PPS
for C is (0.5,2.0, 3.0) (upper-right panel) or (1.0,5.0,10.0) (lower-right panel) months] based
on 10,000 simulation replications in Scenario 2.

41



Figure 3.7: Probabilities of rejectingHP at the final analysis using PFS only (squares), OS only
(triangles), or OS and PFS (circles) at the interim analysis under the assumption that the effect
of PPS is small [median PPS forC is (0.5,0.5, 0.5) months (left panel)] and large [median PPS
for C is (0.5,2.0, 3.0) (upper-right panel) or (1.0,5.0,10.0) (lower-right panel) months] based
on 10,000 simulation replications in Scenario 2.
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3.4 Summary and discussion

The use of interim decision-making strategies in adaptive designs shows good performance for
selecting the most appropriate population in developing molecular targeted therapies when us-
ing OS as well as PFS. This is particularly relevant under a scenario in which PPS affects the
correlation between OS and PFS, within the context of a simple exponential model. Although
this model is relatively simple because it assumes an exponential distribution in spite of com-
plicated outcomes between survival endpoints, models developed under a semi-competing risks
framework within the illness-death model and those assuming a Weibull distribution also per-
formed well. A restriction in our simulation results is that sample size calculations were not
considered for the sake of simplicity. As shown by Boessen et al. (2013), sample size estima-
tion is required for an adaptive population selection design. In practice, this is determined based
on the expected treatment effect for bothF andP.

In oncology, whether or not the use of PFS instead of OS is acceptable as a primary end-
point in a given treatment evaluation for marketing approval will depend on the specific disease
setting. Nevertheless, there are many situations for which a regulatory agency will require the
use of OS as a primary endpoint by regulatory agencies. Our procedure could also be applied
in these settings. Furthermore, we considered the length of PPS when using the correlation
between OS and PFS. Consequently, the probability of selecting the proper population at the
interim analysis was improved for situations in which a relatively long PPS is expected. How-
ever, as Zhang et al. (2013) have mentioned, the OS benefit, given the PFS benefit, also largely
depends on the crossover rate, because treatment crossover from the control to the experimen-
tal group frequently occurs after tumor progression in real trials. Regarding the correlation of
multiple survival endpoints, it would be worthwhile to consider the effect of crossover rates in
addition to the magnitude of PPS. In addition, to overcome the problem of influencing the stage
1 test statistic via adaptation at the interim analysis, we handled the additional follow-up during
stage 2 for patients that are accrued in stage 1 by contributing stage 1 p-values, as suggested by
Jenkins et al. (2011). Although both interim progression and death are regarded as predictive
events for future death, and this information is used to deliberately affect the number of events
observed in stage 1 patients (Bauer and Posch, 2004), the sponsor is blinded to any interim
results and instead receives the recommendation for the interim decisions made by the IDMC.
Hence, our approach of using both OS and PFS would be valid under a situation in which there
is no sample size modification at the interim.
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Chapter 4

State of the art: Adaptive seamless design
in developing biosimilars

4.1 Introduction

In this chapter, we investigate adaptive seamless designs in the setting in which the aim of clin-
ical trials is to declare the equivalence between experimental and reference products. In par-
ticular, equivalence trials are applied in the development of genetic products, which are called
bioequivalence trials. To confirm bioequivalence, pharmacokinetics (PK) parameters such as
area under the concentration-time curve (AUC) and maximum serum concentration (Cmax)
are typically evaluated in healthy volunteers using two one-sided tests (TOST) (Schuirmann,
1987) with log-transformed values. Although some methods like the adaptive sample size re-
calculation have been proposed for bioequivalence trials (Montague et al., 2012; Potvin et al.,
2008; Xu et al., 2016; Zheng et al., 2015), these are rarely used in the actual clinical setting.
Since such trials are conducted by recruiting generally between 20 and 50 volunteers, most of
them are not required to include interim analyses in the trial.

While numerous pharmaceutical sponsors have expressed interest in bioequivalence trials,
the considerate interest in developing biosimilars is also growing (Chow, 2013). There is no
unified definition for biosimilars; however, according to the guideline of European Medicines
Agency (2014a), a biosimilar is defined as a biological medicinal product that contains an ac-
tive substance similar to that of the original previously authorized biological medicinal product.
Biosimilars differ from generic chemical products, e.g., with respect to the complexity and het-
erogeneity of the molecular structure (Berghout, 2011; Chow, 2013). A reduction in healthcare
costs for patients can be expected if a biosimilar is approved by regulators and placed on the
market. However, characteristically, a larger number of subjects would be required to inves-
tigate and clinically develop a biosimilar than that required for the development of a generic
product because there are regulatory requirements that encourage sponsors to provide pharma-
codynamics (PD) or efficacy data in addition to PK data (European Medicines Agency, 2014a;
Food and Drug Administration, 2015). In practice, as described in Table 4.1, most biosimi-
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lars have been developed with PK/PD trials (Wang and Chow, 2009). The same can be said
of the biosimilar developments in Japan as illustrated in Table 4.2 (Nagasaki and Ando, 2014).
That is, there must be no clinically meaningful difference between the experimental and ref-
erence products. Moreover, as far as the PK data goes, a PK trial is sometimes conducted
using a parallel-group clinical trial design instead of a crossover design owing to a high risk
of immunogenicity (European Medicines Agency, 2014a). In this instance, a large number of
patients would be required to declare PK equivalence. For instance, a trial that was primarily
aimed at confirming the PK equivalence was conducted with 250 recruited patients based on the
assumption that the coefficient of variation (CV) was 50% (Park et al., 2013).

Here, two main trials served as motivating examples for confirming PK and efficacy in
establishing the equivalence of a biosimilar of the innovator infliximab (Park et al., 2013; Yoo
et al., 2013). These trials indicated that a clinical trial to establish the efficacy equivalence
is often required in case any relevant PD markers are unavailable and that a PK trial could
be conducted in patients rather than healthy volunteers. Although these trials were conducted
separately, they each had a primary endpoint that was intrinsically set to determine PK and
efficacy equivalence, respectively.

Based on this motivating example, we consider the clinical development of biosimilars with
emphasis on the importance and necessity of demonstrating the equivalence between experi-
mental and reference products by including both PK and efficacy as primary endpoints. We
assume that patients who have the same disease conditions are targeted to provide the equiv-
alence data for the PK and efficacy. Methods using adaptive seamless designs, which allow
sample size re-calculation based on interim data, could be applied in this setting. The adaptive
seamless PK and efficacy design, which incorporates trials to establish both PK and efficacy
equivalence, allows trials to be more efficient than classical trial designs.

This chapter is structured as follows. First, we introduce a motivating example for the
development of one biosimilar in Section 4.2 and review the current statistical methods for
assessing biosimilarity in Section 4.3. Then, we lay the frameworks of our proposed designs
as an adaptive seamless PK and efficacy design in Section 4.1 while Section 4.5 presents a
simulation study. Finally, in Section 4.6 we conclude this chapter with a discussion.
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4.2 Motivating example

First, we shall introduce a motivating example of the development of a biosimilar to the inno-
vator infliximab, which is a monoclonal antibody against tumor necrosis factor (TNF)-α and
used to treat patients with active rheumatoid arthritis who have shown an inadequate response
to methotrexate (Maini et al., 1999). As the biosimilar of the innovator monoclonal antibody,
biosimilar infliximab was recently first launched in several markets across numerous countries
(Schellekens et al., 2015). Two clinical trials were performed, which were PK and phase III
studies that demonstrated the equivalence using PK and efficacy endpoints, respectively, in de-
veloping the biosimilar. Both trials were designed as randomized, double-blind, parallel-group
clinical trials and their primary endpoints were the Cmax as well as AUC and the American Col-
lege of Rheumatology 20% improvement (ACR20) (Felson et al., 1995) for the PK and efficacy
trials, respectively.

For the PK study, the required sample size was calculated as 196 based on the equivalence
margin of 80% to 125%, power of 90%, and TOST with a significance level of 5% under the
assumption of a geometric mean ratio of 1.00 and CV of 50%. In addition to PK, efficacy and
safety were also compared in this study. In contrast, the sample size of the phase III study was
468, which was required to achieve 80% power to meet the equivalence margin within±15%
for ACR20 at a specific time point under the TOST with a significance level of 2.5%, assuming
an expected response rate of 50% in both groups. As secondary endpoints, additional efficacy,
immunogenicity, safety, PK, and PD were assessed although no adjustments for multiplicity
were performed.

Consequently, the equivalence for the primary PK and efficacy endpoints was established in
both trials, respectively. Each confidence interval (CI) was in the range of the corresponding
equivalence margins. For the PK parameters, the geometric mean ratios (90% CI) were 1.05
(0.94 to 1.16) and 1.02 (0.95 to 1.09) for the AUC and Cmax, respectively. As an efficacy
parameter, the ACR20 response rates for each group were 60.9 and 58.6%, and the difference
in the response rates (95% CI) was 2% (−6% to 10%) for intention-to-treat population while
the values were 73.4 and 69.7% with a difference of 4% (−4% to 12%) for the per-protocol
population.

