学位申請論文

Roseophilin の生合成に関する研究

平成 30 年 3 月

木股祥子

略語表

ABC	ATP-binding cassette
ACP	acyl carrier protein
AMP	adenosine monophosphate
ATP	adenosine triphosphate
ATR	attenuated total reflection
CoA	coenzyme A
CP	butyl- <i>meta</i> -cycloheptylprodiginine
DRP	dechlororoseophilin
EDTA	ethylenediaminetetraacetic acid
ESI	electrospray ionization
Et_3N	triethylamine
EtOAc	ethyl acetate
FAB	fast atom bombardment
FAD	flavin adenine nucleotide
$FADH_2$	flavin adenine nucleotide, reduced form
HPLC	high-performance liquid chromatography
HR	high-resolution
IC_{50}	inhibitory concentration 50
IPTG	$is opropyl \textbf{-}\beta\textbf{-}D\textbf{-}thiogalactopyranoside}$
KM	kanamycin
LC-MS	liquid chromatography-mass spectrometry
MAP	2-methyl-3-amylpyrrole
MBC	4-methoxy-2,2'-bipyrrole-5-carbaldehyde
MCP	metacycloprodigiosin
MDP	11-methyldodecylprodiginine
MeCN	acetonitrile
MeOH	methanol
MS	mass spectrometry
MTE	metal trace elements
NAD	β -nicotinamide adenine dinucleotide
NADH	$\beta\mbox{-nicotinamide}$ a denine dinucleotide, reduced form
NMR	nuclear magnetic resonance
OD	optical density
ODS	octadecylsilica
ORF	open reading frame
PAGE	polyacrylamide gel electrophoresis
PCP	propyl- <i>meta</i> -cyclooctylprodiginine

PCR	polymerase chain reaction
PG	prodigiosin
PGR1	prodigiosin R1
PGR2	prodigiosin R2
PGR3	prodigiosin R3
RNase	ribonuclease
RP	roseophilin
rpm	revolutions per minute
SDS	sodium dodecyl sulfate
TES	$N\-tris(hydroxymethyl) methyl-2-aminoethanesulfonic acid acid acid acid acid acid acid ac$
TFA	trifluoroacetic acid
TLC	thin-layer chromatography
Tris	tris(hydroxymethyl)aminomethane
UP	undecylprodiginine

		A
Ŀ	\rightarrow	=/_^
ŀ	≁	пш
/	-	нш

第1章	Prodigiosin 環化遺伝子 <i>rphG</i> の同定	
第1節	二次代謝遺伝子発現系の構築	12
第2節	<i>rphG</i> および <i>rphG2~rphG4</i> 導入株の prodigiosin 代謝産物解析	18
第3節	<i>rphG</i> 導入株が生産する prodigiosin 代謝産物の単離	23
第4節	Prodigiosin 環化体 CP1 の同定	25
第5節	Prodigiosin 環化体 CP2 の理化学的性質	28
第6節	Prodigiosin 環化体 CP2 の構造決定	32
第7節	Undecylprodiginine とその環化体の生物活性	42
第8節	考察	43

第2章]	Roseophilin 生合成中間体の探索	
第1節	Roseophilin 生合成中間体の探索	46
第2節	Roseophilin 生合成中間体候補物質の単離	48
第3節	Prodigiosin R2 の理化学的性質	50
第4節	Prodigiosin R2 の構造決定	54
第5節	Prodigiosin R3 の理化学的性質	65
第6節	Prodigiosin R3 の構造決定	69
第7節	Prodigiosin R2 および prodigiosin R3 の生物活性	79
第8節	考察	80

第3章 Roseophilinのアルキル側鎖架橋に関わる遺伝子の同定

第1節	Roseophilin 生合成前駆体生産株の構築	82
第2節	Roseophilin 生合成前駆体生産条件の検討	84
第3節	<i>rphG</i> および <i>rphG2~rphG4</i> 導入株の prodigiosin 代謝産物の解析	85
第4節	<i>rphG</i> および <i>rphG2~rphG4</i> 導入株が生産する prodigiosin 代謝産物の同定	86
第5節	考察	90

第	4章 R	oseophilin 生合成におけるクロル化遺伝子の探索	
	第1節	ドラフトゲノム解析によるクロル化遺伝子の探索	91
	第2節	クロル化遺伝子候補産物を用いた反応解析	93
	第3節	クロル化遺伝子候補導入株の代謝産物の解析	95
	第4節	考察	96

総括

98

実験の部

各章共通の実験	101
育1章に関する実験	106
育2章に関する実験	117
第3章に関する実験	123
育4章に関する実験 1997年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	127

参考文献

131

放線菌の生産する二次代謝産物には、抗生物質をはじめとして免疫抑制剤であるタクロリムス (FK506) や殺虫作用を持つエバーメクチンなど、様々な生物活性を有するものが存在し、それ らは多くの研究者達によって単離されてきた。微生物代謝産物をはじめとする天然物化学の魅力 の一つに、化合物が有する構造のユニークさが挙げられ、またその化合物の生合成にも注目が向 けられている。放線菌 *Streptomyces griseoviridis* が生産する roseophilin (RP)¹⁾もその一つであ り、KB 類表皮がん細胞や K562 慢性骨髄性白血病細胞に抗腫瘍作用を示す物質として 1992 年に 報告された。RP は、2 分子のピロールと1 分子のフランが結合し、さらに 2 箇所で架橋したアル キル側鎖が結合するという興味深い構造を有している (Fig. 1)。したがって、RP の生合成遺伝 子を利用して、ユニークな構造をもち、より活性の強い化合物を創製することも可能と考えられ る。

Fig. 1 Streptomyces griseoviridis が生産する roseophilin 関連化合物

RP と類似の構造を有する化合物に prodigiosin (PG)が存在する。PG やその類縁化合物は3分 子のピロールを構造中に含有しており、RP は PG 類の3分子のピロールのうち、中央の1分子 がフランに置換された構造が骨格となっている。RP 生産菌は、RP とともに prodigiosin R1 (PGR1)²⁾を生産し(Fig. 1)、両者の構造の類似性から、RP の生合成経路の大部分は PG と共通 していることが示唆される。したがって、PG の生合成に関する知見を基にして、RP の生合成経 路を明らかにすることができると考えられる。

Fig. 2 Prodigiosin 類

PG 類は、赤色色素として Serratia³⁾、Pseudomonas⁴⁾、Streptomyces⁵⁾から単離されている。 その生合成に関する研究としては、1973年に同位体標識した化合物の取り込み実験が行われ、プ ロリン、セリン、アラニン、メチオニン、酢酸から PG の炭素骨格や窒素原子が構成されること が判明している⁶。2000年に、Serratia sp. ATCC 39006の生合成遺伝子のクローニングが行わ れ、PG 生合成遺伝子群は 22 kbp にわたって pig クラスターを形成し、15 個の ORF を含んでい ることが明らかとなった⁷⁾。2005年には、Serratiaにおける PG の生合成経路(Fig. 3)が遺伝 子破壊株の生産物の LC-MS 分析により解明された⁸。すなわち、プロリンを出発物質とし、 L-prolyl-AMP ligase である PigI によって、プロリンのカルボニル基が活性化される。続いて、 PigG (peptidyl carrier protein) に転移し、PigA が触媒する脱水素反応によりピロール環が生合 成される。さらに、PigGから PigJ (β-ketomyristoyl-ACP synthase)の ketosynthase ドメイン に転移する。PigH (aminotransferase) が関与するマロニル CoA との縮合反応により2 炭素伸 張するとともに、セリンが付加され、2 個目のピロール環が形成される。続いてアルデヒドへの 酸化(PigM)、O-メチル化(PigF、PigN)を経て 4-methoxy-2,2'-bipyrrole-5-carbaldehyde(MBC) が生合成される。一方、この2分子のピロールの生合成経路とは別に、不飽和脂肪酸由来の 2-octenal を出発物質として、2-methyl-3-amylpyrrole (MAP) を合成する生合成経路が存在し、 最終段階で MAP と MBC が縮合する (PigC)。

Fig. 3 Serratia における prodgiodin 生合成経路

Pig proteins	Putative function	Red proteins
PigA	L-prolyl-PCP dehydrogenase	RedW
PigB	amine oxidase	RedS
PigC	phosphotransferase	RedH
PigD	no aasigned function	
PigE	aminotransferase	
PigF	O methyltransferase	RedI
PigG	peptidyl carrier protein	RedO
PigH	aminotransferase	RedN
PigI	L-prolyl-AMP ligase	RedM
PigJ	β -ketomyristoyl-ACP synthase	RedX
PigK	no aasigned function	RedY
PigL	4'-phosphopantetheinyl transferase	RedU
PigM	no aasigned function	RedV
PigN	oxidoreductase	RedF
PigO	no aasigned function	

Table 1 pig クラスターと red クラスターにおける各 ORF の推定機能

一方、典型的な PG である undecylprodiginine (UP) および butyl-*meta*cycloheptylprodiginine (CP) ⁹⁾を生産する *Streptomyces coelicolor* A3(2)においては、33 kbp に わたる生合成遺伝子 *red* クラスターが明らかになっている。*red* クラスター遺伝子の各機能につ いては、*Serratia* における *pig* クラスター遺伝子との相同性により推定されている (Table 1)。 MBC の生合成経路は PG と共通しているが、MAP ではなく 2-undecylpyrrole が中間体となる。 2-undecylpyrrole はラウリン酸にマロニル CoA とグリシンが縮合することによって生合成される。 2-undecylpyrrole の生合成の初期段階では、脂肪酸合成酵素とともに ketosynthase と相同性を示 す RedP と RedR によって、ACP (acyl carrier protein) と相同性を示す RedQ と dodecanoyl thioester の複合体が形成される。次いで、チオエステルが RedL に転移し、マロニル CoA との 縮合、グリシンとの縮合、脱炭酸、環化により、4-keto-2-undecyl-4,5-dihydropyrrole となる。 最終的に、RedK によって 2-undecylpyrrole が生合成される (Fig. 5) ¹⁰⁾。MBC の生合成経路に ついては、遺伝子破壊株の生合成蓄積物を LC-MS で分析することにより証明されている ¹¹⁾。MBC と 2-undecylpyrrole の縮合によって生合成される UP は、さらに RedG が触媒する環化反応によ って CP に変換される ⁹。

Fig. 5 Streptomyces coelicolor における prodigiosin 類の推定生合成経路

これらの知見をもとに、*Serratia と S. coelicolor* に共通する PG 生合成遺伝子の保存配列を用 いた PCR および塩基配列解析により、*S. griseoviridis* における PG 生合成遺伝子が見いだされ ている¹²⁾。本遺伝子群は約 40 kb にわたって *rph*クラスターを形成し、25 個の ORF を含むこと が示されている (Fig. 6)。

Fig. 6. Streptomyces griseoviridisの rph 遺伝子クラスター

一方、ピロール環を含有する二次代謝産物の生合成は、すべて RedM および RedW の相同タン パク質が関与するプロリンの酸化を伴うことが知られている¹³⁾。アミノ酸保存配列を利用した PCR による *redM*および *redW*相同遺伝子の探索において、*rphMと rphWがシングルコピーで* 検出されたことから、RP も *rph* 遺伝子クラスターによって生合成されると考えられる。遺伝子 の相同性と化合物の構造から、RP および PGR1 の生合成経路は Fig. 7 のように推定されている。 RP のアルキル側鎖を有するピロール環の生合成においては、イソブチリル CoA をスターターと してマロニル CoA の縮合反応が起こり、脂肪酸が合成される。続いて、polyketide synthase と 相同性を有する RphL の ACP ドメインに転移され、RphK による oxidoreductase 反応を受けて、 3 つ目のピロール環が生合成される。さらに、RphH によって 2 つのユニットが縮合し、最後に アルキル側鎖の環形成が起こると推定される。また、ピロール環のクロル化については、PGR1 のクロル化体が単離されなかったことから、RP と PGR1 の生合成経路が分岐してからクロル化 が起こると考えられる。

rph遺伝子のうち、21 個は S. coelicolorの red遺伝子と相同性を有していた (Fig. 8)。しかし、 本クラスター内には RP 生合成におけるフラン環形成に関わる遺伝子、クロル化遺伝子の候補が 見いだされていない (Table 2)。rphクラスター内には S. coelicolorの PG 生合成遺伝子と相同性 を示さない rphA1、rphA2、rphA3、および rphB が含まれているが、RphA1 および RphA2 は 生産物の排出に関与すると考えられる ABC トランスポーターと、RphA3 は転写制御因子と、 RphB は DNA 転写に関わるとされる RDD ドメインタンパク質とそれぞれ相同性を有している。 したがって、これらの遺伝子は RP や PGR1 の耐性遺伝子および制御遺伝子と考えられる。また、 これらの遺伝子を S. coelicolor中で発現させても代謝産物に変化は認められなかった。そのため、 これらの遺伝子が RP のフラン環形成やクロル化に関与する可能性は低いと考えられる。したが って、二次代謝産物の生合成遺伝子は通常クラスター化しているが、クラスター外に RP 生合成 遺伝子が存在する可能性も考えられる。

一方、rph遺伝子クラスター内には、UP の環化遺伝子 redGと相同性を示す rphG、rphG2、 rphG3、rphG4 が存在する。このうち、redG と最も高い相同性を有している rphG は、配置も redG に類似していることから、PGR1 前駆体の環化遺伝子である可能性が高いと考えられる。 RedG はそのアミノ酸配列から Rieske オキシゲナーゼ様酵素 ¹⁴⁾であると考えられ、脱水素反応に よるアルキル側鎖の環化を触媒すると推定されている。Rieske タンパク質は鉄ー硫黄クラスター を含有する非ヘム鉄酵素であり、酸化還元に関わる様々な反応に関与する可能性があるため、 rphG2、rphG3、rphG4 は環化以外の機能を持つ可能性もあると考えられる。

Fig. 7 Roseophilin および prodigiosin R1 の推定生合成経路

Fig. 8 *Streptomyces coelicolor* における *red* クラスター(上段)と *Streptomyces griseoviridis* における *rph* クラスター(下段)

<i>rph</i> cluster	Putative function	<i>red</i> cluster
В	RDD domain-containing protein (34%) $*_1$	_
Y	hypothetical protein	Y (55%)
W	L-prolyl-PCP dehydrogenase	W (69%)
Х	β-ketomyristoyl-ACP synthase	X (43%)
D	transcriptional regulator	D (61%)
A1	ABC-transporter (46%) $*_2$	_
A2	ABC-transporter (57%) $*2$	_
A3	transcriptional regulator (40%) $*2$	_
М	L-prolyl-AMP ligase	M (54%)
L	polyketide synthase	L (54%)
К	oxidoreductase	K (68%)
\mathbf{J}	thioesterase	J (58%)
G2	oxygensase	G (51%)
G3	oxygensase	G (39%)
G4	oxygensase	G (44%)
Ι	O methyltransferase	I (59%)
Н	phosphotransferase	H (59%)
G	oxygenase	G (57%)
Z	response regulator	Z (50%)
V	dehydrogenase	V (42%)
U	phosphopantetheinyl transferase	U (46%)
Т	hypothetical protein	T (63%)
Р	3-oxoacyl-ACP synthase	P (58%)
0	peptidyl carrier protein	O (75%)
Ν	aminotransferase	N (78%)