Note that each between product group difference observed varied from the pre-specified set-
tings. The observed geometric mean ratio of the AUC especially deviated from 1.00, whereas
the observed response rates for each group in the per-protocol population differed greatly from
50%. Even if a sponsor in one country designs a trial based on trials conducted in other coun-
tries, the observed values from that trial are not necessarily consistent with those of the other
countries owing to reasons such as possible race- or measurement technique-related differences
between countries (Takeuchi et al., 2015; Yoo et al., 2013). Whether or not that was applica-
ble, these misspecifications have been accounted for by recruiting more patients, which allows
for more drop-out or exclusion of population sets than required. In addition, the observed re-
sponse rates for each group differentially deviated from the expected value of 50% and this was
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a conservative setting since the range of the CIs tends to widen. Owing to these remedies, the
targeted sample sizes for both trials were in effect set to approximately 1.15 to 1.20 times the
required sample size. Instead, to compensate for this risk of the failure to demonstrate equiv-
alence, a sponsor could consider increasing the sample size in midcourse, that is, sample size
re-calculation within adaptive seamless design.

4.3 Literature review

In anticipation of the impending expiration of a number of patents for biological medicinal
products in numerous countries, some statistical methods have been developed for evaluating
biosimilarity since 2010. Methods for assessing biosimilarity with respect to variability between
the experimental and reference products have been investigated (Belleli et al., 2015; Hsieh et al.,
2009; Yang et al., 2013; Zhang et al., 2014, 2013).

As a biosimilarity measure, a biosimilar index based on the concept of reproducibility prob-
ability has been proposed and discussed (Chow et al., 2013; Hsieh et al., 2013; Yang and Lai,
2014). Chiu et al. (2014) discussed the use of a Bayesian method that uses prior information.
Pan et al. (2017) proposed a Bayesian group sequential design that incorporates information
adaptively using a calibrated power prior. Chow et al. (2009) proposed methods for assessing
biosimilarity based on the assumption that a biomarker is predictive of the clinical outcome.
Li et al. (2013) proposed a biosimilarity trial design for evaluating clinical efficacy with asym-
metrical margins. Liao and Darken (2013) developed a method for assessing biosimilarity by
comparability of critical quality attributes. Furthermore, a three-arm parallel design, which
consists of one experimental and two reference products from two different batches, was pro-
vided to investigate biosimilarity (Kang and Chow, 2013). When the three-arm parallel design
is employed, the approach with the use of the frequency estimator criterion was also proposed
to assess biosimilarity (Lu et al., 2014).

In summary, most methods currently focus on one specified trial. To the best of our knowl-
edge, little methodology that enables the performance of multiple trials seamlessly has been
developed.

4.4 Proposed framework

In this section, we shall consider the clinical development of biosimilars under a randomized
parallel-group design with two-arms, experimental (E) and reference (R) products. Similar to
the motivating examples of the biosimilar infliximab (Park et al., 2013; Yoo et al., 2013), we will
assume that a crossover design is not a feasible option for the trial design because of the associ-
ated problem of carry-over effects, although crossover designs are often used in the development
of biosimilars where recruitment for the study population is targeted at healthy volunteers (Na-
gasaki and Ando, 2014; Wang and Chow, 2009). Based on the motivating example involving
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two trials, a single trial is conducted for the evaluations of both the PK and efficacy, and their
confirmations constitute the interim and final analyses, respectively. To compensate for the mis-
specification of parameters at the planning stage, an interim analysis will be performed for the
final efficacy confirmation that requires more patients than the PK confirmation does. Figure
4.1 shows the proposed framework of the adaptive seamless PK and efficacy design. Note that
the objective of the trial is to determine the equivalence of both PK and efficacy.

Figure 4.1: Proposed adaptive seamless pharmacokinetics (PK) and efficacy design
SSR, sample size re-calculation.

4.4.1 Collecting both PK and efficacy data from first stage

Here, we considered that not only PK data but also efficacy data could be obtained from the PK
trial, and to achieve this, we assumed that both the PK and efficacy trials should be conducted
with patients who have common diseases and are receiving similar dosage regimens.

The strength of this study is that it constitutes a clinical trial that includes the statistical
analysis of PK as an interim analysis of the efficacy data. Therefore, we consider a two-stage
design based on the assumption that both the PK data and efficacy data are obtainable from the
first stage, as described in Figure 4.1. The data from the first stage can subsequently be used to
test the PK equivalence and arrive at an interim decision for the efficacy equivalence, whereas
only the efficacy data are obtainable from the second stage to test the efficacy equivalence.

4.4.2 Sample size adjustment for efficacy endpoint of interim analysis

The interim analysis conducted in an unblinded fashion gives the option to re-calculate sample
size for the subsequent stage if the interim result shows a potential benefit for sample size re-
calculation. Note that the interim decision for the subsequent stage is only based on the efficacy
data of the interim analysis.
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Let Z1 and Z2 denote the test statistics until the interim and final analysis, respectively.
Without any interim analysis from the first stage data, the hypothesis testing would be conducted
conventionally, withZ2 > zα as the one-sided significance levelα wherezα is the critical value
for a superiority clinical trial. In addition, the sample size is estimated to achieve 1− β power
under an alternative hypothesis.

Mehta and Pocock (2011) have proposed methods in which the sample size is increased
if the interim results are promising, and the decision is made based on the conditional power.
Recently, a thorough investigation of this approach has been conducted and reported in several
articles in the context of a superiority trial (Chen et al., 2015; Jennison and Turnbull, 2015). In
this study, we consider this approach in evaluating the equivalence of an efficacy endpoint. The
conditional power given by with the observed difference between the groups derived from the
interim efficacy data is expressed using the following equation (Jennison and Turnbull, 2000):

CP(z1, Ñ2) = Pr(Z2 > zα | Z1 = z1)

= 1− Φ
zα
√

N2 − z1
√

N1

Ñ2
− z1

√
Ñ2

N1


whereN1 andN2 are the planned sample sizes until the interim and final analysis, respectively,
andÑ2 is the increment in the sample size during the second stage denoted byÑ2 = N2 − N1.

The promising zone approach arrives at the interim decision by defining the region that
represents the promising zone as follows:

Case 1 (Promising):cpL ≤ CP(z1, Ñ2) < 1− β → Increase the sample size toN∗2 ;

Case 2 (Otherwise, i.e., favorable or unfavorable):→ Continue to the plannedN2 .

wherecpL is the pre-specified lower probability of the conditional power. If the interim con-
ditional power is deemed promising, the sample size is increased toN∗2 = min(N′2(z1),Nmax)
whereN′2(z1) consists of the sum ofN1 and Ñ′2(z1), which is the increment in the sample size
when the sample size is increased from the plannedN2. To satisfy theCP(z1, Ñ2) = 1− β on the
condition of the promising zone, the increased sample size is derived as:

Ñ′2(z1) =

(
N1

z2
1

) [
zα
√

N2 − z1
√

N1

N2 − N1
− zβ

]2

with the restriction that the maximum sample size increase isNmax. Then, the critical value for
the final analysis, in exchange forzα, can be adjusted to

z′(z1,N
∗
2) =

1√
N∗2


√

N∗2 − N1

Ñ2
(zα

√
N2 − z1

√
N1) + z1

√
N1


which holds that Pr

{
Z∗2 > z′(z1,N∗2)

}
= α, whereZ∗2 is the test statistic for the final analysis

usingN∗2 instead ofN2 (Gao et al., 2008). When the sample size is increased toN∗2, the power
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for performing the final analysis is greater under the critical valuez′(z1,N∗2) than it is under the
zα.

The final analysis would also be conducted usingZ∗2 > zα similar to the conventional hypoth-
esis testing in line with the rule that the sample size is only increased if the interim conditional
power is deemed promising. Note that the inflation of type I error rate would occur if the deci-
sion rule is not adhered to by the promising zone approach (Proschan and Hunsberger, 1995).

With an equivalence trial, the interim result,z1, for efficacy is constructed using the follow-
ing null hypotheses for the efficacy endpoint:

HEff
0 : HEff

0,U ∪ HEff
0,L,

that is,

HEff
0,U : qE − qR ≥ ∆Eff and HEff

0,L : qE − qR ≤ −∆Eff

whereqg is the response rate for the groupg ∈ {E,R} and∆Eff is a pre-specified equivalence
margin of efficacy. Moreover, the alternative hypotheses for the efficacy are shown by

HEff
A : HEff

A,U ∩ HEff
A,L,

that is,

HEff
A,U : qE − qR < ∆Eff and HEff

A,L : qE − qR > −∆Eff .

4.4.3 PK equivalence including early stopping for efficacy

We shall begin this section by describing the hypotheses for the PK evaluation. For the PK
equivalence, the null hypotheses for PK are constructed as follows:

HPK
0 : HPK

0,U ∪ HPK
0,L,

that is,

HPK
0,U : XE − XR ≥ ∆PK and HPK

0,L : XE − XR ≤ −∆PK

whereXg is the log-transformed mean of the PK parameters such as the AUC or Cmax for
groupg ∈ {E,R} while ∆PK is the pre-specified equivalence margin of the PK endpoint. Thus,
the alternative hypotheses for the PK are as follows:

HPK
A : HPK

A,U ∩ HPK
A,L,

that is,

HPK
A,U : XE − XR < ∆PK and HPK

A,L : XE − XR > −∆PK.

52



In the bioequivalence trial, the∆PK is set as the log-transformed 1.25, which corresponds to
a range of 80% to 125% under theHPK

A (Food and Drug Administration, 2001). In this study, we
consider a biosimilar development process where it is necessary to demonstrate the equivalence
of both the PK and efficacy endpoints. Hence, the null and alternative hypothesesH0 andHA,
respectively are expressed as

H0 : HPK
0 ∪ HEff

0 vs. HA : HPK
A ∩ HEff

A .

Note that theH0 is rejected only if the equivalence for both the PK and efficacy is established.
This meets the requirement based on several guidelines in which both the PK and efficacy
are required to show equivalence when developing biosimilars (European Medicines Agency,
2014a; Food and Drug Administration, 2015).

Figure 4.2: Framework that determines equivalence of both pharmacokinetic (PK) and efficacy.
”EQ” and ”not EQ” denote where equivalence is declared and not declared, respectively. SSR, sample size re-
calculation; TOST, two one-sided tests.

Figure 4.2 shows the detailed framework used to declare the equivalence of both the PK
and efficacy within the adaptive seamless PK and efficacy design as described in Figure 4.1.
With respect to controlling the type I error rate for PK and efficacy equivalence under each
significance level, a fixed sequence testing procedure (Wiens, 2003) is incorporated into this
framework. That is, the efficacy equivalence is tested only if the PK equivalence is declared.
As shown in Figure 4.1, it organizes a clinical trial that includes the statistical analysis of PK
as an interim analysis of the efficacy data because we considered that both PK data and efficacy
data could be obtained from the sample sizeN1 in the PK trial. If PK equivalence fails to be
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declared, subsequent collection of efficacy data is discontinued for futility. On the other hand,
collecting efficacy data is subsequently continued if PK equivalence is declared. Thereafter,
sample size re-calculation fromN2 to N∗2 is conducted following the promising zone approach
in Case 1, as shown in Figure 2, while the enrollment is continued to the plannedN2 in Case 2.

4.5 Simulation study

Here, We evaluated the efficiency of the adaptive seamless design under each framework pro-
posed in this study. This is to enable to presentation of their operating characteristics based on
the design parameters such as the geometric mean ratio and CV in the PK trial, and response
rates for each group in the efficacy trial. The assumptions made for the PK and efficacy trial
designs as well as the simulation setting are presented in Section 4.5.1. In Section 4.5.2, we
demonstrate the effectiveness of the adaptive seamless PK and efficacy design with the frame-
works proposed based on the power and expected sample size.

4.5.1 Simulation setting

First, we shall consider a randomized, parallel-group clinical trial with two arms, which are the
experimental (E) and reference (R) product arms. We assume thatE is set as the biosimilar,
and the sample size re-calculation for the efficacy endpoint under the adaptive seamless PK
and efficacy design proposed is conducted with an interim analysis, which plays a role in the
statistical analysis of the PK data.

Based on the examples (Park et al., 2013; Yoo et al., 2013), we suppose that the overall
planned sample size is set asN2 = 480, and the interim analysis is conducted afterN1 = 200
are recruited in the trial. The set ofN2 = 480 andN1 = 200 corresponds to 80% power for
efficacy assuming the 50% response rates expected and 90% power for the PK, assuming that
the geometric mean ratio and CV are 1.00 and 50%, respectively (Park et al., 2013; Yoo et al.,
2013). The equivalence margins are set as±15% for efficacy, which is binary data and a range
of 80% to 125% for the PK using a one-sided significance level of 2.5% and 5% for efficacy
and PK, respectively.

To assess the sample size re-calculation for efficacy equivalence, the lower probability of
the conditional powercpL is set at 50% or 33% (Chen et al., 2004; Mehta and Pocock, 2011).
We further assume that the magnitude of the sample size increase is set asRmax, which denotes
the ratio ofNmax to N2. The assessment of the power of the efficacy is performed using the true
difference between the response rates of the product groups denoted asπDiff of 0% to 5%.

For reference, the power and expected sample size are also illustrated when a fixed design
is used in exchange for the adaptive seamless PK and efficacy design. Regarding the expected
sample size using the fixed design, we consider that the PK and efficacy trials are conducted
separately, suggesting that the efficacy data are not available for the PK confirmation. That
is, the PK trial is assumed to be conducted and the efficacy trial is subsequently conducted
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separately under the fixed design. Hence, if the PK equivalence fails to be declared, the efficacy
trial is not implemented.

4.5.2 Simulation results

We evaluated the efficiency of the adaptive seamless PK and efficacy design proposed based on
the type I error rate, power, and expected sample size. The calculation was based on 500,000
simulations with respect to the type I error rate and 10,000 with respect to power and expected
sample size to display the operating characteristics.

Controlling type I error

Table 4.3 shows the probabilities of rejecting the null hypothesesHPK
0 , HEff

0 , or H0 : HPK
0 ∪HEff

0 ,
i.e., the type I error rates where the geometric mean ratio is 1.25 for the PK and the difference in
the response rates between the groups is 15% for the efficacy. As shown in Table 4.3, the type I
error rates of the PK and efficacy endpoints are controlled under the significance level of 5% and
2.5%, respectively. In particular, the type I error rate of the efficacy endpoint is confirmed to be
controlled even when it includes a sample size re-calculation as long as multiplicity adjustments
are included as described in Section 4.4.2, in contrast with that without multiplicity adjustments.
Therefore, the probability of rejecting the null hypothesisH0 : HPK

0 ∪ HEff
0 is also controlled

owing to the fixed sequence testing procedure for PK and efficacy equivalence, as described in
Section 4.4.3.

Table 4.3: Type I error rates

RejectingHEff
0 RejectingHEff

0

cpL N1 RejectingHPK
0 with multiplicity without multiplicity

adjustments adjustments

0.33 200 0.050 0.024 0.029
　 120 0.050 0.023 0.027

0.50 200 0.050 0.023 0.029
　 120 0.050 0.023 0.027

Calculation was performed under the assumption thatN2 = 480,Rmax = 2.0, and expected response rate of 50% as
a function of lower probability of conditional power (cpL), planned sample size until interim analysis (N1).

Power comparisons

The comparison of powers between the fixed design and the adaptive seamless PK and efficacy
design in the final analysis is shown in Table 4.4. These powers are defined as the probability of
rejectingH0 : HPK

0 ∪ HEff
0 when using the adaptive seamless PK and efficacy design. The result

revealed that the design is more powerful when using the adaptive seamless PK and efficacy
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design owing to the incorporation of sample size re-calculation. Note that the adaptive seam-
less PK and efficacy design would minimize the risk of misspecification of the pre-specified
parameters of the efficacy endpoint. In particular, it is possible to compensate for the power
using this design under the situation where the conditional power falls within the range of the
promising zone in the interim analysis of the efficacy and sample size is increased.

Table 4.4: Powers of adaptive seamless pharmacokinetic (PK) and efficacy design and fixed
designs

cpL N1 πDiff Fixed Adaptive seamless
design PK and efficacy design

0.33 200 0.00 0.740 0.771
　 　 0.01 0.731 0.763
　 　 0.02 0.700 0.740
　 　 0.03 0.658 0.701
　 　 0.04 0.599 0.645
　 　 0.05 0.530 0.575
　 120 0.00 0.523 0.547
　 　 0.01 0.519 0.544
　 　 0.02 0.499 0.528
　 　 0.03 0.467 0.489
　 　 0.04 0.425 0.454
　 　 0.05 0.376 0.399

0.50 200 0.00 0.740 0.761
　 　 0.01 0.731 0.755
　 　 0.02 0.700 0.726
　 　 0.03 0.658 0.681
　 　 0.04 0.599 0.627
　 　 0.05 0.530 0.552
　 120 0.00 0.523 0.528
　 　 0.01 0.519 0.529
　 　 0.02 0.499 0.511
　 　 0.03 0.467 0.475
　 　 0.04 0.425 0.434
　 　 0.05 0.376 0.385

Calculation was performed under the assumption thatN2 = 480,Rmax = 2.0 and expected response rate of 50%
as a function of lower probability of conditional power (cpL), planned sample size until interim analysis (N1), and
difference between response rates (πDiff).
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Expected sample size comparisons

We showed that the power is improved by the use of the frameworks for PK and the sample
size re-calculation in the promising zone approach for the efficacy of the adaptive seamless PK
and efficacy design. The gain of power is attributable to the increase in sample size. Table
4.5 shows the expected sample size for achieving the corresponding power illustrated in Table
4.4. Note that the expected sample sizes for the fixed design do not exactly correspond to the
sum of the interim and final sample size (i.e.,N1 andN2) because of the failure to declare the
PK equivalence in the PK trial preceding the efficacy trial. It is obvious that the approach that
uses the adaptive seamless PK and efficacy design is more efficient than the approach that uses
the fixed design whereN1 is set at 200 and the expected sample size is decreased because the
evaluations for both the PK and efficacy are conducted separately in the latter design. Hence, it
is necessary to set a sample size that has sufficient power. Furthermore, the increase in power
and expected sample size is higher whencpL is set at a lower value.
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Table 4.5: Expected sample sizes corresponding to powers in adaptive seamless pharmacoki-
netic (PK) and efficacy design and fixed designs

cpL N1 πDiff Fixed Adaptive seamless
design PK and efficacy design

0.33 200 0.00 635.6 530.4
　 　 0.01 635.6 529.8
　 　 0.02 635.6 530.4
　 　 0.03 635.6 531.7
　 　 0.04 635.6 527.5
　 　 0.05 635.6 524.1
　 120 0.00 427.7 406.7
　 　 0.01 427.7 405.0
　 　 0.02 427.7 406.4
　 　 0.03 427.7 404.1
　 　 0.04 427.7 403.0
　 　 0.05 427.7 401.6

0.50 200 0.00 635.6 501.0
　 　 0.01 635.6 500.3
　 　 0.02 635.6 500.9
　 　 0.03 635.6 499.7
　 　 0.04 635.6 498.8
　 　 0.05 635.6 495.5
　 120 0.00 427.7 372.6
　 　 0.01 427.7 371.5
　 　 0.02 427.7 371.4
　 　 0.03 427.7 371.1
　 　 0.04 427.7 370.6
　 　 0.05 427.7 369.5

Calculation was performed under the assumption thatN2 = 480,Rmax = 2.0 and expected response rate of 50%
as a function of lower probability of conditional power (cpL), planned sample size until interim analysis (N1), and
difference between response rates (πDiff).
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4.6 Summary and discussion

The aim of this study was to propose a novel adaptive seamless PK and efficacy design for estab-
lishing the equivalence of both the PK and efficacy in clinical trial phases for the development
of biosimilars. The proposed design, which allows sponsors to develop biosimilars with shorter
periods, leading to additional cost savings and fewer patients required for trials would be an ap-
pealing strategy for implementing trials efficiently. This enhanced process would consequently
accelerate product approval by regulatory agencies.