Table 2 rph 遺伝子クラスターと red 遺伝子クラスターの比較

*1 Nocardiopsis dassonvillei

*2 Mycobacterium ulcerans

数字はアミノ酸相同性を示す。

環状アルキル鎖をもつ PG 類としては、 CP の他に、 cycloprodigiosin¹⁵⁾、 ethylcyclononylprodigiosin¹⁶⁾、metacycloprodigiosin (MCP)¹⁷⁾、methylcyclodeclyprodigiosin¹⁸⁾、 methylcyclooctylprodigiosin¹⁹⁾、marineosin A および B²⁰⁾ などが報告されている。このうち、 metacycloprodigiosin、marineosin A および B はその生合成遺伝子クラスターが明らかとなって いる^{14,20)}。

*redG*と同様に prodigiosin 類のアルキル鎖の環化反応に関与する遺伝子として、以下の二つが 報告されている。一つは、MCP を生産する *S. longispororuber* ゲノム中に存在し、UP を MCP に変換する *mcpG* であり、もう一つは、marineosin A および B を生産する *Streptomyces* sp. CNQ-617 ゲノム中に存在し、23-hydroxyundecylprodiginine を環化し premarineosin A およ び B に変換する *marG* である。*mcpG* および *marG* は *redG* とそれぞれ 75%、64%の相同性を有 している ^{14,20}。

Fig. 9 環状アルキル鎖を持つ prodigiosin 類

また、*S. coelicolor* における *redP* 破壊株が、PGR1 と同様に側鎖が分枝型になった 10-methylundecylprodiginine および11-methyldodecylprodiginine (MDP) を生産することが報 告されている (Fig. 10)。RedP は脂肪酸生合成に関わる ketosynthase と相同性を有しており、 UP の側鎖構造である 2-undecylpyrrole の初期段階の生合成に関わっている。放線菌の一次代謝 において合成される脂肪酸の主成分は分枝型であることが知られており、*redP* 破壊株においては RedP に代わる一次代謝脂肪酸合成酵素によって脂肪酸生合成が行われ、側鎖が分枝型になった PG 類が生産されると考えられている。

Fig. 10 S. coelicolor redP破壊株が生産する prodigiosin 類

そこで、本研究では、RP の生合成に関してさらなる知見を加えることを目的として、まず第一 に、S. coelicolor 中での二次代謝遺伝子発現系を構築し、機能が未同定の rphG, rphG2, rphG3, rphG4を S. coelicolor 中で発現させることにより、これら生合成遺伝子の機能を解析した。第二 に、S. griseoviridis の培養抽出物から新たな RP 生合成中間体の探索を試みた。第三に、MDP を生産する S. coelicolor の redP 破壊株を構築し、これを利用して rphG, rphG2, rphG3, rphG4 の機能解析を試みた。第四に、ゲノム解析により、rph 遺伝子クラスター外から RP のクロル化 遺伝子を探索した。

第1章 Prodigiosin 環化遺伝子 rphGの同定

第1節 二次代謝遺伝子発現系の構築

Roseophilin (RP) の生合成研究を行うにあたり、生合成経路の大部分が同じである undecylprodiginine (UP) 生産菌 *Streptomyces coelicolor*を用いた異種発現は有効な手法である と考えられる。*Streptomyces* 属放線菌において効率よく二次代謝遺伝子を発現させるためには、 二次代謝遺伝子のプロモーターを利用するのが望ましい。そこで、hatomarubigin および RP の 生合成遺伝子を利用し、二次代謝遺伝子発現系の構築を試みた。

Streptomyces sp. 2238-SVT4 において、hrbA のプロモーターは hrbA~hrbX の約 24 kb の転 写に利用されている²¹⁾。一方、Streptomyces griseoviridisにおいて、rphDのプロモーターは rphD ~rphB の約 5.9 kb、rphM のプロモーターは rphM~rphG の約 21 kb の転写に利用されている (Fig. 1-1-1)。これらのプロモーターは、二次代謝遺伝子発現系の構築に利用できると考えた。そ こで、放線菌用プラスミドである pWHM3 に、hrbA、rphD または rphM のプロモーターを組み 込み、遺伝子発現用プラスミドを作製した。作製した各遺伝子発現用プラスミドのプロモーター 領域の下流に kanamycin (KM) 耐性遺伝子を挿入し、プロモーターが機能しているかどうかを 調べた。次いで、プロモーター領域の下流に prodigiosin (PG) 環化遺伝子を挿入することで、二 次代謝遺伝子が機能するかどうかを調べた。 hrbクラスター

Fig. 1-1-1 *hrb*クラスターおよび *rph*クラスターと利用したプロモーター 網掛け部分は各プロモーターが制御する転写領域を示す

1. Kanamycin 耐性遺伝子を用いた遺伝子発現系の評価

Fig. 1-1-2 に示すように、hrbA プロモーターとして hrbA 上流-124~-342 の 219 b、rphD プロモーターとして rphD 上流-7~-284 の 278 b、rphM プロモーターとして rphM 上流-7 ~-881の875bを用いた。このhrbAプロモーター、rphDプロモーターおよび rphMプロモー ターをそれぞれ放線菌用プラスミド pWHM3 に組み込み、遺伝子発現用プラスミド pWHMexA、 pWHMexD および pWHMexM を作製した。作製した各プラスミドのプロモーター領域の下流に KM 耐性遺伝子 aphIIを連結し、KM 耐性遺伝子発現プラスミド pWHMexA-KM、pWHMexD-KM、 pWHMexM-KM を構築した。これらをそれぞれ S. coelicolor M511 株および Streptomyces *lividans* TK23 に導入し、各濃度の KM を含む thiostrepton (10 µg/mL) 含有 R5 寒天培地で2 日間培養し、KM 存在下での増殖を確認することでプロモーターの活性を評価した。KM 耐性遺 伝子を用いた評価系において、いずれのプロモーターも KM 耐性遺伝子の発現を誘導したが、 rphMプロモーターは特に強力な活性を示した(Table 1-1-1)。作製した KM 耐性遺伝子発現プラ スミドで形質転換した S. coelicolor M511 に対する KM の有効濃度は、pWHM3 で形質転換した コントロールと比較し、hrbAプロモーターを用いた場合は約4倍、rphDプロモーターを用いた 場合は約8倍、rphMプロモーターを用いた場合は約32倍となった。同様に形質転換したS. lividans TK23 に対する KM の有効濃度は、コントロールと比較し、hrbA プロモーターを用いた 場合は約4倍、rphDプロモーターを用いた場合は約8倍、rphMプロモーターを用いた場合は約 32倍となった。

-342

					-124	
-50	GGGTCCGATC	GGACCCCGCT	ACCGGCGCGT	CAGAAGAGAT	TGGGAAAACG	⁷ ATG
-110	GTGACTGCCG	AATCGCTGGG	TGCCGACGCA	CCGAAGAAGC	CACTGCACAG	GAAAGACCAC
-170	CGAGTCGTCG	TCCGAAGAAT	ATTGA <u>TGTCA</u>	GGGTCCGGAG	<u>CTCTGTG</u> GCC	AATGCCCTCC
-230	AAGACAGGTG	TGATTTTCCT	GTCGAACTGG	ACCTGACTTT	GACGCTTCTT	CTCTTGATGT
-290	CCCCGTCGGG	TGTTCTGAGC	TCGCTCTGCA	TGAGCTCTGA	CGTTCGCCTG	ACTAAATCCG
	GG	ACGAGGAAAG	CTGGACTGCA	_CGTCTCGTCG	GCAGGCCCGG	TCCCCATCGT

rphDプロモーター領域

-284

					-7	
-53	CGTGCATATC	GACATACTCG	GTCCTGCTT <u>C</u>	GGTGACCATG	<u>GGCGGGG</u> CCC	GCC ⊽ATG
-113	CGCAGCACCG	CCTGAATCTC	CGGTAACCAT	TCACAAGCGA	TTCACGCATG	GGGGAAATGT
-173	GGATGAGAAT	CGCTCCGCGT	TCCCGCACCT	TTGACCGAAC	CGCGGACGAA	ATACCGGACA
-233	GTCCGTCGGG	CATATGACAG	GGACCCGTGC	GGCGTCCCGT	CAACCGACCG	TTCTCATCCC
	G	ACCATGTCCC	GCCTTTGGGC	<u>A</u> GAGATTTCA	CACGCGACGC	AGGGAACCGT

rphMプロモーター領域

-881

	GTTTTCCCAG	TCACGACGTT	GTAAAACGAC	GGCCAGTGAA	TTCGAGCTCG	GTACCCGGGG
-886	<u>ATCCT</u> CTAGC	ACCTGGTGAC	GCTCCGCAGC	AGGGTGCGGG	CGGCGGAACC	TCGCAACATC
-826	ACCCCGAAGA	GTGGCCGGGG	CGGCGCCGCA	GCAGGGCCGC	CGCCCGGCCG	GCGCCGGGCC
-766	CCCGGCCTCG	GACGATGCCC	CGGCGCTGAC	CGCCGCCTGA	CGAGTAGGCG	AGCGGTCAGC
-706	ACGAGGTCAG	TGCCCGGTCA	GCCCCCACAG	GCAGAGTTAC	GGCCGAAGCA	CTCTCGACGG
-646	AGGGATCGGG	GACGACCGTG	ACGACGCAGG	AGTCACTCAT	CCATGACCGG	ACCGGCCGTA
-586	CGGGCCGCCG	GCCGGGCGCG	GGTGCGGGTG	CCGCCCTCCG	CGCCGGTGCC	GCCCCGTGCG
-526	CCGCGGCCGT	TCTGGTGACA	CCCCGCGCCG	CCCGGCCCGC	ACCCGTCGGG	CCGTACTGCC
-466	CGGGGCCGGT	CGGAGCATGT	GCCGCCCGGC	ACGCCGGTGC	CGGTACCTAC	GCCGTCCGGC
-406	CCCCGGGCGG	CCACCGGGCC	CCGGGTGGCC	GCGGATCCGC	AGCCGGACGG	ACCTCCGGCC
-346	GGACACCGCG	CCACCGCCGC	CGTACACCGT	GCCCCTGGGG	GCGCCGCCCC	GGCCGGTGGG
-286	CCGGGGGCCGG	GCGCGGGGCCC	CGGAGCGCCG	GTGCGGGCGG	CGGGCTGACC	GGCCGGGCCG
-226	GCACGATCTG	CCCGCCCGCC	GGCAGCCCGC	GGGACGCGCT	CGCGCCCGTG	CGGACCTGTG
-166	CAGCGACCCG	GGACTGCCGG	GCCGGCCAGG	ACTGCTCCGG	CGCCCCTCGT	ACCGCTCGCA
-106	CCCCTGGCAG	CCCTGGCACC	CCTGACACTC	CTGACTTCCC	AGACACCCAT	GCCATCCGTG
-46	TCGTCCGCGC	CGTCCGGCGC	CC <u>GGTGACAC</u>	GCGGAGGGAC	$\texttt{ACGCGC}^{\bigtriangledown}\textbf{ATG}$	

-7

Fig. 1-1-2 利用したプロモーター領域の塩基配列 下線は増幅に用いたプライマー、網かけはσ因子認識配列、点線下線はプラスミドDNAを示す。

S. coelicolor	0	6.25	12.5	25	50	100	200	400 µg/ml (KM)
Control	+++	++	_	_	_	-	-	_
	+++	+++	_	_	_	-	-	_
	+++	+++	_	_	_	-	-	_
exA-KM-1	+++			+	±	-	-	_
-2	+++			±	_	-	-	_
-3	+++			+	±	-	-	_
exD-KM-1	+++			+++	+	_	-	_
-2	+++			+	±	±	-	_
-3	+++			+++	+	+	±	_
exM-KM-1	+++			+++	++	++	±	_
-2	+++			+++	+++	+++	+	±
-3	+++			+++	+++	+++	+	±
S. lividans	0	6.25	12.5	25	50	100	200	400 µg/ml (KM)
Control	+++	++	+	_	_	_	-	_
	+++	+++	+++	_	_	_	-	_
	+++	+++	+	_	_	-	-	_
exA-KM-1	+++			+++	+	-	-	_
-2	+++			+++	+	_	-	_
-3	+++			+++	++	_	-	_
exD-KM-1	+++			+++	+++	++	-	_
-2	+++			+++	+++	++	-	_
-3	+++			+++	+++	++	-	_
exM-KM-1	+++			+++	+++	+++	+++	+
-2	+++			+++	+++	+++	+++	+
-3	+++			+++	+++	+++	+++	+

Table 1-1-1 KM 存在下における形質転換株の増殖

2. redGを用いた二次代謝遺伝子発現系の評価

S. coelicolor M511 株は UP およびその環化体 butyl-meta-cycloheptylprodiginine (CP)を生産するが、UP 環化遺伝子である redGの破壊株は UP のみを生産する。hrbA プロモーター、rphD プロモーター、rphMプロモーターをそれぞれ放線菌用プラスミド pWHM3 に組み込み、各プロモーター領域の下流に UP 環化遺伝子 redG を連結することにより、二次代謝遺伝子発現プラスミド pWHMexA-redG、pWHMexD-redG および pWHMexM-redG を構築した。これらをそれぞれ S. coelicolor M511 の redG破壊株に導入し、各菌の培養菌体抽出物中の PG 類を HPLC で分析した。その結果、pWHMexM-redG による形質転換株で、野生株と同程度の CP 生産性回復が認められた。一方、pWHMexA-redG および pWHMexD-redG による形質転換株は CP を生産しなかった。したがって、rphMプロモーターを組み込んだ pWHMexM は、二次代謝遺伝子発現系として利用できることが示された。

Fig. 1-1-3 redG遺伝子を用いた二次代謝遺伝子発現系評価

1. Prodigiosin 類の分析条件検討

第1節において構築した二次代謝遺伝子発現系を用いて *rphG、rphG2、rphG3、rphG4* 遺伝 子の機能解析を行うにあたり、まずは *rph* 遺伝子によって生合成される PG 類の HPLC 分析条件 の検討を行った。その結果、Fig. 1-2-1 に示すように、第1節で採用した YMC-Pack R-ODS-7(86% MeOH-3% MeCN-0.15% TFA)の条件と比較して、Waters XBridge C₁₈(90% MeOH-0.2% Et₃N) を用いた条件の方が、UP と CP に関して優れた分離を示した。そこで、以降の PG 系代謝産物の 分析は後者の条件で行うこととした。

Fig. 1-2-1 PG 系代謝産物の HPLC 分析

2. rphG および rphG2~rphG4 導入株の代謝産物解析

S. coelicolor M511 の *redG* 破壊株 (A*redG*株) を、*rphG*を発現させる pWHMexM·rphG ま たは *rphG2~rphG4*を発現させる pWHMexM·rphG234 で形質転換し、培養菌体抽出物中の PG 類を HPLC で分析した。その結果、Fig. 1-2-2 に示すように、pWHMexM·rphG234 を導入した 株では UP 以外の PG 生産は認められず、pWHMexM·rphG を導入した株においてのみ、CP に 近い保持時間に PG 系代謝産物が確認された。しかし、この代謝産物が CP であるかどうか確認 するには生産量が少なすぎるため、生産条件の最適化が必要であることが示された。

Fig. 1-2-2 rph 遺伝子を導入した Streptomyces coelicolor M511ΔredG株が生産する prodigiosin 類の HPLC 分析 (XBridge C₁₈, 90% MeOH-0.2% Et₃N)

3. rphG導入株における代謝産物生産条件の検討

RphG は PG 環化酵素であると考えられる。そこで *rphG*を含む *rph*遺伝子の機能解析を行う にあたり、UP 環化酵素である RedG が効率的に機能し、かつ PG 全体の生産量が高い条件を探 索することとした。*S. coelicolor* M511Δ*redG* 株を *redG*を含む pWHMexM-redG で形質転換し、 各条件で培養した菌体抽出物中の PG 類を HPLC で分析した。その結果、R5 寒天培地上で培養 した時に UP の環化効率が顕著に上昇することが明らかとなった。従来の培養条件である R5 液 体培地で 6 日間培養した時の PG 生産量は 60 μ g/ml であり、このうち CP は 11%であったのに対 し、R5 寒天培地で 7 日間培養した時の PG 生産量は 110 μ g/ml であり、このうち CP は 46%であ った。そこで、この培養条件を以降の検討に用いた。

Fig. 1-2-3 *redG*導入株における prodigiosin 環化条件の最適化 (XBridge C₁₈, 90% MeOH-0.2% Et₃N)

4. rphGおよび rphG2~rphG4 導入株の寒天培地上における代謝産物解析

環化 PG 高生産条件で各形質転換株を培養したところ、*rphG* 導入株で CP に近い保持時間に PG 系代謝産物が確認され、生産量は PG 全体に対して約 10%であった。一方、*rphG2~rphG4* を導入した株では新たな代謝産物は確認されなかった。

Fig. 1-2-4 *rphG*および *rphG2~rphG4*導入株の寒天培地上における代謝産物解析 (XBridge C₁₈, 90% MeOH-0.2% Et₃N)

5. rphG導入株における PG 代謝産物分析条件の最適化

*rphG*導入株が生産する PG 代謝産物が CP であるかどうかを確認するため、CP のピークと新 たな PG 代謝産物のピークが分離する HPLC 条件を検討した。その結果、PEGASIL ODS SP-100 (90% MeOH-5 mM Na₂H citrate)を用いた条件において、*rphG*導入株による PG 代謝産物の ピークが 2 つに分離した。そこで、2 つの化合物と CP との混合物を同様の系で分析したところ、 3 つのピークに分離した。このため、これらは CP とは別の化合物であることが示された。

Fig. 1-2-5 rphG遺伝子を導入した S. coelicolor M511∆redG株の生産物の HPLC 分析 (PEGASIL ODS SP-100, 90% MeOH-5 mM Na₂H citrate)

第3節 rphG 導入株が生産する PG 代謝産物 CP1 および CP2 の単離

*rphG*を導入した *S. coelicolor* M511 Δ *redG*株において、CP 以外の PG 関連代謝産物の生産が 確認された。この化合物が PG 類の環化体であるかどうか確認するために、本化合物の単離を試 みた。

rphG導入株をR5 寒天培地上、27°Cにて7日間培養した。培養した寒天培地(6L)を砕いて アセトンで抽出し、アセトンを減圧留去した濃縮液を酢酸エチルで抽出した。抽出液を濃縮後、 ヘキサン-90%メタノールで分配した。90%メタノール画分をシリカゲルカラムに供し、ヘキサ ンークロロホルム(2:1)で洗浄した後、クロロホルムで溶出した。溶出液を濃縮後、クロロホ ルムーメタノール-29% アンモニア水(200:20:1)を展開溶媒としてシリカゲル TLC を行っ た。Rf 値=0.86 および 0.84 のバンドを TLC からかき取り、クロロホルムーメタノール (10:1) で溶出した。分離が不十分なフラクションについては、再度同じ溶媒系でシリカゲル TLC を行う ことにより両者を分離した。Rf 値=0.86 のフラクションを濃縮後、酢酸エチルに溶解し、0.01 M NaOH 溶液で1回、水で2回洗浄した。酢酸エチル溶液を無水硫酸ナトリウムで乾燥後、濃縮液 に少量のメタノールとPG と等モル量の塩酸を加えて、濃縮することにより、CP1の塩酸塩 9.9 mg を得た。Rf 値=0.84 のフラクションは、さらに 90% メタノール - 5 mM クエン酸水素二ナト リウムを展開溶媒とする HPLC (PEGASIL ODS SP-100)により精製した(流速 10 ml/min, 保 持時間 25 分)。得られたフラクションを濃縮後、酢酸エチルで抽出し、同様の洗浄と塩酸添加 を行うことにより、CP2 の塩酸塩 3.6 mg を得た (Fig. 1-3-1)

```
Solid culture (6 L)
    extracted with acetone
    concentrated
    extracted with EtOAc
    partitioned between hexane and 90% MeOH
90% MeOH layer
Silica gel column
    washed with hexane-CHCl_3(2:1)
    eluted with CHCl<sub>3</sub>
Silica gel TLC
    CHCl<sub>3</sub>-MeOH-29% NH<sub>4</sub>OH (200 : 20 : 1)
                                                   Rf = 0.84
Rf = 0.86
    dissolved in EtOAc
    washed with 0.01 M NaOH and H_2O
                                                   ODS-HPLC
    concentrated
                                                        90% MeOH-5 mM Na<sub>2</sub>H citrate
    equivalent HCl was added
                                                        concentrated
                                                        extracted with EtOAc
    concentrated
CP1 (9.9 mg)
                                                        washed with 0.01 M NaOH and H_2O
                                                        concentrated
                                                        equivalent HCl was added
                                                        concentrated
                                                   CP2 (3.6 mg)
```

Fig. 1-3-1 rphG 導入株が生産する CP1 および CP2 の単離

Fig. 1-4-1 に CP1 の FAB マススペクトルを示す。高分解能 FAB マススペクトルにおいて、m/z 392.2703 の分子イオンピークが観測され、この値は C₂₅H₃₄N₃O の (M+H)+に帰属できる(計算値 392.2702)。したがって、本化合物の分子式は C₂₅H₃₃N₃O と決定した。

Fig. 1-4-1 CP1 の FAB マススペクトル

この分子式は CP1 が UP の環化体であることを示しており、RphG が環化酵素として機能する ことが明らかになった。 CP1 の CDCl₃ 中における ¹H NMR スペクトルを Fig. 1-4-2 に、¹³C NMR スペクトルを Fig. 1-4-3 に示す。

Fig. 1-4-2 CP1 の ¹H NMR スペクトル (CDCl₃中)

Fig. 1-4-3 CP1 の ¹³C NMR スペクトル (CDCl₃中)

これらのスペクトルを既知の環化型 PG のスペクトルと比較した結果、Fig. 1-4-4 に示す metacycloprodigiosin (MCP) のスペクトル ¹⁷⁾と一致した。したがって、CP1 は MCP であると 同定した。

Fig. 1-4-4 Metacycloprodigiosin (CP1) の構造

CP2 の理化学的性質を Table 1-5-1 に示す。

CP2の FAB マススペクトル (Fig. 1-5-1) において、*m/z* 392 に (M+H)+ ピークが観測され、 高分解能 FAB マススペクトルにより、CP2の分子式を C₂₅H₃₃N₃O と決定した。また、Fig. 1-5-2 に CP2 の紫外可視吸収スペクトル、Fig. 1-5-3 に赤外吸収スペクトルを示す。

Appearance	Red amorphous powder
Melting point (°C)	73
HR FAB-MS (m/z)	
found	392.2702 (M+H)+
calcd.	392.2702
Molecular formula	$\mathrm{C}_{25}\mathrm{H}_{33}\mathrm{N}_{3}\mathrm{O}$
UV λ_{max} nm (ϵ)	535 (62,700) in MeOH
	535 (82,700) in 0.01 M HCl - MeOH
	473 (32,700) in 0.01 M NaOH - MeOH
IR v _{max} (KBr) cm ⁻¹	3150, 3100, 1600, 1260

Table 1-5-1 CP2 の理化学的性質

Fig. 1-5-1 CP2 の FAB マススペクトル

Fig. 1-5-2 CP2 の紫外可視吸収スペクトル

Fig. 1-5-3 CP2 の赤外吸収スペクトル (ATR 法)
1. CP2 の¹H NMR スペクトル解析

Fig. 1-6-1 に CDCl₃ 中における CP2 の ¹H NMR スペクトルを示す。

このスペクトルにおいて、12.68 ppm、12.62 ppm、12.58 ppm に 3 個の交換性プロトン、7.20 ppm、7.07 ppm、6.89 ppm、6.32 ppm、6.31 ppm、6.08 ppm に 6 個の芳香族プロトン、4.01 ppm にメトキシプロトン、3.00 ppm にメチンプロトン、0.93 ppm にメチルプロトン、3.28 ppm および 2.53 ppm に 1 組のメチレンプロトンがそれぞれ観測された。また、0.22 ppm、-0.02 ppm という高磁場領域にプロトンシグナルが認められた。これら以外に 2.0~0.9 ppm の領域に 14 個分のプロトンが観測された。

Fig. 1-6-1 CP2 の¹H NMR スペクトル (CDCl₃中)

2. CP2 の ¹³C NMR スペクトル解析

Fig. 1-6-2 に CDCl₃中における CP2 の ¹³C NMR スペクトルを示す。

このスペクトルにおいて、6個の芳香族メチン炭素、7個の芳香族4級炭素、1個のメトキシ炭素、1個の脂肪族メチル炭素、9個の脂肪族メチレン炭素、1個の脂肪族メチン炭素のシグナルが 観測された。

Fig. 1-6-2 CP2 の ¹³C NMR スペクトル (CDCl₃中)

3. CP2 の HMQC スペクトル解析

Fig. 1-6-3 に CDCl₃ 中における CP2 の HMQC スペクトルを示す。このスペクトルによって明 らかになった ¹³C-¹H 相関を Table 1-6-1 に示す。

Fig. 1-6-3 CP2 の HMQC スペクトル (CDCl₃中)

No.	δ_{C}	$\delta_{\rm H} (J = Hz)$	No.	δ_{C}	$\delta_{\rm H} (J = Hz)$
1	126.7	7.20 td (2.5, 1.0)	15	28.6	1.98 m, 1.36 m
2	111.6	6.32 m	16-19	29.7	-0.22~1.58 8H m
3	116.6	6.89 ddd (4.0, 2.5, 1.0)		27.9	
4	122.3			27.0	
5	147.2			24.9	
6	92.7	6.08 d (2.0)	20	36.7	1.83 m, 1.13 m
7	165.5		21	36.5	3.00 m
8	120.3		22	34.7	1.70 m, 1.58 m
9	112.7	7.07 s	23	21.1	1.35 m
10	124.7		24	14.3	0.93 3H t (7.5)
11	149.0		25	58.6	4.01 3H s
12	115.7	6.31 m	1-NH		12.58 br
13	153.3		5-NH		12.68 br
14	29.0	3.28 dt (13.0, 4.0)	10-NH		12.62 br
		2.53 td (13.0, 4.5)			

Table 1-6-1 CP2 の ¹³C および ¹H-NMR データ (CDCl₃中)

4. CP2 の部分構造解析

COSY スペクトルおよび HMBC スペクトルの解析により Fig. 1-6-4、Fig. 1-6-5、Fig. 1-6-6 に 示す部分構造 I~III の存在が明らかになった。

まず、126.7 ppm、122.3 ppm、116.6 ppm、111.6 ppmの4個の芳香族炭素について述べる。 Fig. 1-6-4 に示すように、COSY スペクトルの解析により 12.58 ppmの交換性プロトンと 7.20 ppm、6.32 ppm、6.89 ppmの芳香族プロトンのつながりが判明した。一方、7.20 ppmのプロト ンから 122.3 ppm、116.6 ppm、111.6 ppmの炭素への遠距離スピン結合が観測された。また、 6.89 ppmの芳香族プロトンから、126.7 ppm、122.3 ppmの炭素への遠距離スピン結合が観測さ れた。さらに、6.32 ppmの芳香族プロトンから 126.7 ppm、122.3 ppmの炭素への遠距離スピン 結合が観測されたことから、4 つの芳香族炭素(126.7 ppm、122.3 ppm、116.6 ppm、111.6 ppm) は Fig. 1-6-4 に示すようなピロール環を形成することが示された(部分構造 I)。

Fig. 1-6-4 CP2 の部分構造 I (太線は COSY、矢印は HMBC、数字は ¹³C および ¹H (斜字)の化学シフト値を示す)

次に、165.5 ppm、147.2 ppm、120.3 ppm、92.7 ppm の 4 個の芳香族炭素について述べる。 Fig. 1-6-5 に示すように、92.7 ppm の芳香族炭素に結合した 6.08 ppm のプロトンから 147.2 ppm と 120.3 ppm の炭素への遠距離スピン結合が観測された。また、12.68 ppm の交換性プロトンか ら 165.5 ppm、120.3 ppm の炭素への遠距離スピン結合が観測された。一方、4.01 ppm のメトキ シプロトンから 165.5 ppm の炭素へ遠距離スピン結合が観測されたことより、165.5 ppm の炭素 にメトキシ基が結合していることが明らかになった。さらに、92.7 ppm という高磁場にシフトし た芳香族炭素より、メトキシ基の結合した 165.5 ppm の炭素と 92.7 ppm の炭素は隣接している ことが示された。以上の結果より、4 つの芳香族炭素(165.5、147.2、120.3、92.7 ppm) とメト キシ炭素(58.6 ppm)は Fig. 1-6-5 に示すような 3・メトキシピロールを構成することが明らかに なった(部分構造 II)。

Fig. 1-6-5 CP2 の部分構造 II (矢印は HMBC、数字は ¹³C および ¹H (斜字)の化学シフト値を示す)

続いて、153.3 ppm、149.0nppm、124.7 ppm、115.7 ppm、112.7 ppmの芳香族炭素について 述べる。Fig. 1-6-6 に示すように 115.7 ppm の芳香族炭素に結合した 6.31 ppm のプロトンから 153.3 ppm、149.0 ppm、124.7 ppm の炭素に遠距離スピン結合が観測され、6.31 ppm のプロト ンと 12.62 ppm の交換性プロトンとの間にスピン結合が観測されたことから、4 個の芳香族炭素 (153.3 ppm、149.0nppm、124.7 ppm、115.7 ppm) はピロール環を形成することが示された。 また、112.7 ppm の炭素に結合した 7.07 ppm のプロトンから 149.0 ppm の炭素へ遠距離スピン 結合が観測され、112.7 ppm の炭素がピロール環に結合していることが明らかになった(部分構 造 III)。

III

Fig. 1-6-6 CP2 の部分構造 III (矢印は HMBC、数字は ¹³C および ¹H (斜字)の化学シフト値を示す)