Our proposed framework is an attractive option with respect to the total trial period as men-
tioned in Section 4.4. For efficacy equivalence, sample size re-calculation was incorporated
in the adaptive seamless PK and efficacy design to compensate for the risk of misspecification
of the efficacy parameters. The study is subject to early termination in the efficacy part if PK
equivalence fails to be declared. The power was improved as shown in Table 4.4, but not dra-
matically increased with sample size re-calculation for the efficacy part because we considered
that the pre-planned sample size was adequate to achieve the target level power of 80%. Note
that the trial should be planned carefully to estimate the sample size and should not be set up
deliberately with an underestimated sample size with insufficient power solely dependent on
the sample size re-calculation. With the planned sample size with insufficient power, the ex-
pected sample size using the adaptive seamless PK and efficacy design is larger than that using
a fixed design: however, it is smaller when a sample size with sufficient power is used. The
promising zone approach also enables the trial to avoid implementing further support when the
interim result deems it obviously unpromising. This would reallocate and optimize the addi-
tional investment of resources. However, a downside of sample size re-calculation is that the
statisticians associated with the sponsor can grasp the interim conditional power based on the
additional sample size to be enrolled during the subsequent stage.

In conclusion, our study proposed a novel method for developing biosimilars using an adap-
tive seamless design that enables sample size re-calculation based on interim data and incor-
porates trials to establish both PK and efficacy equivalence. Furthermore, the newly proposed
design allows clinical trials to be more efficiently conducted than conventionally designed meth-
ods, thereby reducing costs, saving time, and providing an attractive option for pharmaceutical
sponsors.
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Chapter 5

Discussion

5.1 Applicability of adaptive population selection designs in

oncology

In Chapters 2 and 3, we focused on the the adaptive designs with population selection using
survival endpoints. If the source of the potentially pre-defined subgroup regarded as biomarker-
positive is known, we can consider the situation in which the full-population comprises biomarker-
positive and biomarker-negative populations. Note that the adaptive population selection design
meets the regulatory requirement as it provides efficacy results forN. However, a large number
of patients would be required when using the adaptive population selection designs in the situ-
ation in which the experimental treatment shows a benefit forP but has a negative effect onN,
particularly in Scenario 4 of Sections 2.5.1 and 3.3.1. As evaluated by Graf et al. (2015), the
judgment that would be preferred among a fixed design, an enrichment design, and the adap-
tive population selection design would depend on the situation regarding the prevalence of the
biomarker-positive patients. As an example in which the adaptive population selection design is
unfavorable, particularly in the situation in which the prevalence ofP is small, the enrichment
design rather than the classical fixed design is applied in the development of crizotinib, since
there are approximately 5% of patients who present the rearrangement of the anaplastic lym-
phoma kinase (ALK) gene among all of the patients with non-small-cell lung cancer (Solomon
et al., 2014). Therefore, the approach described in this work can be applied when there is an
available biomarker prior to designing a clinical trial and in the situation in which an adaptive
population selection design is preferred.

5.2 Multiplicity issues in adaptive population selection de-

signs

Regarding the interim analysis for population selection described in Chapters 2 and 3, it was
unnecessary to perform any multiple testing procedures since we assumed, for the sake of sim-
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plicity, that the interim analysis incorporates the early termination only for futility. With re-
spect to multiplicity issues in which we assumed two hypotheses for the full population and
biomarker-positive population at the final analysis, we used Simes’ procedure to control the
familywise type I error rate. However, as presented in Section 3.3.2, these results were conser-
vative because of the assumptions of an asymptotic bivariate normal distribution and positive
correlation. Although the method based on the conditional error function approach, described
by Friede et al. (2012), would be more powerful for the final analysis, we primarily focused on
the interim decision so as to improve the probability of selecting the most appropriate popula-
tion. In addition, as another type of correction, the Spiessens and Debois (2010) procedure can
be applied to control the familywise type I error rate for the final analysis, since we considered
the multiplicity under a situation where the test statistics betweenF andP are positively corre-
lated. Furthermore, as a more complicated situation, this work can be extended to a clinical trial
that has more than two arms: adaptive designs for treatment and population selection. Although
adaptive designs for treatment selection are often scrutinized under a multi-arm setting, most
cases are assumed to be selected at the interim analysis and to conduct the final analysis for
two arms: experimental and control. Thus, as a practical setting for population selection under
multiple arms, more complex corrections for the familywise type I error rate would be needed
for adaptations for both treatment and population selection conducted at the interim analysis.

5.3 The proportional hazards assumption in molecular tar-

geted therapies

In Chapter 2, we tackled the current issue in the development of molecular targeted therapies
for which the proportional hazard assumption is violated for the full population. The interim
decision rule based on the estimated hazard ratios mentioned by Jenkins et al. (2011) may be
preferred, when using the adaptive population selection design, in terms of consistency between
the interim and final analyses; however, we used predictive power only for the interim analysis
owing to the violation of the proportional hazard assumption in developing molecular targeted
therapies. As an alternative to the hazard ratio, we further considered the use of the restricted
mean survival time at the interim analysis. Between the hazard ratio and the restricted mean
survival time as a measure in the interim decision, the difference or ratio of the restricted mean
survival time is preferred owing to the characteristic that the proportional hazard assumption
has collapsed. However, this is considering the property with respect to the statistical power,
where it is less powerful than that using the hazard ratio if the restricted mean survival time is
employed at the final analysis similarly (Trinquart et al., 2016). Admittedly, the characteristic of
the loss of power for the restricted mean survival time would lead to the results of the probabil-
ities of selecting the population at the interim analysis in our simulation studies. Nevertheless,
we proved that the use of the restricted mean survival time can be conducted in our proposed
approach and that this would perform fairly if the sample size is increased to satisfy the desired
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power for at the planning stage in practice. Note that this would achieve the current need for the
restricted mean survival time instead of the hazard ratio, if the proportional hazard assumption
is violated. Future research need to improve the loss of power for the restricted mean survival
time.

Our simulation studies performed in Chapters 2 and 3 showed that the use of measures
in midcourse between the confidence interval of the estimated hazard ratio and the predictive
power are comparable, as long as the predictive power is derived from the test statistic using a
log-rank test and the non-informative priors for the treatment effect are employed. However, the
predictive power is flexible and preferred, if the proposed approach is extended to some disease
setting in the sense that the predictive power can be derived based on other non-parametric test
statistics. For instance, the Fleming and Harrington (1991) test is often used in the develop-
ment of cancer vaccines and immunotherapies (Hasegawa, 2014, 2016). In the development of
molecular targeted therapies, the predictive power may be preferred. A possible future investi-
gation would be to consider how external information, or any other knowledge obtained prior
to the phase II trial, might be incorporated into the best use of informative priors and for setting
the thresholds for predictive power in the interim decision rule.

5.4 Applicability of adaptive seamless design in developing

biosimilars

In Chapter 4, we proposed a novel adaptive seamless PK and efficacy design with efficient
frameworks for establishing the equivalence of both the PK and efficacy in clinical trial phases
for the development of biosimilars. Note that there is still a controversy about statistical anal-
ysis for biosimilar development, even though related guidelines (European Medicines Agency,
2014a; Food and Drug Administration, 2015) have been issued from the regulatory agencies.
For instance, choosing the margin, primary endpoint, and primary time point for efficacy rep-
resent the issues and challenges with respect to biosimilar development. Hence, consultation
with regulatory agencies must be required before applying the proposed design, which has orig-
inality specific to biosimilar development and offers benefits even considering the issues and
challenges.