次にアルキル鎖の構造について述べる。Fig. 1-6-7 に示すように、COSY スペクトルの解析に より、14.3 ppm、21.1 ppm、34.7 ppm、36.5 ppm、36.7 ppm の炭素のつながり、および 29.0 ppm と 28.6 ppm の炭素のつながりが判明した。また、1.58 ppm のプロトンから 149.0 ppm、36.5 ppm の炭素に遠距離スピン結合が観測され、36.5 ppm のメチン炭素と 149.0 ppm の芳香族炭素の結 合が判明した。一方、29.0 ppm のメチレン炭素はプロトンの化学シフト(3.28 ppm、2.53 ppm) から、芳香族炭素に結合していると考えられる。CP2 の紫外可視吸収スペクトル(第5節)が undecylprodiginine と同一であり、ピロール環の結合様式が同じであることを考慮すると、アル キル鎖の結合位置は 153.3 ppm の芳香族 4 級炭素に帰属できる。最後に残る 4 個の脂肪族メチレ ン炭素を連結させることにより、CP2 のアルキル鎖の構造を Fig. 1-6-7 に示すように決定した。 このアルキル鎖構造と部分構造 III を合わせて部分構造 IV が明らかになった。

IV

Fig. 1-6-7 CP2 の部分構造 IV (矢印は HMBC、数字は ¹³C および ¹H (斜字)の化学シフト値を示す)

部分構造 II と部分構造 IV のつながりは、Fig. 1-6-8 に示す HMBC 相関により明らかになった。 すなわち、部分構造 IV の 112.7 ppm の炭素に結合した 7.07 ppm のプロトンから部分構造 II の 165.5 ppm の炭素に遠距離スピン結合が観測されたことから、部分構造 II の 120.3 ppm の 4 級 炭素と部分構造 IV の 112.7 ppm の炭素が結合していることが判明した。したがって、残された 部分構造 I における 122.3 ppm の芳香族 4 級炭素は、部分構造 II における 147.2 ppm の芳香族 4 級炭素と直接結合していることが示された (Fig. 1-6-8)。

Fig. 1-6-8 CP2 の部分構造のつながり (矢印は HMBC、数字は¹³C および¹H (斜字)の化学シフト値を示す)

以上の解析により、CP2の構造を Fig. 1-6-9 に示すように決定し、本化合物を propyl-*meta*-cyclooctylprodiginine (PCP) と命名した。

Fig. 1-6-9 Propyl-meta-cyclooctylprodiginine (CP2) の構造

第7節 Undecylprodiginine とその環化体の生物活性

Prodigiosin 類のうち、undecylprodiginine (UP) とその環化体 CP、MCP、PCP の HeLa ヒト 子宮がん細胞、HT1080 ヒト線維肉腫細胞に対する細胞障害作用を MTT アッセイにより測定し た。その結果、UP、CP、MCP、PCP は IC₅₀ 値 0.89~4.2 μM で細胞障害活性を示し、このうち PCP が HeLa 細胞および HT1080 細胞のいずれに対しても最も強い作用を示したが、大きな活性 差は認められなかった。

	IC ₅₀	(μM)
Compound	HeLa	HT1080
UP	3.5	4.2
CP	3.2	3.9
MCP	1.1	3.7
PCP	0.89	3.5

Table 1-7-1 Undecylprodiginine とその環化体の腫瘍細胞障害活性

第8節 考察

S. coelicolorにおいて redG遺伝子産物はアルキル側鎖の環化を触媒し、UP から CP を生合成 すると報告されている 9。そこで、redG破壊株を作製し、CP 非生産となった redG破壊株に rph 遺伝子を導入したところ、UP、CP 以外の PG 類を生産する形質転換体が得られた。したがって、 red 遺伝子破壊株に rph 遺伝子を導入し、その代謝産物を解析することにより RP 生合成遺伝子 の機能を解析できると考えられ、RP 生合成研究に有用な手法を確立することができた。

*redG*と相同性を有する *rphG、rphG2、rphG3、rphG4*の4つの遺伝子のうち、*rphG*を導入 した *redG* 破壊株のみが新たな代謝産物を生産し、これが UP の環化体であることが示された。 したがって、*rphG* が PG 環化遺伝子であることが明らかになった。

*rphG*を導入した *redG* 破壊株は新たに 2 つの PG を生産したが、そのうち主成分は metacycloprodigiosin (MCP) と同定された。MCP は UP のアルキル側鎖が PGR1 と同じ 12 員 環構造をとっており、ピロール環上の結合位置も同じである。したがって、*S. griseoviridis* にお いて、RP や PGR1 の生合成前駆体と考えられる 11-methyldodecylprodiginine (MDP) が *rphG* により環化し、PGR1 が生成する可能性が示唆された。

Fig. 1-8-1 RphG による推定環化反応

*rphG*を導入した *redG*破壊株が生産する 2 つの PG のうち、副成分は新規化合物である PCP と同定された²²⁾。2 つの環化体を生成する PG 環化酵素は知られていないことから、*rphG*はユニ ークな PG 環化遺伝子として注目されるだけでなく、2 箇所で架橋した RPの生合成における *rphG* の役割にも興味が持たれる。

HeLa ヒト子宮頸がん細胞および HT1080 ヒト線維肉腫細胞を用いた細胞障害作用測定におい て、試験した PG類のうちで PCP に最も強い作用が認められ、HeLa 細胞に対して IC₅₀値 0.89 μ M、 HT1080 細胞に対して 3.5 μ M で細胞障害活性を示した。一方、実際のがん治療に用いられている 抗腫瘍性抗生物質 doxorubicin は HeLa 細胞に対して IC₅₀値 0.19 μ M、HT1080 細胞に対して IC₅₀ 値 4.0 μ M で細胞障害活性を示すことが報告されている ^{23,24}。したがって、PCP は既存薬とほぼ 同等の細胞障害活性を持つことが示された。

Fig. 1-8-2 UP の環化体

ー方、Streptomyces longispororuber において UP を MCP に環化すると報告されている $mcpG^{44}$ と rphGを比較すると、そのアミノ酸相同性は 54%であった。これは redGと rphGの相 同性である 57%と比較してむしろ低い。したがって、UP 環化反応の位置選択性はタンパク質全 体ではなく、部分的な構造に依存していると考えられる。RP は PGR1 や MCP と異なり、2 箇所 で架橋した環構造を有している。しかも、ピロール環を含む環構造は PGR1 や MCP の 12 員環よ り大きく、13 員環となっている (Fig. 1-8-3)。

Fig. 1-8-3 RP と PGR1 の構造

このような環構造を持つ PG 類は、他の菌からは見いだされていない。したがって、4 つの環 化候補遺伝子を有する *S. griseoviridis* において、*rphG2*~*rphG4* が 2 箇所での架橋反応に関与す る可能性も考えられる。

*rphG2、rphG3、rphG4*は Rieske オキシゲナーゼ様遺伝子と相同性を有しており¹⁴、この一 群の酵素はオキシゲナーゼ反応だけでなく、酸化還元に関わる様々な反応に関与している。した がって、*rphG2~rphG4*がフラン環形成やクロル化に関わる可能性も残されている。

一方、*rphG2~rphG4*は CP 環化遺伝子 *redG*と相同性を示すが、*rphG2~rphG4*を導入した *redG*破壊株からは環化体が見いだせなかった。*rphG2~rphG4*を導入した *redG*破壊株が新たな UP 代謝産物を生産しなかった理由については、*S. griseoviridis* において MDP が RP や PGR1 の生合成前駆体と考えられているのに対し、本実験系では UP を基質とする反応を検出しており、 UP を基質として認識できなかった可能性が考えられる。そこで、第3章では、MDP を生産する *S. coelicolor*の*redP*破壊株を作製し、これを利用して環化候補遺伝子の機能解析を試みることと した。

第2章 Roseophilin 生合成中間体の探索

第1節 Roseophilin 生合成中間体の探索

序論で述べたように、roseophilin (RP) 生合成に関与する rph 遺伝子クラスター中には RP の 特徴であるフラン環形成やクロル化に関わる遺伝子は見いだされていない。また、第1章で述べ たように、RP において 2 箇所で架橋したアルキル鎖を形成する遺伝子も同定されていない。一 方、RP 生産菌から、RP と prodigiosin R1 (PGR1) 以外に dechlororoseophilin (DRP) が単離さ れているが、他の prodigiosin (PG) 関連化合物は見いだされていない。そこで、RP 生合成に新 たな知見を加えることを目的として、未知 RP 生合成中間体の探索を試みた。RP 生合成中間体を 探索するにあたり、まず、培養時間と通期撹拌条件が生産物に与える影響を調べた。RP は培養 2 日目から生産が認められ、6 日目に最大となることから、RP 生産菌である *Streptomyces* griseoviridis 2464-S5 株を、通期撹拌条件を変えて 2~6 日間培養し、PG 類に特徴的な 530 nm の可視吸収を示す化合物を探索した。まず、Table 2-1-1 に示す前培養培地 7 ml を試験管に分注、 滅菌後、S. griseoviridis を接種し、27°C にて 60 時間振盪培養したものを種母とした。次に、Table 2-1・2 に示す生産培地 100 ml を 500 ml 三角フラスコまたはバッフル付き三角フラスコに分注、 滅菌したものに上記種母を 2 ml ずつ添加し、27°C にて 2~6 日間回転培養(150 rpm)した。

Table 2-1-1 前培養培地

Glycerol	1.0%
Bacto Soytone	1.0%
Molasses	1.0%
pH 7.2	

Table 2-1-2 本培養培地

Glycerol	4.0%
Soybean meal	1.5%
Molasses	1.0%
$CaCO_3$	0.4%
pH 6.8	

200 ml の各培養物を遠心分離し、得られた菌体をアセトン抽出後、酢酸エチルで抽出し、代謝 産物を HPLC 分析した。Fig. 2-1-1 に通常の三角フラスコで 6 日間培養した際のクロマトグラム を示す。その結果、RP、DRP、PGR1 のピークに加えて生合成中間体と考えられる 11-methyldodecylprodiginine (MDP)のピークが検出された。しかし、培養日数や通期撹拌条件を変化させても、これら以外のピークはほとんど検出されず、それぞれの PG 類の割合もほぼ変化しなかった。一方、DRP に由来すると考えられるピークは、単離された DRP から予測されるピーク面積よりはるかに大きく、このフラクションに未知の PG 類が含まれている可能性が示唆された。そこで、RP の生産量が最大となる6日間培養の培養物を用いて未知の生合成中間体の単離を試みた。

Fig. 2-1-1 *Streptomyces griseoviridis* 2464·S5 株が生産する prodigiosin 類の HPLC 分析 (PEGASIL ODS SP-100, 90% MeOH-5 mM Na₂H citrate)

RP 生合成中間体候補物質の単離は Fig. 2-2-1 に示すように行った。培養液(2 L)を遠心分離 して得られた菌体をアセトンで抽出し、アセトンを減圧留去後、濃縮液を酢酸エチルで抽出した。 抽出液を濃縮後、ヘキサン-90%メタノールで分配した。90%メタノール画分を濃縮後、ヘキサ ンークロロホルム (2:1) に溶解し、シリカゲルカラム (40 mL) に供した。カラムをヘキサンー クロロホルム (2:1) で洗浄した後、ヘキサンークロロホルム (1:1)、クロロホルム、クロロホ ルム-メタノール (100:1) で段階溶出した。これらの分画を HPLC で分析したところ、ヘキサ ンークロロホルム (1:1) 分画およびクロロホルム-メタノール (100:1) 分画において、DRP と同じ保持時間を示す未知PGが検出された。そこで、これらをそれぞれ prodigiosin R2 (PGR2)、 prodigiosin R3 (PGR3)と命名した。得られたヘキサンークロロホルム(1:1)分画およびクロロ ホルムーメタノール (100:1) 分画を濃縮後、それぞれ、クロロホルムーメタノール-29%アン モニア水 (200:20:1) を展開溶媒としてシリカゲル TLC を行った。前者は Rf 値 = 0.84、後者 は Rf 値 = 0.71 のバンドを TLC からかき取り、クロロホルム-メタノール (10:1) で溶出した。 溶出液を濃縮後、酢酸エチルに溶解し、これを 0.1 Mの NaOH 溶液で洗浄後、水で二回洗浄した。 酢酸エチル溶液を無水硫酸ナトリウムで乾燥後、濃縮した。これを少量のメタノールに溶解し、 PGと等モル量の塩酸を加えた後、濃縮することにより、PGR2 塩酸塩を 5.6 mg、PGR3 塩酸塩 を 4.2 mg 得た。

```
Culture broth (2 L)
    centrifuged
Mycelium
    extracted with acetone
    concentrated
    extracted with EtOAc
    partitioned between hexane and 90% MeOH
90% MeOH layer
Silica gel column
    washed with hexane-CHCl<sub>3</sub> (2:1)
    hexane-CHCl<sub>3</sub>(1:1)
                                                         CHCl<sub>3</sub>-MeOH (100 : 1)
Silica gel TLC
                                                    Silica gel TLC
    CHCl<sub>3</sub>-MeOH-29% NH<sub>4</sub>OH (200 : 20 : 1)
                                                         CHCl<sub>3</sub>-MeOH-29% NH<sub>4</sub>OH (200 : 20 :
1)
                                                    Rf = 0.71
Rf = 0.84
                                                         dissolved in EtOAc
    dissolved in EtOAc
    washed with 0.01 M NaOH and H<sub>2</sub>O
                                                         washed with 0.01 M NaOH and H_2O
    concentrated
                                                         concentrated
    equivalent HCl was added
                                                         equivalent HCl was added
    concentrated
                                                         concentrated
PGR2 (5.6 mg)
                                                    PGR3 (4.2 mg)
```

Fig. 2-2-1 Roseophilin 生合成中間体候補物質の単離

第3節 Prodigiosin R2の理化学的性質

PGR2 の理化学的性質を Table 2-3-1 に示す。

PGR2の FAB マススペクトル (Fig. 2-3-1) において、m/z 418 に (M+H)+ ピークが観測され、 高分解能 FAB マススペクトルにより、PGR2の分子式を C₂₇H₃₅N₃O と決定した。また、Fig. 2-3-2 に PGR2の紫外可視吸収スペクトル、Fig. 2-3-3 に赤外吸収スペクトルを示す。

_		
	Appearance	Red amorphous powder
	Melting point (°C)	$65 \sim 68$
	HR FAB-MS (m/z)	
	found	418.2856 (M+H)+
	calcd.	418.2858
	Molecular formula	$C_{27}H_{35}N_{3}O$
	UV $\lambda_{max} nm$ (ϵ)	271 (4,000), 293 (4,700), 342 (4,100), 513 (80,300) in MeOH
		293 (4,800), 342 (4,400), 513 (82,800) in 0.01 M HCl - MeOH
		459 (29,100) in 0.01 M NaOH - MeOH
	IR v_{max} (KBr) cm ⁻¹	3140, 2930, 1580, 1320

Table 2-3-1 Prodigiosin R2 の理化学的性質

Fig. 2-3-1 Prodigiosin R2 の FAB マススペクトル

Fig. 2-3-2 Prodigiosin R2 の紫外可視吸収スペクトル

Fig. 2-3-3 Prodigiosin R2 の赤外吸収スペクトル (ATR 法)

第4節 Prodigiosin R2 の構造決定

1. Prodigiosin R2 の¹H NMR スペクトル解析

Fig. 2-4-1 に CDCl₃中における PGR2 の ¹H NMR スペクトルを示す。

このスペクトルにおいて、13.19 ppm、12.60 ppm、11.99 ppm に 3 個の交換性プロトン、7.15 ppm、6.83 ppm、6.29 ppm、6.15 ppm、6.08 ppm に 5 個の芳香族メチンプロトン、4.01 ppm にメトキシプロトン、3.96 ppm、2.61 ppm に 2 個の脂肪族メチンプロトン、0.99 ppm、0.77 ppm に 2 組のメチルプロトン、2.92 ppm および 2.88 ppm に 1 組のメチレンプロトンがそれぞれ確認 された。これら以外に、2.0 ppm~0.4 ppm の領域に 15 個分のプロトンが観測された。

Fig. 2-4-1 Prodigiosin R2 の ¹H NMR スペクトル (CDCl₃中)

2. Prodigiosin R2 の ¹³C NMR スペクトル解析

Fig. 2-4-2 に CDCl₃中における PGR2 の ¹³C NMR スペクトルを示す。

このスペクトルにおいて、3個の芳香族メチン炭素、8個の芳香族4級炭素、1個のメトキシ炭素、2個の脂肪族メチル炭素、8個の脂肪族メチレン炭素、3個の脂肪族メチン炭素が観測された。

Fig. 2-4-2 Prodigiosin R2 の ¹³C NMR スペクトル (CDCl₃中)

3. Prodigiosin R2 の HMQC スペクトル解析

Fig. 2-4-3 に CDCl₃ 中における PGR2 の HMQC スペクトルを示す。このスペクトルによって 明らかになった ¹³C⁻¹H 相関を Table 2-4-1 に示す。

Fig. 2-6-3 Prodigiosin R2 の HMQC スペクトル (CDCl₃中)

	No.	$\delta_{\rm C}$ $\delta_{\rm H} (J = Hz)$	No.	δ_{C}	$\delta_{\mathrm{H}} (J = H_Z)$
1	125.6	7.15 dr s	16	25.3	1.35 m, 1.12 m
2	110.9	6.29 m	17	28.2	0.96 m, 0.41 m
3	115.2	6.83 d (2.5)	18	27.1	0.95 m, 0.78 m
4	122.1		19	27.7	0.75 m, 0.41 m
5	144.8		20	24.6	0.98 m
6	93.9	6.15 d (2.5)	21	34.7	1.98 m, 1.78 m
7	164.5		22	56.0	3.96 m
8	116.8		23	51.3	2.61 d (8.0)
9	146.9		24	33.1	1.78 m
10	133.9		25	21.4	0.99 3H d (8.0)
11	156.7		26	19.5	0.77 3H d (8.0)
12	108.6	6.08 s	27	58.8	4.01 3H s
13	157.6		1-NH		12.60 br s
14	28.6	2.92 m, 2.88 m	5-NH		11.99 br s
15	28.1	2.01 m, 1.31 m	10-NH		13.19 br s

Table 2-4-1 Prodigiosin R2 の 13 C および 1 H-NMR データ (CDCl₃中)

4. Prodigiosin R2 の部分構造解析

COSY スペクトル、HMBC スペクトル、NOESY スペクトルの解析により Fig. 2-4-4、Fig. 2-4-5、 Fig. 2-4-6 に示す部分構造 I~III の存在が明らかになった。

まず、125.6 ppm、122.1 ppm、115.2 ppm、110.9 ppm の 4 個の芳香族炭素について述べる。 Fig. 2-4-4 に示すように、COSY スペクトルの解析により 12.60 ppm の交換性プロトンと 7.15 ppm、6.29 ppm、6.83 ppm の芳香族プロトンのつながりが判明した。一方、7.15 ppm の芳香族 プロトンから 122.1 ppm、115.2 ppm、110.9 ppm の炭素への遠距離スピン結合が観測された。 また、6.83 ppm の芳香族プロトンから、125.6 ppm、122.1 ppm の炭素への遠距離スピン結合が 観測された。さらに、6.29 ppm の芳香族プロトンから 125.6 ppm、122.1 ppm の炭素への遠距離 スピン結合が観測されたことから、4 個の芳香族炭素(125.6 ppm、122.1 ppm、115.2 ppm、110.9 ppm)は Fig. 2-4-4 に示すようなピロール環を形成することが示された(部分構造 I)。

Fig. 2-4-4 Prodigiosin R2 の部分構造 I (太線は COSY、矢印は HMBC、数字は ¹³C および ¹H (斜字)の化学シフト値を示す)

次に、164.5 ppm、144.8 ppm、116.8 ppm、93.9 ppm の4個の芳香族炭素について述べる。 Fig. 2-4-5 に示すように、93.9 ppm の炭素に結合した 6.15 ppm のプロトンから 144.8 ppm と 116.8 ppm の炭素への遠距離スピン結合が観測された。また、11.99 ppm の交換性プロトンから 164.5 ppm の炭素への遠距離スピン結合が観測された。一方、4.01 ppm のメトキシプロトンから 164.5 ppm の炭素へ遠距離スピン結合が観測されたことにより、164.5 ppm の炭素にメトキシ基 が結合していることが明らかになった。さらに、メトキシプロトンと 6.15 ppm のプロトンとの 間に NOE が観測されたことにより、メトキシ基が結合した 164.5 ppm の炭素と 93.9 ppm の炭 素は隣接していることが示された。以上の結果より、4 つの芳香族炭素(164.5 ppm、144.8 ppm、 116.8 ppm、93.9 ppm)とメトキシ炭素(58.8 ppm)は Fig. 2-4-5 に示すような 3-メトキシピロ ールを構成することが明らかになった(部分構造 II)。

Fig. 2-4-5 Prodigiosin R2 の部分構造 II (矢印は HMBC、点線は NOE、数字は ¹³C および ¹H (斜字)の化学シフト値を示す)

続いて、157.6 ppm、156.7 ppm、146.9 ppm、133.9 ppm、108.6 ppm の芳香族炭素、および 56.0 ppm、51.3 ppm、33.1 ppm、21.4 ppm、19.5 ppm の脂肪族炭素について述べる。Fig. 2-4-6 に示すように、COSY スペクトルの解析により、51.3 ppm、33.1 ppm、21.4 ppm、19.5 ppm の 炭素のつながりが判明した。また、108.6 ppm の炭素に結合した 6.08 ppm のプロトンから 157.6 ppm、156.7 ppm、133.9 ppm の芳香族炭素に遠距離スピン結合が観測され、6.08 ppm のプロト ンと 13.19 ppm の交換性プロトンとの間にスピン結合が観測されたことから、4 個の芳香族炭素 (157.6 ppm、156.7 ppm、133.9 ppm、108.6 ppm) はピロール環を形成することが示された。一 方、51.3 ppm の炭素に結合した 2.61 ppm のプロトンから、156.7 ppm、133.9 ppm、146.9 ppm、 56.0 ppm の炭素に遠距離スピン結合が観測された。さらに、2.61 ppm のプロ トンから 156.7 ppm の炭素に遠距離スピン結合が観測された。さらに、2.61 ppm のプロトンと 108.6 ppm の炭素に結合した 6.08 ppm のプロトンとの間に NOE が観測されたことにより、156.7 ppm、51.3 ppm、56.0 ppm の炭素のつながりが判明し、146.9 ppm、133.9 ppm、156.7 ppm、 51.3 ppm、56.0 ppm の炭素が五員環を形成していることが明らかになった(部分構造 III)。

60

III

Fig. 2-4-6 Prodigiosin R2 の部分構造 III (太線は COSY、矢印は HMBC、点線は NOE、数字は ¹³C および ¹H (斜字) の化学シフト値を示

次に、アルキにル鎖の構造ついて述べる。Fig. 2-4-7 に示すように、COSY スペクトルの解析 により、56.0 ppm のメチン炭素に結合した 3.96 ppm のプロトンから 34.7 ppm のメチレン炭素 に結合した 1.98 ppm、1.78 ppm のプロトンを介して、24.6 ppm のメチレン炭素に結合した 0.98 ppm のプロトンまでのつながりが判明した。また、51.3 ppm の炭素に結合した 2.61 ppm のプロ トンから 56.0 ppm および 34.7 ppm の炭素に遠距離スピン結合が観測されたことから、Fig. 2-4-7 に示すようなアルキル鎖の末端構造が明らかになった。一方、28.6 ppm のメチレン炭素に結合し た 2.88 ppm のプロトンから 157.6 ppm の炭素に遠距離スピン結合が観測され、プロトンの化学 シフトから、157.6 ppm の芳香族炭素にこのメチレンが結合していることが示された。さらに、 この 2.88 ppm のプロトンと隣接する 28.1 ppm のメチレン炭素に結合した 2.01 ppm、1.31 ppm のプロトンとの間にスピン結合が観測され、残った 4 個のメチレン炭素を連結したアルキル鎖の 構造が判明した。このアルキル鎖の構造と部分構造 III を併せて部分構造 IV が明らかになった。

IV

Fig. 2-4-7 Prodigiosin R2 の部分構造 IV (太線は COSY、矢印は HMBC、数字は ¹³C および ¹H (斜字) の化学シフト値を示す)

なお、Table 2-4-2 に示すように、アルキル鎖炭素の化学シフトは、RP の化学シフトとほぼ一致しており、(± 0.8 ppm)、相対立体配置を含めてアルキル鎖の構造を確定するとともに、それ ぞれの炭素の帰属も明らかになった。

PGR2			RP		
No.	$\delta_{\rm C}$	δ _H (<i>J</i> = <i>Hz</i>)	No.	δ_{C}	$\delta_{\mathrm{H}} (J = H_{Z})$
14	28.6	2.92 m, 2.88 m	14	28.2	3.54 ddd (13.0, 11.0, 6.5)
					2.82 ddd (13.0, 5.5, 3.5)
15	28.1	2.01 m, 1.31 m	15	27.8	2.06 m, 1.30 m
16	25.3	1.35 m, 1.12 m	16	24.8	1.30 m, 1.16 m
17	28.2	0.96 m, 0.41 m	17	28.2	1.00 m, 0.39 m
18	27.1	0.95 m, 0.78 m	18	26.8	0.90 m, 0.76 m
19	27.7	0.75 m, 0.41 m	19	27.4	0.76 m, 0.36 m
20	24.6	0.98 m	20	24.3	1.00 m, 0.90 m
21	34.7	1.98 m, 1.78 m	21	33.9	1.99 m, 1.79 m
22	56.0	3.96 m	22	55.4	3.81 dd (4.5, 3.0)
23	51.3	2.61 d	23	51.5	2.69 d (6.5)
24	33.1	1.78 m	24	32.9	1.79 m
25	21.4	0.99 3H d (8.0)	25	21.3	0.98 d (6.5)
26	19.5	0.77 3H d (8.0)	26	19.5	0.76 d (6.5)
27	58.8	4.01 3H s	27	60.0	4.12 s

Table 2-4-2 Prodigiosin R2 および roseophilin アルキル鎖の ¹³C NMR データ比較

5. Prodigiosin R2 の構造決定

Fig. 2-4-8 に示すように、NOESY スペクトルの解析により、部分構造 I と部分構造 II のつな がりが判明した。すなわち、部分構造 I の 6.83 ppm のプロトンから、部分構造 II の 6.15 ppm の プロトンおよび 4.01 ppm のメトキシプロトンに対して NOE が観測されたことから、部分構造 I と II は 122.1 ppm と 144.8 ppm の炭素間で直接結合することが明らかになった。したがって、 残された部分構造 II における 116.8 ppm の 4 級炭素と部分構造 IV における 146.9 ppm の炭素が 結合することが判明した。

Fig. 2-4-8 Prodigiosin R2 の部分構造のつながり (点線は NOE、数字は¹³C および¹H (斜字)の化学シフト値を示す)

以上の解析により、PGR2の構造を Fig. 2-4-9 に示すように決定した。

Fig. 2-4-9 Prodigiosin R2 の構造

第5節 Prodigiosin R3の理化学的性質

PGR3 の理化学的性質を Table 2-5-1 に示す。

PGR3の FAB マススペクトル (Fig. 2-5-1) において、m/z 416 に (M+H)+ ピークが観測され、 高分解能 FAB マススペクトルにより、PGR3の分子式を C₂₇H₃₃N₃O と決定した。また、Fig. 2-5-2 に PGR3の紫外可視吸収スペクトル、Fig. 2-5-3 に赤外吸収スペクトルを示す。

Appearance	Red amorphous powder
Melting point (°C)	$70 \sim 73$
HR FAB-MS (m/z)	
found	416.2705 (M+H)+
calcd.	416.2702
Molecular formula	$\mathrm{C}_{27}\mathrm{H}_{33}\mathrm{N}_{3}\mathrm{O}$
UV λ _{max} nm (ε)	230 (6,900), 300 (3,600), 354 (3,300), 530 (62,400)
	in MeOH
	233 (9,300), 300 (3,700), 356 (3,300),530 (64,600)
	in 0.01 M HCl - MeOH
	236 (9,800), 294 (6,100), 331 (3,400), 477 (26,300)
	in 0.01 M NaOH - MeOH
IR v_{max} (KBr) cm ⁻¹	3130, 2920, 1580, 1310

Table 2-5-1 Prodigiosin R3 の理化学的性質

Fig. 2-5-1 Prodigiosin R3 の FAB マススペクトル

Fig. 2-5-2 Prodigiosin R3 の紫外可視吸収スペクトル

Fig. 2-5-3 Prodigiosin R3 の赤外吸収スペクトル (ATR 法)

1. Prodigiosin R3 の¹H NMR スペクトル解析

Fig. 2-6-1 に CDCl₃ 中における PGR3 の ¹H NMR スペクトルを示す。

このスペクトルにおいて、12.94 ppm、12.47 ppm、11.79 ppm に 3 個の交換性プロトン、7.12 ppm、6.77 ppm、6.27 ppm、6.09 ppm に 4 個の芳香族プロトン、3.94 ppm に 1 個のメトキシ プロトン、4.13 ppm、2.95 ppm、2.87 ppm に 3 個のメチンプロトン、1.01 ppm、0.80 ppm に 2 組のメチルプロトン、2.92 ppm および 2.84 ppm に 1 組のメチレンプロトンがそれぞれ観測され た。また、0.60 ppm という高磁場領域にプロトンシグナルが認められた。これら以外に、2 ppm~1 ppm の領域に 12 個のプロトンが観測された。

Fig. 2-6-1 Prodigiosin R3 の ¹H NMR スペクトル (CDCl₃中)

2. Prodigiosin R3 の ¹³C-NMR スペクトル解析

Fig. 2-6-2 に CDCl₃ 中における PGR3 の ¹³C NMR スペクトルを示す。

このスペクトルにおいて、4個の芳香族メチン炭素、9個の芳香族4級炭素、1個のメトキシ炭素、2個の脂肪族メチル炭素、7個の脂肪族メチレン炭素、4個の脂肪族メチン炭素が観測された。

Fig. 2-6-2 Prodigiosin R3 の ¹³C NMR スペクトル (CDCl₃中)

3. Prodigiosin R3 の HMQC スペクトル解析

Fig. 2-6-3 に CDCl₃ 中における PGR3 の HMQC スペクトルを示す。このスペクトルによって 明らかになった ¹³C⁻¹H 相関を Table 2-6-1 に示す。

Fig. 2-6-3 Prodigiosin R3 の HMQC スペクトル (CDCl₃中)