It is noteworthy to mention that this work was limited to a specific situation where there are
no relevant PD markers for measuring the efficacy in clinical trials. In addition, we propose the
adaptive seamless PK and efficacy design with the restriction that both PK and efficacy trials
are required to be conducted with patients. This is because the premise of this study is based
on the characteristic of biosimilar development trials that are often conducted in patients rather
than in healthy volunteers (Nagasaki and Ando, 2014). Although healthy volunteers are used
in most applications for biosimilars (Wang and Chow, 2009), the development of biosimilars
has a greater possibility of targeting patients hereafter owing to the high molecular complexity
of biosimilars. For example, the biosimilar of trastuzumab (Herceptin), which is similar to the
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biosimilar infliximab because it is a monoclonal antibody, has been developed (Stebbing et al.,
2017). In addition, there would be a controversial issue with respect to the assumption that
patients who have common diseases and are being treated with similar dosage regimens are
targeted to provide equivalence data for PK and efficacy. Note that, in the motivating example
described in Section 4.2 in Chapter 4, the targeted patients for the PK study had ankylosing
spondylitis (Park et al., 2013), whereas those for the efficacy study had rheumatoid arthritis
(Yoo et al., 2013). However, there is also an example in which targeted patients were rheuma-
toid arthritis even in the PK study (Takeuchi et al., 2015). Moreover, our framework was con-
structed using parallel-group clinical trial designs based on the two main trials performed in
the development of Remsima (Park et al., 2013; Yoo et al., 2013). Because crossover designs
for PK trials are often used, the clinical trials that consist of PK evaluations using crossover de-
signs and efficacy trials using parallel-group designs could be extended for use with the adaptive
seamless PK and efficacy design. In this case, the adaptive sequential design used for PK con-
firmation (Montague et al., 2012; Potvin et al., 2008; Xu et al., 2016; Zheng et al., 2015) would
be an additional option for the PK trial. As a further and practical consideration, a multiple
testing issue for multiple PK endpoints would be needed in addition to the fixed sequence test-
ing procedure considered between PK and efficacy endpoints because two PK endpoints, i.e.,
AUC and Cmax, are often evaluated in practice in the PK trial (Hua et al., 2015). In addition,
several types of AUC are often set as primary endpoints. For instance, AUCs from time zero
to predicted infinity and from time zero to the last measurable concentration were assessed in
addition to Cmax as primary endpoints in the PK study within the development of the biosimilar
adalimumab (Wynne et al., 2016). Further, other PK parameters, such as tmax, volume of dis-
tribution, and half-life, should be set as secondary PK endpoints, whereas AUC and Cmax are
frequently set as primary PK endpoints (European Medicines Agency, 2014a). In the motivating
PK trial (Park et al., 2013), nine parameters were set as secondary endpoints, whereas AUC and
Cmax were set as primary endpoints. Although multiplicity for secondary PK endpoints was
not usually addressed and only primary PK endpoints were required to demonstrate equivalence
statistically, providing these secondary PK parameters is necessary to conclude biosimilarity in
practice. Furthermore, we assumed that the primary efficacy endpoint in a binary type. In the
development of therapies for patients with rheumatoid arthritis, continuous data are also set
as a primary endpoint, i.e., co-primary endpoints. In this case, the sample size estimation for
co-primary endpoints, which are both continuous and binary endpoints to be evaluated, should
pragmatically be performed in consideration of a correlation between endpoints (Sozu et al.,
2012).
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Chapter 6

Conclusion

Recently, regulatory agencies as well as numerous pharmaceutical sponsors have expressed a
great deal of interest in the development of molecular targeted therapies and biosimilars. In
this dissertation, we addressed the adaptive designs to contribute to conducting confirmatory
clinical trials more efficiently.

First, Issue 1 proposed a novel utility-based approach to guide the construction of the interim
decision rule of an adaptive population selection design for the setting of the survival endpoint.
In Chapter 2, We introduced utility functions constructed from gain and loss functions into
the method for setting the thresholds within the interim decision. In our simulation studies,
we considered the hazard ratio, predictive power, and difference and ratio of restricted mean
survival time as interim measures. Simulation results revealed that the proposed approach can
guide the setting of thresholds considering the benefits and risks for sponsors and patients.
However, the assumption that it is not beneficial rather than harmful would be plausible in
implementing the clinical trial that also includes the biomarker-negative population with belief
that the therapy might be harmful for that population. Therefore, setting thresholds must be
carefully considered based on the results of using the proposed approach.

Second, Issue 2 was motivated by the development of two molecular targeted therapies:
gefitinib and cetuximab. We improved the interim decision rule in the setting in which we con-
sider the phase II/III trials with progressive cancer patients using correlated survival endpoints:
OS and PFS. In our approach, the interim decision was made by incorporating information on
OS as well as PFS to supplement the incomplete OS data. The use of interim decision-making
strategies proposed in Chapter 3 showed good performance for selecting the most appropriate
population in developing molecular targeted therapies when using OS as well as PFS. This is
particularly relevant under a scenario in which PPS affects the correlation between OS and PFS.

Finally, Issue 3 developed a novel adaptive seamless PK and efficacy design in response
to the current situation in which little methodology that enables the performance of multiple
trials seamlessly has been developed. In Chapter 4, we considered the clinical development of
biosimilars including their evaluation in patients rather than healthy volunteers under a situa-
tion where both PK and efficacy parameters are required to demonstrate the equivalence. The
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original idea of the proposed method was to organize a clinical trial that includes the statistical
analysis of PK as an interim analysis, with sample size recalculation of the efficacy data. Our
simulation study indicated that the proposed design would allow trials to be more efficient than
with the classical design. Therefore, this proposal provides appealing advantages, such as a
shorter period, additional cost savings, and a smaller number of patients required.

In summary, the outcome of this study will contribute to the development of two types of
state of the art therapies: molecular targeted therapies and biosimilars.
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Appendix A

Derivation of the correlation model
between OS and PFS by Fleischer et al.
(2009) in Chapter 3

A.1 Correlation between OS and PFS with maximal indepen-

dence

In Chapter 3, we considered the correlation between OS and PFS. One approach is to assume
exponentially distributed TTP and OS considering a model that offers maximal independence
with respect to OS and PFS. Suppose that each survival endpointb ∈ {TTP,OS} is exponentially
distributed with parameterλb whereλb > 0. Because PFS is given by the minimum of TTP and
OS, it holds that

P(min(TTP,OS)< t) = 1− P(min(TTP,OS)≥ t)

= 1− P(TTP≥ t) · P(OS≥ t)

= 1− exp{−(λTTP+ λOS)t}

based on the assumption that TTP and OS are completely independent. Thus, PFS is exponen-
tially distributed with parameterλOS+ λTTP.

Let q1 = P(PFS< OS)= λTTP/λTTP + λOS denote the probability that a progression occurs
before death (Case 1 in Figure 3.1). Then, the expectation denoted byE[OS · PFS] is given by

E[OS · PFS]= E[OS · PFS| PFS< OS]q1 + E[OS · PFS| PFS= OS](1− q1) (A.1)

with OS and PFS being independent. Hence, each expectation can be written as

E[OS · PFS| PFS< OS] = E[OS · PFS+ PFS2]

= E[OS]E[PFS]+ E[PFS2]

=
1

λOS(λTTP+ λOS)
+

2
(λTTP+ λOS)2
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and

E[OS · PFS| PFS= OS] = E[OS2] =
2

(λTTP+ λOS)2
.

Therefore, Equation (A.1) is rewritten as

E[OS · PFS] = E[OS · PFS| PFS< OS]q1 + E[OS · PFS| PFS= OS](1− q1)

=

(
1

λOS(λTTP+ λOS)
+

2
(λTTP+ λOS)2

)
λTTP

λTTP+ λOS

+

(
2

(λTTP+ λOS)2

)
λOS

λTTP+ λOS

=
1

λTTP+ λOS

(
λTTP

λOS(λTTP+ λOS)
+

2
λTTP+ λOS

)
=

2λOS+ λTTP

λOS(λTTP+ λOS)2
. (A.2)

Using Equation (A.2), the covariate of OS and PFS can be expressed by

Cov[OS,PFS] = E[OS · PFS]− E[OS]E[PFS]

=
2λOS+ λTTP

λOS(λTTP+ λOS)2
− 1
λOS(λTTP+ λOS)

=
1

(λTTP+ λOS)2
. (A.3)

Therefore, the correlation coefficient between OS and PFS can be represented as follows:

ρ = Corr[OS,PFS] =
Cov[OS,PFS]
√

V[OS]V[PFS]

=
1

(λTTP+ λOS)2
λOS(λTTP+ λOS)

=
λOS

λTTP+ λOS
. (A.4)

A.2 A more general model considering dependencies between

OS and TTP

In Chapter 3, we considered the length of PPS when using the correlation between OS and PFS.
Thus, we did not apply the model in Equation (A.4). Instead, another approach is to consider
dependency between OS and TTP in a more general model. That is, PPS effect is considered.
Assume the survival endpoint D, namely, the time to death without tumor progression. Then,
OS is calculated as follows:

OS=

 PFS i f PFS, TTP
TTP+ PPS otherwise

.
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Suppose that each survival endpointa ∈ {TTP,PPS,D} is exponentially distributed with param-
eterλa whereλa > 0. Then, the expectationE[OS] is given by

E[OS] = E[OS | PFS< OS]q1 + E[OS | PFS= OS](1− q1)

=

(
1

λTTP+ λD
+

1
λPPS

)
λTTP

λTTP+ λD
+

1
λTTP+ λD

λD

λTTP+ λD

=
λTTP+ λPPS

(λTTP+ λD) λPPS

and the expectationE[OS2] is given by

E[OS2] = E[OS2 | PFS< OS]q1 + E[OS2 | PFS= OS](1− q1)

= E[(PFS+ PPS)2 | PFS< OS]q1 + E[PFS2 | PFS= OS](1− q1)

=
(
E[PFS2 | PFS< OS]+ 2E[PFS· PPS| PFS< OS]+ E[PPS2 | PFS< OS]

)
q1

+E[PFS2 | PFS= OS](1− q1)

=

(
2

(λTTP+ λD)2
+

2

λ2
PPS

+
2

(λTTP+ λD) λPPS

)
λTTP

λTTP+ λD
+

2

(λTTP+ λD)2

λD

λTTP+ λD

=
2

(λTTP+ λD)2
+

2λTTP

(λTTP+ λD) λ2
PPS

+
2λTTP

(λTTP+ λD)2 λPPS

=
2λ2

TTP+ 2λTTPλD + 2λTTPλPPS+ 2λ2
PPS

(λTTP+ λD)2 λ2
PPS

.