No.	δ_{C}	$\delta_{\rm H} (J = Hz)$	No.	δ_{C}	$\delta_{\mathrm{H}} (J = Hz)$
1	124.9	7.12 td (2.5, 1.0)	16	27.7	1.98 m, 1.69 m
2	110.7	6.27 dt (4.0, 2.5)	17	33.2	2.87 m
3	114.3	6.77 ddd (4.0, 2.5, 1.0)	18	37.1	1.60 m, 1.05 m
4	122.3		19	26.3	1.75 m, 1.40 m
5	143.4		20	23.6	1.31 m, -0.60 m
6	93.6	6.09 d (2.5)	21	37.7	1.93 m, 1.78 m
7	163.6		22	57.9	4.13 dd (4.0, 2.0)
8	116.2		23	52.8	2.95 d (8.0)
9	144.1		24	36.4	1.49 m
10	133.9		25	22.1	1.01 3H d (8.0)
11	162.4		26	20.9	0.80 3H d (8.0)
12	122.7		27	58.5	3.94 3H s
13	152.6		1-NH		12.47 br s
14	23.9	2.92 m, 2.84 m	5-NH		11.79 br s
15	17.9	1.86 m	10-NH		12.94 br s

Table 2-6-1 Prodigiosin R3 の $^{\rm 13}{\rm C}$ および $^{\rm 1}{\rm H}\text{-}{\rm NMR}$ データ (CDCl3 中)

4. Prodigiosin R3 の部分構造解析

COSY スペクトル、HMBC スペクトル、NOESY スペクトルの解析により Fig. 2-6-4、Fig. 2-6-5、 Fig. 2-6-6、Fig. 2-6-7 に示す部分構造 I~IV の存在が明らかになった。

まず、124.9 ppm、122.3 ppm、114.3 ppm、110.7 ppm の 4 個の芳香族炭素について述べる。 Fig. 2-6-4 に示すように、COSY スペクトルの解析により 12.47 ppm の交換性プロトンと 7.12 ppm、6.27 ppm、6.77 ppm の芳香族プロトンのつながりが判明した。また、7.12 ppm の芳香族 プロトンから 122.3 ppm、114.3 ppm、110.7 ppm の芳香族炭素へ遠距離スピン結合が観測され た。一方、6.77 ppm の芳香族プロトンから、124.9 ppm、122.3 ppm、110.7 ppm の芳香族炭素 への遠距離スピン結合が観測された。さらに、6.27 ppm の芳香族プロトンから 124.9 ppm と 122.3 ppm の芳香族炭素への遠距離スピン結合が観測されたことから、4 個の芳香族炭素(124.9 ppm、 122.3 ppm、114.3 ppm、110.7 ppm)は Fig. 2-6-4 に示すようなピロール環を形成することが示 された(部分構造 I)。

Fig. 2-6-4 Prodigiosin R3 の部分構造 I (太線は COSY、矢印は HMBC、数字は ¹³C および ¹H (斜字)の化学シフト値を示す)

次に、163.6 ppm、143.4 ppm、116.2 ppm、93.6 ppm の 4 個の芳香族炭素について述べる。 Fig. 2-6-5 に示すように、93.6 ppm の芳香族炭素に結合した 6.09 ppm のプロトンから 143.4 ppm と 116.2 ppm の芳香族炭素への遠距離スピン結合が観測された。また、11.79 ppm の交換性プロ トンから 163.6 ppm と 93.6 ppm の芳香族炭素への遠距離スピン結合が観測された。一方、3.94 ppm のメトキシプロトンから 163.6 ppm の炭素へ遠距離スピン結合が観測されたことより、 163.6 ppm の炭素にメトキシ基が結合していることが明らかになった。さらに、メトキシプロト ンと 6.09 ppm のプロトンとの間に NOE が観測されたことにより、メトキシ基の結合した 163.6 ppm の炭素と 93.6 ppm の炭素は隣接していることが示された。以上の結果より、4 個の芳香族 炭素 (163.6 ppm、143.4 ppm、116.2 ppm、93.6 ppm) とメトキシ炭素 (58.5 ppm) は Fig. 2-6-5 に示すような 3・メトキシピロールを構成することが明らかになった(部分構造 II)。

 Fig. 2-6-5 Prodigiosin R3 の部分構造 II

 (矢印は HMBC、点線は NOE、数字は ¹³C および ¹H (斜字) の化学シフト値を示す)

次に、アルキル鎖の構造について述べる。COSY スペクトルの解析により、Fig. 2-6-6 に示す ように、20.9 ppm、22.1 ppm、36.4 ppm、52.8 ppm の炭素のつながり、57.9 ppm、37.7 ppm、 23.6 ppm、26.3 ppm、37.1 ppm、33.2 ppm、27.7 ppm、17.9 ppm、23.9 ppm の炭素のつなが りが判明した。また、52.8 ppm のメチン炭素に結合した 2.95 ppm のプロトンから 37.7 ppm の メチレン炭素、57.9 ppm のメチン炭素に結合した 4.13 ppm のプロトンから 23.6 ppm のメチレ ン炭素へ遠距離スピン結合が観測されたことから、52.8 ppm の炭素に 57.9 ppm の炭素が結合し ていることが判明し、Fig. 2-6-6 に示すアルキル側鎖構造が明らかになった(部分構造 III)。

III

Fig. 2-6-6. Prodigiosin R3 の部分構造 III (太線両矢印は COSY、矢印は HMBC、数字は ¹³C および ¹H (斜字) の化学シフト値を示す)

最後に、162.4 ppm、152.6 ppm、144.1 ppm、133.9 ppm、122.7 ppm の芳香族炭素およびア ルキル側鎖の結合について述べる。Fig. 2-6-11 に示すように、37.7 ppm のメチレン炭素に結合し た1.93 ppm のプロトンから144.1 ppm の炭素へ遠距離スピン結合が観測されたことにより、57.9 ppm の炭素に 144.1 ppm の炭素が結合していることが判明した。一方、57.9 ppm の炭素に結合 した 4.13 ppm のメチンプロトンから 133.9 ppm および 162.4 ppm の炭素への遠距離スピン結合 が観測され、52.8 ppmの炭素に結合した 2.95 ppmのメチンプロトンから 144.1 ppm、133.9 ppm、 162.4 ppm の炭素に遠距離スピン結合が観測されたことから、144.1 ppm、133.9 ppm、162.4 ppm の炭素のつながりが判明した。また、162.4 ppm という低磁場の化学シフトから、この炭素に 52.8 ppm のアルキル炭素が結合していることが示唆された。さらに、27.7 ppm のメチレン炭素に結 合した 1.69 ppm のプロトン、37.1 ppm のメチレン炭素に結合した 1.60 ppm のプロトンから 122.7 ppm の炭素に遠距離スピン結合が観測されたことから、33.2 ppm のメチン炭素と 122.7 ppm の炭素が結合していることが判明した。また、23.9 ppm の炭素に結合した 2.92 ppm および 2.84 ppm のメチレンプロトンから 152.6 ppm および 122.7 ppm の炭素に遠距離スピン結合が観 測されたことから、23.9 ppm のメチレン炭素と 152.6 ppm の炭素が結合することが明らかにな り、Fig. 2-6-7 に示すような3箇所で架橋したアルキル鎖の存在が判明した。さらに、12.94 ppm の交換性プロトンから、162.4 ppm の炭素への遠距離スピン結合が観測され、分子式 C27H33N3O と併せて、4 個の芳香族炭素(133.9 ppm、162.4 ppm、122.7 ppm、152.6 ppm)がピロール環 を形成し、ピロール環とアルキル側鎖が複雑に結合した Fig. 2-6-7 に示す構造が明らかになった。

76

IV

Fig. 2-6-7 Prodigiosin R3 の部分構造 IV

(太線は COSY、矢印は HMBC、点線は NOE、数字は ¹³C および ¹H (斜字) の化学シフト値を示 す)

4. Prodigiosin R3 の構造決定

NOESY スペクトルの解析により、Fig. 2-6-8 に示すような部分構造のつながりが判明した。

まず、6.77 ppm と 6.09 ppm のプロトン間に NOE が観測されたことから、部分構造 I と II は 122.3 ppm と 143.4 ppm の炭素間で直接結合することが判明した。次いで、3.94 ppm のメトキ シプロトンと 4.13 ppm のメチンプロトンとの間に NOE が観測されたことにより、部分構造 II と III は 116.2 ppm と 144.1 ppm の炭素間で結合することが示された (Fig. 2-6-7)。

以上の解析により、PGR3の構造を Fig. 2-6-9 に示すように決定した。

Ι

Fig. 2-6-8 Prodigiosin R3の部分構造のつながり (点線は NOE、数字は¹³C および¹H (斜字)の化学シフト値を示す)

Fig. 2-6-9 Prodigiosin R3 の構造

第7節 Prodigiosin R2 および Prodigiosin R3 の生物活性

PGR2 および PGR3 の HeLa ヒト子宮頸がん細胞、HT1080 ヒト線維肉腫細胞に対する細胞障 害作用を MTT アッセイにより測定した。また、RP、DRP、PGR1 の活性も同時に測定し、これ らの活性を比較した。その結果、PGR1、PGR2、PGR3、RP、DRP は IC₅₀ 値 0.41~11 μM で細 胞障害活性を示し、HeLa 細胞、HT1080 細胞のいずれに対しても PGR2 が最も強い作用を示し た。

	IC ₅₀ (μΜ)		
Compound	HeLa	HT1080	
PGR1	1.7	3.3	
PGR2	0.41	0.82	
PGR3	2.1	3.2	
RP	4.2	5.7	
DRP	11	7.0	

Table 2-7-1 Roseophilin 生産菌から単離された prodigiosin 類の腫瘍細胞障害活性

本研究において、*S. griseoviridis* 2464-S5 株の代謝産物として、新たに MDP、PGR2、PGR3 が見いだされた²⁵⁾。

現在までに、*S. griseoviridis*の培養物中より見いだされた PG 類のうち、RP 型の2箇所架橋 したアルキル側鎖を有するものは DRP のみであったことから、RP 生合成経路においてピロール 環のクロル化は生合成の最終段階で起こることが推定されていた。しかし、2箇所架橋したアル キル側鎖を有する RP 生合成中間体として PGR2 が新たに単離されたことから、PGR2 がクロル 化の基質となり、クロル化された PGR2 を経て RP が生合成される可能性も示唆された (Fig. 2-8-1)。

Fig. 2-8-1 Roseophilin 類の推定生合成経路

また、2箇所架橋したアルキル側鎖を有する PGR2 とともに、*S. griseoviridis* の培養物中より 3箇所架橋構造を持つ PGR3 が新たに見いだされた。PGR3 は PGR2 の構造にさらに 1 箇所架橋 が形成されていることから、PGR2 から PGR3 が生合成されるとも考えられる (Fig. 2-8-1)。3 箇所架橋アルキル類を持つ PG は現在までに知られておらず、その活性に興味が持たれた。

HeLa ヒト子宮頸がん細胞および HT1080 ヒト線維肉腫細胞を用いた細胞障害作用測定におい て、PGR2 に試験した PG 類のうちで最も強い作用が認められた。一方、PGR3 は PGR1 と同程 度の細胞増殖阻害活性を示した。PGR1、PGR2、PGR3 のアルキル鎖長は同じであることから、 PGR2 の 2 箇所架橋構造が PG 類の活性を高める構造であることが示唆された。また、RP および DRP と比較し、PGR1、PGR2、PGR3 が強い活性を示したことから、中央のフラン環は活性を 減弱することが示された。 第3章 Roseophilinのアルキル側鎖架橋に関わる遺伝子の同定

第1節 Roseophilin 生合成前駆体生産株の構築

第 1 章において行った undecylprodiginine (UP) 生産菌である *Streptomyces coelicolor* M511*redG* 破壊株を用いた研究では、prodigiosin (PG) 環化遺伝子と相同性を有する *rphG2*、 *rphG3、rphG4* の機能解明には至らなかった。これは、*Streptomyces griseoviridis* が生産する PG 類共通の生合成前駆体は 11-methyldodecylprodiginine (MDP) であり、UP ではないことが 原因と考えられる。一方、*S. coelicolor* の *redP* 破壊株は UP に加えて MDP を生産することが報 告されている。そこで、roseophilin (RP) 生産菌の PG 環化遺伝子候補の機能を解析するため、 *redP* 破壊プラスミドである pRedP-DIS を作製し、*S. coelicolor* の *redG* 破壊株に導入すること により *S. coelicolor AredG AredP* 株を構築した。*redP* 破壊株を Table 3-1-1 に示す R5 培地にて 培養し、培養抽出物を HPLC 分析したところ、全体の PG 類の生産量に対して約 2%の MDP が 生産されることが明らかになった (Fig. 3-1-1)。

Sucrose	10.3%	TES buffer	0.573%
Glucose	1%	MTE	2 ml/L
Yeast extract (Difco)	0.5%	NaOH	0.028%
Casamino acids (Difco)	0.01%	$\mathrm{KH}_{2}\mathrm{PO}_{4}$	0.005%
K_2SO_4	0.025%	$CaCl_2 \cdot 2H_2O$	0.294%
$MgCl_2 \cdot 6H_2O$	1.012%	L-proline (20%)	0.3%

Table 3-1-1 R5 培地

MTE (metal trace elements)

ZnCl₂ 0.004%, FeCl₂ · 6H₂O 0.02%, CuCl₂ · 2H₂O 0.001%, MnCl₂ · 4H₂O 0.001%, Na₂B₄O₇ · 10H₂O 0.001%, (NH₄)₆Mo₇O₂₄ · 4H₂O 0.001%

Fig. 3-1-1 *Streptomyces coelicolor ΔredG ΔredP*株が生産する prodigiosin 類の HPLC 分析 (YMC-Pack R-ODS-7, 86% MeOH-3% MeCN-0.15% TFA)

作製した *S. coelicolor AredG AredP*株は MDP を生産することが示されたが、MDP の生産量 は PG 類全体に対して約 2%と少なかった。そこで、MDP の生産量を向上させる培養条件の検討 を行った。RP のアルキル側鎖の生合成は、valine の代謝中間体である isobutyryl-CoA を出発物 質とすることが予想される。そこで、培地に valine を添加することで MDP の生産量の向上が期 待できると考え、R5 培地に終濃度 50 mM の L-valine を添加して培養を行った。培養抽出物を HPLC 分析したところ、50 mM valine 添加 R5 培地では、MDP の生産量は全体の PG 生産量に 対して約 4%に増加した。

Fig. 3-2-1 Streptomyces coelicolor ΔredG ΔredP株が生産する prodigiosin 類に対する valine 添加の効果 (PEGASIL ODS SP-100, 90% MeOH-5 mM Na₂H citrate)

*S. coelicolor AredG AredP*株を、*rphG*を発現する pWHM-rphG、*rphG2~rphG4*を発現する pWHM-rphG2G3G4、または *rphG、rphG2、rphG3、rphG4*の4 遺伝子を発現する pWHM-rphGG2G3G4で形質転換し、50 mM valine 添加 R5 寒天培地で培養後、培養抽出物中の PG 類を HPLC で分析した。その結果、Fig. 3-3-1 に示すように、pWHM-rphGG2G3G4を導入 した株において、DRP、PGR2、PGR3 と同じ保持時間に新たな PG 系代謝産物が確認された。