Thus,

V[OS] = E[OS2] − (E[OS])2

=
2λ2

TTP+ 2λTTPλD + 2λTTPλPPS+ 2λ2
PPS

(λTTP+ λD)2 λ2
PPS

−
(

λTTP+ λPPS

(λTTP+ λD) λPPS

)2

=
λ2

TTP+ 2λTTPλD + λ
2
PPS

(λTTP+ λD)2 λ2
PPS

.

Because the expectationE[OS · PFS] can be rewitten as

E[OS · PFS| PFS< OS] = E[PFS]E[PPS]+ E[PFS2]

=
1

(λTTP+ λD)λPPS
+

2
(λTTP+ λD)2

,

it holds that

E[OS · PFS] = E[OS · PFS| PFS< OS]q1 + E[OS · PFS| PFS= OS](1− q1)

=

(
1

(λTTP+ λD)λPPS
+

2
(λTTP+ λD)2

)
λTTP

λTTP+ λD

+
2

(λTTP+ λD)2

λD

λTTP+ λD

=
2λPPS+ λTTP

λPPS(λTTP+ λD)2
,
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and then

Cov[OS,PFS] = E[OS · PFS]− E[OS]E[PFS]

=
2λPPS+ λTTP

λPPS(λTTP+ λD)2
− 1
λTTP+ λD

λTTP+ λPPS

(λTTP+ λD) λPPS

=
1

(λTTP+ λD)2
. (A.5)

Note that Equation (A.5) is equivalent to Equation (A.3). Therefore, the correlation coefficient
between OS and PFS can be represented as follows:

ρ = Corr[OS,PFS] =
Cov[OS,PFS]
√

V[OS]V[PFS]

=
1

(λTTP+ λD)2

(λTTP+ λD) λPPS√
λ2

TTP+ 2λTTPλD + λ
2
PPS

(λTTP+ λD)

=
λPPS√

λ2
TTP+ 2λTTPλD + λ

2
PPS

. (A.6)

Moreover, it is obtained that√
V[PFS]
V[OS]

=
1

λTTP+ λD

(λTTP+ λD) λPPS√
λ2

TTP+ 2λTTPλD + λ
2
PPS

=
λPPS√

λ2
TTP+ 2λTTPλD + λ

2
PPS

= Corr[OS,PFS]= ρ.

Furthermore, Equation (A.6) is represented as follows:

ρ = Corr[OS,PFS] =
λPPS√

λ2
TTP+ 2λTTPλD + λ

2
PPS

→ λOS√
λ2

TTP+ 2λTTPλOS+ λ
2
OS

→ λOS

λTTP+ λOS

whenλD → λOS, λPPS→ λOS. This equivalence of this model formulation can be seen by using
the lack of memory property of the exponential distribution. In other words, the hazard for OS
is constant, i.e.,λOS, before and after progression happens.
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Appendix B

Details of simulation results in Chapter 3
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Table B.1: Probabilities of selectingF at the interim analysis using PFS only, OS only, or
OS and PFS under the assumption that the effect of PPS is small and large based on 10,000
simulation replications per scenario.

Model Scenario HR{a}N ρ / τ PPS effect is small PPS effect is large
PFS only OS only OS and PFS PFS only OS only OS and PFS

(a) 1 0.90 0.90 0.6060 0.6256 0.5683 0.6060 0.6256 0.5683
0.70 0.6000 0.5920 0.5506 0.6163 0.6821 0.5561
0.50 0.6011 0.5881 0.5735 0.6184 0.6529 0.5228

2 1.00 0.90 0.4103 0.4095 0.3647 0.4103 0.4095 0.3647
0.70 0.4161 0.4151 0.3655 0.4117 0.4088 0.3176
0.50 0.4139 0.4161 0.3847 0.4061 0.4096 0.2789

3 1.11 0.90 0.2378 0.2186 0.1930 0.2378 0.2186 0.1930
0.70 0.2407 0.2540 0.2022 0.2337 0.1778 0.1377
0.50 0.2409 0.2518 0.2191 0.2316 0.2016 0.1181

4 1.43 0.90 0.0292 0.0176 0.0165 0.0292 0.0176 0.0165
0.70 0.0269 0.0358 0.0193 0.0268 0.0045 0.0040
0.50 0.0285 0.0366 0.0244 0.0252 0.0103 0.0037

(b) 1 0.90 0.90 0.6140 0.6095 0.5999 0.6131 0.6034 0.5865
0.70 0.6258 0.6158 0.6048 0.6214 0.5886 0.5428
0.50 0.6274 0.6303 0.6053 0.6280 0.5687 0.5050

2 1.00 0.90 0.4107 0.4104 0.3957 0.4095 0.4082 0.3856
0.70 0.4130 0.4131 0.3926 0.4181 0.4081 0.3452
0.50 0.4222 0.4192 0.3967 0.4236 0.4117 0.3129

3 1.11 0.90 0.2299 0.2338 0.2185 0.2287 0.2356 0.2103
0.70 0.2257 0.2301 0.2100 0.2272 0.2438 0.1764
0.50 0.2355 0.2298 0.2112 0.2391 0.2619 0.1601

4 1.43 0.90 0.0228 0.0265 0.0217 0.0223 0.0273 0.0195
0.70 0.0184 0.0202 0.0155 0.0236 0.0283 0.0146
0.50 0.0191 0.0187 0.0151 0.0247 0.0414 0.0099

The bold numbers show the situations for which a greater probability of selecting each population is expected
when using both OS and PFS.
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Table B.1: continued.

Model Scenario HR{a}N ρ / τ PPS effect is small PPS effect is large
PFS only OS only OS and PFS PFS only OS only OS and PFS

(c) 1 0.90 0.90 0.6122 0.6072 0.6034 0.6147 0.6029 0.5935
0.70 0.6251 0.6118 0.6053 0.6309 0.5771 0.5348
0.50 0.6264 0.6246 0.6019 0.6374 0.5640 0.5096

2 1.00 0.90 0.4072 0.4083 0.3995 0.4110 0.4093 0.3927
0.70 0.4112 0.4174 0.3957 0.4161 0.4110 0.3379
0.50 0.4197 0.4172 0.3895 0.4232 0.4069 0.3170

3 1.11 0.90 0.2271 0.2341 0.2224 0.2280 0.2344 0.2169
0.70 0.2279 0.2295 0.2153 0.2239 0.2573 0.1737
0.50 0.2315 0.2312 0.2055 0.2322 0.2614 0.1576

4 1.43 0.90 0.0228 0.0260 0.0223 0.0220 0.0277 0.0210
0.70 0.0178 0.0208 0.0162 0.0175 0.0388 0.0126
0.50 0.0193 0.0190 0.0150 0.0197 0.0434 0.0094

(d) 1 0.90 0.90 0.6156 0.6056 0.5880 0.6181 0.5995 0.5815
0.70 0.6292 0.6129 0.5915 0.6181 0.6036 0.5500
0.50 0.6363 0.6272 0.5973 0.6230 0.5885 0.5119

2 1.00 0.90 0.4119 0.4099 0.3876 0.4118 0.4077 0.3772
0.70 0.4143 0.4152 0.3804 0.4156 0.4136 0.3510
0.50 0.4226 0.4214 0.3842 0.4224 0.4173 0.3158

3 1.11 0.90 0.2305 0.2355 0.2127 0.2289 0.2412 0.2051
0.70 0.2256 0.2305 0.1988 0.2324 0.2371 0.1780
0.50 0.2350 0.2313 0.2011 0.2407 0.2539 0.1549

4 1.43 0.90 0.0224 0.0263 0.0197 0.0240 0.0305 0.0203
0.70 0.0168 0.0199 0.0135 0.0248 0.0247 0.0148
0.50 0.0167 0.0194 0.0123 0.0262 0.0307 0.0085

The bold numbers show the situations for which a greater probability of selecting each population is expected
when using both OS and PFS.
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Table B.2: Probabilities of selectingP at the interim analysis using PFS only, OS only, or
OS and PFS under the assumption that the effect of PPS is small and large based on 10,000
simulation replications per scenario.