Fig. 3-3-1 *rph* 遺伝子を導入した *S. coelicolor* Δ*redG* Δ*redP*株が生産する prodigiosin 類の HPLC 分析 (PEGASIL ODS SP-100, 90% MeOH-5 mM Na₂H citrate)

第4節 rphGおよび rphG2~rphG4 導入株が生産する prodigiosin 代謝産物の同定

rphGおよび rphG2~rphG4の4遺伝子導入株が生産する新たなPG代謝産物は、HPLC分析 において、DRP、PGR2、PGR3 と同じ保持時間を示した。そこで、大量培養した形質転換株の 培養抽出物を用いて、このPG代謝産物の同定を試みた。すなわち、pWHM-rphGG2G3G4導入 株を 50 mM valine 添加R5 寒天培地上、27°C にて7日間培養した。培養した寒天培地(800 ml) を砕いてアセトンで抽出し、アセトンを減圧留去した濃縮液を酢酸エチルで抽出した。抽出液を 濃縮後、ヘキサン-90%メタノールで分配した。90%メタノール画分を濃縮後、クロロホルム-メタノール-29% アンモニア水(200:20:1)を展開溶媒としてシリカゲル TLC を行ったとこ ろ、上から2番目のバンド(フラクション2)がPGR2のRf 値=0.84 付近に、上から3番目のバ ンド(フラクション3)がPGR3のRf 値=0.71 付近に認められた(Fig. 3-4-1)。

Fig. 3-4-1 pWHM-rphGG2G3G4 導入株培養抽出物のシリカゲル TLC (CHCl₃-MeOH-29%NH₄OH 200:20:1) そこで、フラクション2およびフラクション3をシリカゲルTLCからかき取り、クロロホルム ーメタノール(10:1)で溶出した。これらをそれぞれシリカゲルTLC上でPGR2、PGR3と比 較したところ、フラクション2はPGR2、フラクション3はPGR3とスポットの一致が認められ た。

Fr. 2 Fr. 2 PGR2 PGR3 Fr. 3 Fr. 3 + PGR2 PGR3

Fig. 3-4-2 pWHM-rphGG2G3G4 導入株が生産する PG 代謝産物のシリカゲル TLC 分析 (CHCl₃-MeOH-29%NH₄OH 200:20:1)

また、フラクション2およびフラクション3をHPLCで分析したところ、Fig. 3-4-3に示す ように、それぞれ PGR2 および PGR3 に相当するピークが認められた。

Fig. 3-4-3 pWHM-rphGG2G3G4 導入株が生産する PG 代謝産物の HPLC 分析 (PEGASIL SP-100, 90% MeOH-5 mM Na₂H citrate)

さらに、フラクション3を ESI-MS により解析したところ、*m/z* 416.2687 に (M+H)+ピークが観 測され、計算値 416.2702 より分子式は PGR3 と同じ C₂₇H₃₃N₃O と決定した。以上の結果より、 *rphG、rphG2、rphG3、rphG4 の* 4 遺伝子を導入した *S. coelicolor* M511*AredGAredP*株が生産 する PG 代謝産物は PGR2 および PGR3 であることが示された。

Fig. 3-4-4 pWHM-GG2G3G4 を導入株が生産するフラクション 3 の ESI-MS

第5節 考察

本章では、まず、RP 生合成前駆体 MDP を生産する S. coelicolor AredG AredP 株を作製し、 第1章にて構築した異種発現システムを用いて rphG、rphG2、rphG3、rphG4の4遺伝子を導入することにより、新たな2つの PG 代謝産物を見いだした。これらの化合物は、HPLC 分析、 TLC 分析および高分解能 ESI-MS による解析の結果から、PGR2 および PGR3 であることが明ら かになった。一方、rphG単独導入株および rphG2、rphG3、rphG4の3遺伝子導入株において は、PGR2 および PGR3 はいずれも生産されなかった。このことから、MDP を基質とし、rphG、 rphG2、rphG3、rphG4の4遺伝子が協調して PGR2 のアルキル鎖2箇所架橋および PGR3の アルキル鎖3箇所架橋構造を形成していることが示唆され、これらの遺伝子は RP の特徴的なア ルキル鎖生合成を担っていることが示された。rphG、rphG2、rphG3、rphG4の4遺伝子はいず れも Rieske オキシゲナーゼ様遺伝子と相同性を有しており、この一群の酵素はオキシゲナーゼ反応だけでなく、酸化還元に関わる様々な反応に関与している。アルキル鎖の環化では、アルキル 鎖の脱水素に引き続いてラジカル環化反応が進行し、脱水素により反応が終結すると考えられる が、その位置選択性や反応機構に興味が持たれる。

また、これらの遺伝子は単独では機能せず、*rphGと rphG2~rphG4*の共発現によって MDP の 代謝産物が生合成されるという点で興味深いが、本研究ではすべての遺伝子を導入した株でのみ 代謝産物を解析しているため、*rphG2~rphG4*のそれぞれが PGR2、PGR3の生合成にどのよう に関与するかは判明していない。たとえば、PGR2 から PGR3への変換を *rphG2~rphG4*のいず れかの遺伝子が担っている可能性も考えられる。

また、PGR2の生合成において、アルキル鎖の2箇所での環化反応に4つの遺伝子が関与していることから、RphG2、RphG3、RphG4が多量体酵素複合体を形成している可能性も考えられた。しかし、相同性検索を行ったところ、*rphG2~rphG4*と相同性を示すRieskeオキシゲナーゼ様遺伝子を複数持つ菌がほとんど存在しないことから、これらの酵素は単量体として機能する可能性が高いと考えられる。

今後は、*rphG*, *rphG2*, *rphG3*の3遺伝子、*rphG*, *rphG4*の3遺伝子、*rphG*, *rphG3*、 *rphG4*の3遺伝子をそれぞれ導入し、代謝産物を解析することにより、各遺伝子の機能解明をめ ざす予定である。

Fig. 3-5-1 MDP の推定環化化反応

第4章 Roseophilin 生合成におけるクロル化遺伝子の探索

第1節 ドラフトゲノム解析によるクロル化遺伝子の探索

Roseophilin (RP) 生合成に関与する *rph*遺伝子クラスター中には、RP の特徴であるクロル化 に関わる遺伝子は見いだされていない。そこで、クロル化遺伝子が *rph*遺伝子クラスター外にあ る可能性を考え、RP 生産菌のゲノム DNA を用いたドラフトゲノム解析によりクロル化遺伝子を 探索した。

その結果、クロル化遺伝子の候補として、hormaomycin (Fig. 4-1-1) 生合成に関わる FADH₂ 依存性ハロゲナーゼ遺伝子 *hrmQ*と相同性を有する *orf16-3* が *rph*クラスター外に見いだされた (Fig. 4-1-2)。

Fig.4-1-1 Hormaomycin と premarineosin A および B の構造

Contig 16

Hi	ghest protein sequence similarity	Strain Amino acio	d identity
			(%)
1	Cobalamin biosynthesis protein, CobG	Streptomyces cattleya	66
2	Cobaltochelatase subunit, CobN	Streptomyces atratus	86
3	${ m FADH}_2$ dependent halogenase, ${ m Hrm}{ m Q}$	Streptomyces griseoflavus	32
4	LuxR family transcriptional regulator, MarZ	Streptomyces sp. CNQ-617	49
5	Monooxygenase	<i>Streptomyces</i> sp. AA4	61
6	LPXTG-motif cell wall anchor domain protein	<i>Streptomyces</i> sp. NRRL B-24891	54
7	RNA polymerase factor sigma-70, partial	<i>Streptomyces</i> sp. CNS606	83
8	Oxidoreductase	<i>Streptomyces</i> sp. CNH287	76
9	Membrane protein, partial	<i>Streptomyces</i> sp. WMMB 714	71

Fig. 4-1-2 orf16-3を含む contig16 配列のアノテーション

HrmQ はピロールのクロル化を触媒する酵素であることが示されている。一方、orf16-3 の隣 に存在する orf16-4 は、prodigiosin (PG) 類である marineosin の生合成遺伝子クラスター中の転 写調節因子である marZと相同性を示す。また、FADH2依存性ハロゲナーゼはフラビンレダクタ ーゼと協調してハロゲン化反応を触媒することが知られているが、orf16-4 の隣に位置する orf16-5 はその配列中にフラビン結合部位を有する。これらのことから、orf16-3 が dechlororoseophilin (DRP) のクロル化を触媒する可能性が期待できると考え、orf16-3の機能解 析を試みた。 第2節 クロル化遺伝子候補産物を用いた反応解析

第1節において、ORF16-3 が RP 生合成において DRP のクロル化を触媒する可能性が示唆さ れた。そこで、orf16-3 遺伝子産物を大腸菌にて大量発現させ、得られた ORF16-3 を用いて DRP のクロル化を試みることとした。一方、FADH2依存性ハロゲナーゼは、フラビンレダクターゼに よって FAD および NADH から生成された FADH2を利用してハロゲン化活性を示すことが知ら れている。そこで、大腸菌由来のフラビンレダクターゼ Fre を大腸菌にて大量発現させ、クロル 化反応に用いることとした。

orf16-3 遺伝子および *fre* 遺伝子をそれぞれタンパク質発現用ベクターpQE30 に挿入し、 ORF16-3 発現プラスミドおよび Fre 発現プラスミドを構築した。発現宿主として *E. coli* M15 株 を用いて、*orf16-3* 遺伝子産物および *fre* 遺伝子産物を生産させた。

大腸菌に生産させた ORF16-3 の DRP クロル化活性を評価するにあたり、まず、大量発現させた Fre の FAD 還元活性を確認することとした。Fre 発現プラスミドを導入した *E. coli* M15 株を培養し、菌体を破砕した。遠心により上清と菌体を分離し、上清を酵素溶液として反応に用いた。 Table 4-3-1 に示す反応溶液を調製し、30°C で 10 時間反応させたところ、NADH 量は 3.36 μmol減少した。同様の反応を Fre を加えずに行ったところ NADH の減少量は 2.25 μmol のみであり、 Fre の FAD 還元活性が確認された。

Table 4-2-1 反応溶液の組成

crude Fre protein 100 μl DMSO 50 μl 10 mM NADH 100 μM FAD 10 mM NaCl 10 mM Tris-HCl (pH 7.5)

 $500 \,\mu L$

次に、大量発現させた ORF16-3 の DRP クロル化活性を評価した。ORF16-3 発現プラスミド を導入した *E. coli* M15 株を培養し、菌体を破砕した。遠心により上清と菌体を分離し、上清を酵 素溶液として反応に用いた。Table 4-3-2 に示すように反応溶液を調製し、30°C で 10 時間反応さ せた。 Table 4-2-2 反応溶液の組成

30 μM DRP in 50 μL DMSO ORF16-3 protein 100 μL Fre protein 100 μL 10 mM NADH 100 μM FAD 10 mM NaCl 10 mM Tris-HCl (pH 7.5)

 $500 \, \mu L$

反応生成物を酢酸エチル抽出後、HPLC分析したが、DRP以外の生成物は認められなかった(Fig. 4-3-1)。

Fig. 4-2-1 ORF16-3 反応生成物の HPLC 分析 (PEGASIL ODS SP-100, 80%MeOH-5 mM Na₂H citrate)

大腸菌に生産させた ORF16-3 および Fre を用いて DRP のクロル化を試みたが、DRP 以外の 反応生成物認められなかった。そこで、*S. coelicolor*に *orf16-3* 遺伝子を含む領域を導入し、さら に DRP を供給することで、undecylprodiginine (UP) または DRP のクロル化を試みた。すなわ ち、*orf16-3* または *orf16-3~orf16-5* 導入 *S. coelicolor* M511 株を R5 培地で回転培養し、培養 3 日目に DRP を加えた。培養開始から 6 日後に菌体を抽出し、HPLC 分析したところ、新たな代 謝産物は認められなかった (Fig. 4-3-1)。

Fig. 4-3-1 DRP を供給した orf16-3 導入株の培養抽出物の HPLC 分析 (PEGASIL ODS SP-100, 90%MeOH-5 mM Na₂H citrate)

 一方、orf16-3~orf16-5の3遺伝子を導入した株では、UPの生産量が低下し、UP環化体であるbutyl-meta-cycloheptylprodiginine (CP)が検出されなくなったことから、これらの遺伝子は、 S. coelicolor内で何らかの二次代謝関連機能を発現していることが示された。 第4節 考察

RP 生産菌のゲノム DNA を用いたドラフトゲノム解析によりクロル化遺伝子を探索し、クロル化遺伝子の候補として、hormaomycin 生合成に関わる FADH2 依存性ハロゲナーゼ遺伝子 *hrmQ*と相同性を有する *orf16-3 が rph*クラスター外に見いだされた。HrmQ はピロールのクロル化を触媒する酵素であることが示されている。

また、ORF16-3 は FADH₂ 依存性ハロゲナーゼとの相同性を示すだけでなく、Table 4-5-1 に示 すようなハロゲナーゼ特有の保存配列を有することが確認された ²¹⁾。さらに、*orf16-3、orf16-4、 orf16-5、orf16-6*と連続する 4 遺伝子は、既知の遺伝子との相同性が低く(31~61%)、二次代謝 に関与する遺伝子であることが示唆された。

Halogenase	Consensus region		Amino acid size
PfPrnC	(246) EGG W LWV IP	(338) I D PLFSRGL	501
Chl	(247) ERG W MWI IP	(341) I D PLFLRGL	452
PltM	(234) EEG W LWV IP	(325) I D PLFSRGL	504
PltD	(241) DGG w VGV ip	(331) N D LLFSRKL	545
PltA	(234) TNT w VWQ IP	(320) V D PIFSSGV	449
ORF16-3	(216) DNGWFWG IP	(303) I D PLLSSGV	428

Table 4-4-1 ORF16-3 が有するハロゲナーゼ保存配列

一方、ORF16-5 について相同性検索を行ったところ、monooxygenase の他、種々の oxidoreductase との相同性を示し、加えて *Kibdelosporangium* sp. MJ126-NF4 のサリチル酸ヒ ドロキシラーゼと 51%の相同性を示した。サリチル酸ヒドロキシラーゼは以下のような反応で NADH を酸化し、補因子としての FAD を還元できることが知られている。

Salicylate + NADH + 2 H⁺ + O_2 = Catechol + NAD⁺ + H₂O + CO₂

また、ORF16-5 は FAD 結合部位および NAD 結合部位を配列中に有する。これらのことから、 ORF16-5 の働きにより、RP の生合成におけるクロル化に必要な還元型の FAD が供給される可能 性が示唆された。

加えて、orf16-3 ~orf16-5 の近傍に二次代謝における骨格生合成遺伝子が存在しないことから、 ORF16-3 は他の二次代謝遺伝子クラスターにより生産される二次代謝産物を基質としたクロル 化を担うことが予測される。また、orf16-3 の隣には、PG 類である marineosin の生合成遺伝子 クラスター中の転写調節因子である marZと相同性を示す遺伝子 orf16-4 が存在する。