Model Scenario HR{a}N ρ / τ PPS effect is small PPS effect is large
PFS only OS only OS and PFS PFS only OS only OS and PFS

(a) 1 0.90 0.90 0.3874 0.3709 0.4245 0.3874 0.3709 0.4245
0.70 0.3929 0.3942 0.4382 0.3814 0.3177 0.4413
0.50 0.3891 0.3980 0.4149 0.3799 0.3461 0.4747

2 1.00 0.90 0.5811 0.5846 0.6258 0.5811 0.5846 0.6258
0.70 0.5734 0.5668 0.6190 0.5851 0.5911 0.6788
0.50 0.5738 0.5649 0.6015 0.5913 0.5890 0.7169

3 1.11 0.90 0.7522 0.7743 0.7958 0.7522 0.7743 0.7958
0.70 0.7462 0.7234 0.7803 0.7615 0.8221 0.8569
0.50 0.7431 0.7253 0.7628 0.7650 0.7966 0.8773

4 1.43 0.90 0.9581 0.9731 0.9699 0.9581 0.9731 0.9699
0.70 0.9566 0.9349 0.9587 0.9672 0.9953 0.9896
0.50 0.9503 0.9351 0.9523 0.9700 0.9875 0.9906

(b) 1 0.90 0.90 0.3820 0.3845 0.3956 0.3842 0.3906 0.4097
0.70 0.3708 0.3787 0.3909 0.3766 0.3972 0.4497
0.50 0.3691 0.3642 0.3902 0.3701 0.4002 0.4751

2 1.00 0.90 0.5835 0.5820 0.5975 0.5862 0.5826 0.6085
0.70 0.5825 0.5787 0.6016 0.5792 0.5749 0.6451
0.50 0.5724 0.5732 0.5968 0.5736 0.5496 0.6630

3 1.11 0.90 0.7620 0.7559 0.7723 0.7657 0.7528 0.7818
0.70 0.7680 0.7591 0.7819 0.7694 0.7368 0.8125
0.50 0.7571 0.7603 0.7803 0.7574 0.6928 0.8123

4 1.43 0.90 0.9656 0.9581 0.9656 0.9692 0.9556 0.9693
0.70 0.9726 0.9641 0.9735 0.9726 0.9484 0.9726
0.50 0.9714 0.9679 0.9737 0.9710 0.9037 0.9593

The bold numbers show the situations for which a greater probability of selecting each population is expected
when using both OS and PFS.
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Table B.2: continued.

Model Scenario HR{a}N ρ / τ PPS effect is small PPS effect is large
PFS only OS only OS and PFS PFS only OS only OS and PFS

(c) 1 0.90 0.90 0.3826 0.3872 0.3912 0.3812 0.3908 0.4019
0.70 0.3717 0.3818 0.3904 0.3671 0.3994 0.4513
0.50 0.3693 0.3704 0.3927 0.3613 0.3981 0.4677

2 1.00 0.90 0.5861 0.5841 0.5936 0.5833 0.5820 0.6004
0.70 0.5841 0.5731 0.5985 0.5815 0.5606 0.6455
0.50 0.5743 0.5755 0.6029 0.5743 0.5481 0.6557

3 1.11 0.90 0.7638 0.7549 0.7682 0.7640 0.7540 0.7739
0.70 0.7652 0.7585 0.7761 0.7726 0.7099 0.8065
0.50 0.7602 0.7587 0.7851 0.7640 0.6873 0.8101

4 1.43 0.90 0.9654 0.9589 0.9653 0.9669 0.9556 0.9665
0.70 0.9715 0.9627 0.9712 0.9783 0.9219 0.9650
0.50 0.9692 0.9670 0.9722 0.9755 0.8957 0.9552

(d) 1 0.90 0.90 0.3814 0.3877 0.4077 0.3799 0.3930 0.4144
0.70 0.3684 0.3812 0.4044 0.3792 0.3878 0.4441
0.50 0.3595 0.3667 0.3975 0.3746 0.3925 0.4758

2 1.00 0.90 0.5840 0.5815 0.6067 0.5853 0.5817 0.6169
0.70 0.5825 0.5764 0.6137 0.5811 0.5740 0.6410
0.50 0.5724 0.5702 0.6089 0.5746 0.5590 0.6698

3 1.11 0.90 0.7643 0.7524 0.7795 0.7672 0.7452 0.7871
0.70 0.7700 0.7589 0.7934 0.7634 0.7476 0.8121
0.50 0.7589 0.7583 0.7905 0.7558 0.7185 0.8283

4 1.43 0.90 0.9696 0.9566 0.9696 0.9707 0.9515 0.9692
0.70 0.9766 0.9640 0.9757 0.9706 0.9536 0.9729
0.50 0.9755 0.9654 0.9764 0.9695 0.9349 0.9730

The bold numbers show the situations for which a greater probability of selecting each population is expected
when using both OS and PFS.
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Table B.3: Probabilities of discontinuing the trial for futility at the interim analysis using PFS
only, OS only, or OS and PFS under the assumption that the effect of PPS is small and large
based on 10,000 simulation replications per scenario.

Model Scenario HR{a}N ρ / τ PPS effect is small PPS effect is large
PFS only OS only OS and PFS PFS only OS only OS and PFS

(a) 1 0.90 0.90 0.0066 0.0035 0.0072 0.0066 0.0035 0.0072
0.70 0.0071 0.0138 0.0112 0.0023 0.0002 0.0026
0.50 0.0098 0.0139 0.0116 0.0017 0.0010 0.0025

2 1.00 0.90 0.0086 0.0059 0.0095 0.0086 0.0059 0.0095
0.70 0.0105 0.0181 0.0155 0.0032 0.0001 0.0036
0.50 0.0123 0.0190 0.0138 0.0026 0.0014 0.0042

3 1.11 0.90 0.0100 0.0071 0.0112 0.0100 0.0071 0.0112
0.70 0.0131 0.0226 0.0175 0.0048 0.0001 0.0054
0.50 0.0160 0.0229 0.0181 0.0034 0.0018 0.0046

4 1.43 0.90 0.0127 0.0093 0.0136 0.0127 0.0093 0.0136
0.70 0.0165 0.0293 0.0220 0.0060 0.0002 0.0064
0.50 0.0212 0.0283 0.0233 0.0048 0.0022 0.0057

(b) 1 0.90 0.90 0.0040 0.0060 0.0045 0.0027 0.0060 0.0038
0.70 0.0034 0.0055 0.0043 0.0020 0.0142 0.0075
0.50 0.0035 0.0055 0.0045 0.0019 0.0311 0.0199

2 1.00 0.90 0.0058 0.0076 0.0068 0.0043 0.0092 0.0059
0.70 0.0045 0.0082 0.0058 0.0027 0.0170 0.0097
0.50 0.0054 0.0076 0.0065 0.0028 0.0387 0.0241

3 1.11 0.90 0.0081 0.0103 0.0092 0.0056 0.0116 0.0079
0.70 0.0063 0.0108 0.0081 0.0034 0.0194 0.0111
0.50 0.0074 0.0099 0.0085 0.0035 0.0453 0.0276

4 1.43 0.90 0.0116 0.0154 0.0127 0.0085 0.0171 0.0112
0.70 0.0090 0.0157 0.0110 0.0038 0.0233 0.0128
0.50 0.0095 0.0134 0.0112 0.0043 0.0549 0.0308
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Table B.3: continued.

Model Scenario HR{a}N ρ / τ PPS effect is small PPS effect is large
PFS only OS only OS and PFS PFS only OS only OS and PFS

(c) 1 0.90 0.90 0.0052 0.0056 0.0054 0.0041 0.0063 0.0046
0.70 0.0032 0.0064 0.0043 0.0020 0.0235 0.0139
0.50 0.0043 0.0050 0.0054 0.0013 0.0379 0.0227

2 1.00 0.90 0.0067 0.0076 0.0069 0.0057 0.0087 0.0069
0.70 0.0047 0.0095 0.0058 0.0024 0.0284 0.0166
0.50 0.0060 0.0073 0.0076 0.0025 0.0450 0.0273

3 1.11 0.90 0.0091 0.0110 0.0094 0.0080 0.0116 0.0092
0.70 0.0069 0.0120 0.0086 0.0035 0.0328 0.0198
0.50 0.0083 0.0101 0.0094 0.0038 0.0513 0.0323

4 1.43 0.90 0.0118 0.0151 0.0124 0.0111 0.0167 0.0125
0.70 0.0107 0.0165 0.0126 0.0042 0.0393 0.0224
0.50 0.0115 0.0140 0.0128 0.0048 0.0609 0.0354

(d) 1 0.90 0.90 0.0030 0.0067 0.0043 0.0020 0.0075 0.0041
0.70 0.0024 0.0059 0.0041 0.0027 0.0086 0.0059
0.50 0.0042 0.0061 0.0052 0.0024 0.0190 0.0123

2 1.00 0.90 0.0041 0.0086 0.0057 0.0029 0.0106 0.0059
0.70 0.0032 0.0084 0.0059 0.0033 0.0124 0.0080
0.50 0.0050 0.0084 0.0069 0.0030 0.0237 0.0144

3 1.11 0.90 0.0052 0.0121 0.0078 0.0039 0.0136 0.0078
0.70 0.0044 0.0106 0.0078 0.0042 0.0153 0.0099
0.50 0.0061 0.0104 0.0084 0.0035 0.0276 0.0168

4 1.43 0.90 0.0080 0.0171 0.0107 0.0053 0.0180 0.0105
0.70 0.0066 0.0161 0.0108 0.0046 0.0217 0.0123
0.50 0.0078 0.0152 0.0113 0.0043 0.0344 0.0185
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Table B.4: Probabilities of rejectingHF at the final analysis using PFS only, OS only, or OS and
PFS at the interim analysis under the assumption that the effect of PPS is small and large based
on 10,000 simulation replications per scenario.

Model Scenario HR{a}N ρ / τ PPS effect is small PPS effect is large
PFS only OS only OS and PFS PFS only OS only OS and PFS

(a) 1 0.90 0.90 0.5957 0.6158 0.5602 0.5957 0.6158 0.5602
0.70 0.5624 0.5615 0.5220 0.6150 0.6816 0.5556
0.50 0.5682 0.5584 0.5449 0.6126 0.6504 0.5206

2 1.00 0.90 0.3893 0.3935 0.3505 0.3893 0.3935 0.3505
0.70 0.3661 0.3726 0.3292 0.4075 0.4077 0.3167
0.50 0.3702 0.3794 0.3496 0.3899 0.4042 0.2752

3 1.11 0.90 0.2093 0.2002 0.1753 0.2093 0.2002 0.1753
0.70 0.1893 0.2121 0.1651 0.2214 0.1753 0.1355
0.50 0.1961 0.2087 0.1825 0.2040 0.1945 0.1133

4 1.43 0.90 0.0160 0.0105 0.0099 0.0160 0.0105 0.0099
0.70 0.0133 0.0199 0.0107 0.0117 0.0038 0.0031
0.50 0.0139 0.0200 0.0129 0.0087 0.0077 0.0024

(b) 1 0.90 0.90 0.5935 0.5904 0.5809 0.5869 0.5810 0.5638
0.70 0.6093 0.6004 0.5901 0.5744 0.5592 0.5129
0.50 0.6135 0.6192 0.5930 0.5073 0.4940 0.4351

2 1.00 0.90 0.3794 0.3806 0.3671 0.3731 0.3762 0.3545
0.70 0.3863 0.3890 0.3691 0.3608 0.3686 0.3111
0.50 0.3987 0.4007 0.3777 0.2977 0.3239 0.2456

3 1.11 0.90 0.1942 0.2023 0.1862 0.1929 0.2005 0.1804
0.70 0.1928 0.2002 0.1822 0.1740 0.2027 0.1451
0.50 0.2037 0.2021 0.1863 0.1395 0.1814 0.1109

4 1.43 0.90 0.0124 0.0145 0.0119 0.0123 0.0145 0.0109
0.70 0.0099 0.0118 0.0090 0.0102 0.0142 0.0080
0.50 0.0095 0.0100 0.0078 0.0058 0.0145 0.0036

The bold numbers show that incorporation of information for both OS and PFS results in good performance.
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Table B.4: continued.

Model Scenario HR{a}N ρ / τ PPS effect is small PPS effect is large
PFS only OS only OS and PFS PFS only OS only OS and PFS

(c) 1 0.90 0.90 0.5907 0.5864 0.5825 0.5888 0.5799 0.5701
0.70 0.6076 0.5958 0.5895 0.5427 0.5199 0.4771
0.50 0.6129 0.6137 0.5905 0.4991 0.4802 0.4291

2 1.00 0.90 0.3760 0.3791 0.3695 0.3734 0.3757 0.3593
0.70 0.3829 0.3911 0.3699 0.3260 0.3439 0.2801
0.50 0.3963 0.3985 0.3710 0.2886 0.3152 0.2397

3 1.11 0.90 0.1947 0.2021 0.1913 0.1895 0.1997 0.1820
0.70 0.1938 0.1982 0.1849 0.1522 0.1929 0.1303
0.50 0.2002 0.2027 0.1819 0.1340 0.1765 0.1058

4 1.43 0.90 0.0120 0.0133 0.0117 0.0124 0.0152 0.0119
0.70 0.0093 0.0116 0.0090 0.0071 0.0170 0.0060
0.50 0.0100 0.0108 0.0075 0.0047 0.0178 0.0035

(d) 1 0.90 0.90 0.5899 0.5844 0.5664 0.5857 0.5748 0.5561
0.70 0.6118 0.5992 0.5786 0.5880 0.5832 0.5303
0.50 0.6193 0.6139 0.5849 0.5522 0.5451 0.4711

2 1.00 0.90 0.3769 0.3787 0.3574 0.3721 0.3739 0.3452
0.70 0.3847 0.3881 0.3567 0.3705 0.3813 0.3228
0.50 0.3953 0.4022 0.3638 0.3363 0.3615 0.2729

3 1.11 0.90 0.1936 0.2006 0.1820 0.1909 0.2052 0.1753
0.70 0.1912 0.2016 0.1726 0.1857 0.2023 0.1516
0.50 0.2040 0.2034 0.1793 0.1606 0.1966 0.1187

4 1.43 0.90 0.0121 0.0134 0.0110 0.0124 0.0157 0.0112
0.70 0.0092 0.0110 0.0081 0.0110 0.0135 0.0089
0.50 0.0083 0.0105 0.0063 0.0078 0.0136 0.0040

The bold numbers show that incorporation of information for both OS and PFS results in good performance.
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Table B.5: Probabilities of rejectingHP at the final analysis using PFS only, OS only, or OS and
PFS at the interim analysis under the assumption that the effect of PPS is small and large based
on 10,000 simulation replications per scenario.

Model Scenario HR{a}N ρ / τ PPS effect is small PPS effect is large
PFS only OS only OS and PFS PFS only OS only OS and PFS

(a) 1 0.90 0.90 0.3854 0.3689 0.4225 0.3854 0.3689 0.4225
0.70 0.3787 0.3814 0.4238 0.3812 0.3175 0.4411
0.50 0.3758 0.3858 0.4011 0.3794 0.3458 0.4741

2 1.00 0.90 0.5781 0.5811 0.6224 0.5781 0.5811 0.6224
0.70 0.5504 0.5467 0.5966 0.5848 0.5908 0.6785
0.50 0.5520 0.5461 0.5792 0.5902 0.5883 0.7159

3 1.11 0.90 0.7465 0.7688 0.7903 0.7465 0.7688 0.7903
0.70 0.7142 0.6967 0.7494 0.7613 0.8219 0.8567
0.50 0.7144 0.7008 0.7349 0.7637 0.7954 0.8760

4 1.43 0.90 0.9490 0.9645 0.9613 0.9490 0.9645 0.9613
0.70 0.9086 0.8958 0.9136 0.9669 0.9950 0.9893
0.50 0.9115 0.9011 0.9147 0.9678 0.9860 0.9889

(b) 1 0.90 0.90 0.3741 0.3775 0.3876 0.3745 0.3818 0.3997
0.70 0.3645 0.3724 0.3845 0.3624 0.3844 0.4344
0.50 0.3650 0.3600 0.3858 0.3263 0.3610 0.4251

2 1.00 0.90 0.5704 0.5698 0.5848 0.5715 0.5690 0.5933
0.70 0.5718 0.5691 0.5911 0.5558 0.5551 0.6217
0.50 0.5645 0.5662 0.5888 0.5009 0.4961 0.5928

3 1.11 0.90 0.7452 0.7396 0.7556 0.7442 0.7340 0.7605
0.70 0.7545 0.7465 0.7688 0.7375 0.7122 0.7828
0.50 0.7456 0.7501 0.7687 0.6604 0.6260 0.7236

4 1.43 0.90 0.9389 0.9332 0.9394 0.9355 0.9272 0.9374
0.70 0.9493 0.9440 0.9518 0.9274 0.9155 0.9333
0.50 0.9523 0.9516 0.9555 0.8408 0.8159 0.8505

The bold numbers show that incorporation of information for both OS and PFS results in good performance.
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Table B.5: continued.

Model Scenario HR{a}N ρ / τ PPS effect is small PPS effect is large
PFS only OS only OS and PFS PFS only OS only OS and PFS

(c) 1 0.90 0.90 0.3741 0.3790 0.3828 0.3714 0.3813 0.3919
0.70 0.3650 0.3758 0.3837 0.3353 0.3706 0.4174
0.50 0.3643 0.3653 0.3877 0.3114 0.3518 0.4096

2 1.00 0.90 0.5736 0.5721 0.5812 0.5677 0.5673 0.5849
0.70 0.5736 0.5639 0.5881 0.5294 0.5198 0.5954
0.50 0.5667 0.5678 0.5952 0.4889 0.4815 0.5719

3 1.11 0.90 0.7477 0.7395 0.7520 0.7437 0.7345 0.7539
0.70 0.7504 0.7450 0.7619 0.7029 0.6581 0.7429
0.50 0.7488 0.7488 0.7740 0.6500 0.6061 0.7062

4 1.43 0.90 0.9401 0.9358 0.9405 0.9364 0.9286 0.9372
0.70 0.9466 0.9410 0.9475 0.8847 0.8553 0.8865
0.50 0.9509 0.9503 0.9548 0.8218 0.7876 0.8266

(d) 1 0.90 0.90 0.3716 0.3791 0.3978 0.3690 0.3824 0.4031
0.70 0.3631 0.3759 0.3985 0.3696 0.3801 0.4342
0.50 0.3551 0.3622 0.3926 0.3509 0.3738 0.4511

2 1.00 0.90 0.5672 0.5664 0.5897 0.5673 0.5658 0.5990
0.70 0.5722 0.5675 0.6036 0.5655 0.5606 0.6253
0.50 0.5640 0.5628 0.6006 0.5369 0.5326 0.6331

3 1.11 0.90 0.7430 0.7345 0.7588 0.7418 0.7248 0.7629
0.70 0.7552 0.7463 0.7799 0.7405 0.7306 0.7902
0.50 0.7459 0.7483 0.7788 0.7054 0.6838 0.7823

4 1.43 0.90 0.9353 0.9277 0.9371 0.9313 0.9193 0.9333
0.70 0.9531 0.9452 0.9546 0.9323 0.9261 0.9391
0.50 0.9546 0.9489 0.9578 0.9023 0.8892 0.9163

The bold numbers show that incorporation of information for both OS and PFS results in good performance.
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