これらのことから、orf16-3が RP の生合成におけるクロル化を触媒する可能性が強く示唆され

た。しかし、本研究において、大腸菌に生産させた ORF16-3 および大腸菌フラビンレダクターゼ Fre を用いて DRP のクロル化を試みたが、反応生成物は認められなかった。また、*S. coelicolor* に *orf16-3* 遺伝子を含む領域を導入し、DRP を供給し、培養抽出物を分析したところ、新たな代 謝産物は検出されなかった。これらの結果から、本研究で用いた DRP は RP のクロル化の基質で はなく、別の RP 生合成中間体がクロル化の基質となる可能性が考えられた。以前は、RP 型の 2 箇所架橋構造を有する RP 生合成中間体候補が DRP のみであったことから、DRP がクロル化の 基質であると考えられていた。しかし、第 2 章において、RP 型の 2 箇所架橋構造を有する RP 生 合成中間体として prodigiosin R2 (PGR2) が見いだされた。したがって、PGR2 が ORF16-3 に よってクロル化され、クロル化された PGR2 の中央のピロール環がフラン環に変換されることに より、RP が生合成される可能性が考えられる (Fig. 4-5-1)。今後、PGR2 を基質として ORF16-3 によるクロル化反応を試みること、または、*orf16-3* 遺伝子導入 *S. coelicolor* に PGR2 を供給す ることで、PGR2 のクロル化体が生産される可能性が期待できると考えている。

Fig. 4-4-1 PGR2 を基質とした推定クロル化反応

一方、今回の研究では、S. coelicolorに導入する遺伝子をその推定機能から orf16-3、orf16-4、 orf16-5の3遺伝子に設定した。しかし、先述したように、orf16-6も既知遺伝子との相同性の低 さからクロル化関連遺伝子である可能性がある。したがって、orf16-3~16-6の4遺伝子を導入し た株における代謝実験も必要であると考えられる。 第1章では、roseophilin (RP) 生産菌 *Streptomyces griseoviridis* の *rph*遺伝子クラスター中 の *rphM*のプロモーターを用いて、放線菌における二次代謝遺伝子発現系の構築を行った。構築 した二次代謝遺伝子発現システムを用いて undecylprodiginine (UP) 生産菌 *Streptomyces coelicolor* 中で *rphG*を発現させることにより、培養物中から2つの prodigiosin (PG) 環化体を 単離した。このうち、主成分を UP 環化体 metacycloprodigiosin (MCP)、副成分を UP 環化体で ある新規化合物 propyl-*meta*-cyclooctylprodigiosin (PCP) と決定した。MCP は UP のアルキル 側鎖が prodigiosin R1 (PGR1) と同じ 12 員環構造をとっており、ピロール環上の結合位置も同 じである。したがって、*S. griseoviridis* において、*rphG* が RP や PGR1 の生合成前駆体 11-methyldodecylprodiginine (MDP) を環化し、PGR1を生合成することが示唆された。また、 2つの環化体を生成する PG 環化酵素は知られていないことから、*rphG*はユニークな PG 環化遺 伝子として注目されるだけでなく、2 箇所で架橋した生合成における RP 生合成における *rphG* の 役割にも興味が持たれた。

Fig. 5-1 rphG遺伝子による prodigiosin の環化

第2章では、RP生産菌の培養抽出物中からRP生合成中間体の探索を行い、2箇所で架橋した アルキル鎖を持つ新規PGである prodigiosin R2 (PGR2)、3箇所で架橋したアルキル鎖を持つ新 規PGである prodigiosin R3 (PGR3)を単離・構造決定した。RPと同様に2箇所で架橋した環 化アルキル側鎖を有するPGは、本研究にて初めて見いだされた。RPの生合成におけるクロル化 の基質としては、dechlororoseophilin (DRP)のみが候補として考えられていたが、この結果によ り、PGR2もまた RP 生合成におけるクロル化反応の基質となり得ることが示唆された。また、 PGR2 はこれまでに RP 生産菌から単離された PG 類と比較し、最も強い腫瘍細胞障害活性を示した。

Fig. 5-2 Streptomyces griseoviridis 2464-S5 株から新たに単離された新規 prodigiosin

第3章では、RP生合成前駆体 MDPを生産する *S. coelicolor* $\Delta red G$ $\Delta red P$ 株を構築し、同株 に *rphG*, *rphG2*, *rphG3*, *rphG4*の4遺伝子を導入することにより、新たに生産された2つの PGを PGR2 および PGR3 と同定した。この結果から、*rphG*, *rphG2*, *rphG3*, *rphG4* が PG ア ルキル側鎖の環化と架橋に関わる遺伝子であることが明らかになり、これらの *rph* 遺伝子のいく つかまたはすべてが協調して2箇所および3箇所架橋構造を形成することが示唆された。

Fig. 5-3 rphG および rphG2~rphG4 による prodigiosin の環化

第4章では、RP生産菌のゲノム DNA を用いたドラフトゲノム解析により、RP生合成におけるクロル化遺伝子候補 orf16-3を見いだした。orf16-3は、ピロール環のクロル化を触媒することが知られる hrmQとの相同性を示し、ハロゲナーゼに特有の保存配列を有している。また、orf16-3 に隣接する遺伝子 orf16-4が PG 類である marineosinの転写調節因子である marZと相同性を示すことに加え、orf16-4に隣接する遺伝子 orf16-5が FAD 結合部位を持ち、FAD を還元するサリチル酸ヒドロキシラーゼと相同性を示すことから、orf16-3が RP 生合成においてクロル化を触媒することが示唆された。

Fig. 5-4 RP 生合成に関与すると考えられるクロル化遺伝子

本研究では、興味深い構造と活性を有する RP の生合成において、特にアルキル鎖のユニーク な環化パターンに着目し、環化遺伝子を同定するとともに、異種発現や生合成中間体探索の過程 で、3 つの新規 PG 類を見いだしている。本研究で達成された生合成に関する新たな知見と PG 類 の化合物多様性拡大は、今後の PG 類生合成ひいては微生物二次代謝の研究に大きく貢献するこ とが期待される。 実験の部

各章共通の実験

1. 菌株

Hatomarubigin 生産菌として *Streptomyces* sp. 2238-SVT4 株を用いた。RP 生産菌として *S. griseoviridis* 2464-S5 株を用いた。KM 耐性遺伝子発現用宿主として *S. lividans* TK23 株を用いた。KM 耐性遺伝子発現用宿主、UP および CP 生産菌として、*S. coelicolor* M511 株を用いた。 プラスミド構築用宿主として *Escherichia coli* XL1-Blue MRF^{*}株、メチラーゼ欠損 *E. coli* JM110 株を用いた。

2. プラスミド

クローニング用として pGEM-11Z、pGEM-7Z (Promega) および LITMUS 38i (New England Biolabs) を用いた。放線菌用プラスミドとして pWHM3 を用いた。pWHM3 は Wisconsin 大学 の C. R. Hutchinson 教授より入手した。また、遺伝子破壊用ベクターとして pWHM3-DIS¹⁹⁾ を 用いた。 *aphII* 遺伝子のクローニングには pWE15 を用いた。Apramycin 耐性遺伝子用プラスミ ドとして、apramycin 耐性遺伝子が組み込まれた LITMUS28-apr を用いた。

3. 大腸菌の培養およびプラスミドの抽出

1)培地および試薬類

・ LB 培地

1% Tryptone (DIFCO), 0.5% yeast extract (DIFCO), 0.5% NaCl

・ GTE 緩衝液

50 mM glucose、25 mM Tris-HCl (pH 8.0)、10 mM EDTA・2Na

・ アルカリ SDS 溶液

0.2 M NaOH 1% SDS

・ 酢酸カリウム溶液

酢酸カリウム 29.44g、酢酸 11.5 ml に蒸留水を加えて 100 ml とした。

TE 緩衝液

10 mM Tris-HCl (pH 8.0), 1 mM EDTA · 2Na

・ フェノール/クロロホルム

Tris 飽和フェノールとクロロホルムを等量ずつ混合した。

2) 方法

大腸菌のプラスミドを調製するために、ampicillin (Wako) を終濃度 100 µg/ml 含有する LB 培地で大腸菌を 32℃、18 時間振盪培養した。培養液をマイクロチューブに 1.0 ml 取り、15,000 rpm、4℃で 1 分間遠心分離し、菌体を沈殿させた。同操作をもう一度行った後、この沈殿物を 100 µl GTE 緩衝液に懸濁し、次いで、200 µl アルカリ SDS 溶液を加えて転倒攪拌し、溶菌させ た。最後に 150 µl 酢酸カリウム溶液を加えて再び転倒攪拌後、15,000 rpm、4℃で 5 分間遠心分 離し、タンパク質を沈殿させた。上清を新しいマイクロチューブに回収し、等量のフェノール/ク ロロホルムを加えて混合した。同条件で遠心分離後、水層を回収し、溶液の 100 分の 1 量の 10 mg/ml RNase (Nippon Gene)を加え、37℃で 50 分間静置した。等量のイソプロピルアルコー ルを加えて転倒攪拌した後、同条件で遠心分離した。沈殿物を氷冷 70% エタノールで洗浄後、 真空乾燥した。これを TE 緩衝液に溶解し、プラスミド溶液として使用した。シークエンス解析 に用いるプラスミドには、QIAprep Spin Miniprep Kit (QIAGEN)を用いて精製した。

4. 放線菌の培養

S. coelicolor M511 株、S. lividans TK23 株およびこれらの形質転換株の培養は以下のようにして行った。Table 6-1-1 に示す前培養培地 5 ml あるいは 7 ml を分注した試験管に S. coelicolor M511 の凍結保存菌および形質転換株を接種し、27℃にて 3~7 日間振盪培養したものを種母とした。

Table 6-1-1 P10.3 培地			
Sucrose	10.3%		
Glucose	3%		
Bacto Soytone	1.5%		
Glycine	0.1%		
$CaCl_2 \cdot 2H_2O$	0.044%		
$\mathrm{MgCl}_2 \cdot \mathrm{6H}_2\mathrm{O}$	0.102%		
pH 7.2			

プロトプラスト調製、ゲノム DNA 調製のための本培養培地として、Table 6-1-2 に示す培地 30 ml を分注した 200 ml 三角フラスコに 2 ml の上記種母を添加後、27℃にて 3 日間回転培養した。

Yeast extract	0.3%		
Bacto Peptone	0.5%		
Malt extract	0.3%		
Glucose	1%		
Sucrose	34%		
Glycine	0.5%		
$MgCl_2 \cdot 6H_2O$	1.012%		
pH 7.2			

Table 6-1-2 YEME 培地

PG 生産培地として、Table 6-1-3 に示す R5 培地 30 ml を分注した 200 ml 三角フラスコに上記 種母を 2 ml ずつ添加後、27℃にて 6 日間回転培養した。

Table 6-1-3 R5 培地			
Sucrose	10.3%	TES buffer	0.573%
Glucose	1%	MTE	2 ml/l
Yeast extract (Difco)	0.5%	NaOH	0.028%
Casamino acids (Difco)	0.01%	KH_2PO_4	0.005%
$ m K_2SO_4$	0.025%	$CaCl_2 \cdot 2H_2O$	0.294%
$MgCl_2 \cdot 6H_2O$	1.012%	L-proline (20%)	0.3%

MTE (metal trace elements)

ZnCl₂ 0.004%, FeCl₂ · 6H₂O 0.02%, CuCl₂ · 2H₂O 0.001%, MnCl₂ · 4H₂O 0.001%, Na₂B₄O₇ · 10H₂O 0.001%, (NH₄)₆Mo₇O₂₄ · 4H₂O 0.001%

5. 放線菌のプロトプラスト調製

1) 試薬類

P10.3⁺緩衝液

Sucrose 103 g、K₂SO₄ 0.25 g、MgCl₂・6H₂O 2.03 g、MTE 2 ml を蒸留水 900 ml に溶解し、 90 ml ずつ分注後、使用時に別滅菌した 0.25 M TES (pH 7.2) 10 ml、0.5% KH₂PO₄ 1.0 ml、 5 M CaCl₂・2H₂O 0.5 ml を加えた。

・ 10×Lysozyme 溶液

Lysozyme (Wako) を終濃度 20 mg/ml になるように P10.3⁺緩衝液に溶解し、ろ過滅菌した。

2) 方法

以下の操作は無菌操作で行った。

30 ml の培養液を遠心分離し (7,500 rpm, 12 min, 4°C)、菌体を回収した。得られた菌体を 30 ml の P10.3⁺緩衝液で洗浄した後、同条件の遠心分離によって菌体を回収した。続いて、27 ml の P10.3⁺緩衝液を加え、Vortex を用いてよく懸濁した後、10×Lysozyme 溶液 3 ml を加え混合 した (Lysozyme 終濃度 2 mg/ml)。37°Cで 30 分処理し、光学顕微鏡を用いて完全なプロトプラ ストの形成を確認した後、氷上でコットンフィルターろ過し、プロトプラストのみを回収した。 以下の操作は全て氷上で行った。プロトプラスト懸濁液を遠心分離し (7,500 rpm, 12 min, 4°C)、上清を除去した後、5 ml の P10.3⁺緩衝液を加え、ビペッティングにより完全に懸濁した。そこ に、さらに 25 ml の P10.3⁺緩衝液を加え、転倒攪拌後、同条件の遠心分離により、プロトプラストを洗浄回収した。プロトプラストの洗浄を3回行った後、プロトプラスト濃度が 1×10¹⁰ cells/ml になるように P10.3⁺緩衝液で希釈し、100 µl ずつマイクロチューブに分注後、-80°Cで保存し
た。

7. 放線菌ゲノム DNA の調製

1) 試薬類

TS 緩衝液

10.3% sucrose, 50 mM Tris-HCl (pH 8.0), 25 mM EDTA · 2Na

• Lytic enzyme 溶液

Lysozyme (Wako) を 10 mg/ml になるように TS 緩衝液に溶解させた。

• Proteinase K 溶液

Proteinae K (Wako) を 2 mg/ml になるように TS 緩衝液に溶解させた。

・ Tris 飽和フェノール

フェノール 500 gを 60 °C で溶解し、8-quinolinol 0.5 gを加えて溶解させた。等量の 1 M Tris-HCl (pH 8.0)を加えてよく攪拌し、室温で一晩静置した。水層を取り除いた後、等量の 0.1 M Tris-HCl (pH 8.0) と 2-mercaptoethanol 1 ml を加えて攪拌し、静置した。

・ フェノール/クロロホルム

Tris 飽和フェノールとクロロホルムを等量ずつ混合した。

TE 緩衝液

10 mM Tris-HCl (pH 8.0) 1 mM EDTA · 2Na

2) 方法

培養液を遠心管に移し、8,000 rpm、4℃で 10 分間、遠心分離して、上清を除いた。この沈殿物に TS 緩衝液を加えて懸濁した後、同条件で遠心分離し、上清を除いた。沈殿物に Lytic enzyme 溶液を加えて懸濁した後、37℃で 1 時間処理し、Proteinae K 溶液、3.3% SDS 溶液を加え、37℃ で 1 時間処理した。次に、50℃で 30 分間処理し、4℃で 15 分間冷却後、反応溶液と等量のフェノール/クロロホルムを加え、転倒攪拌により均一になるまで混合した。7,500 rpm、20℃で 5 分間遠心分離し、水層を回収した。水層と等量のイソプロピルアルコールを加え転倒攪拌した後、析出したゲノム DNA を新しい遠心管に移した。70% エタノール沈殿後、乾燥させ、適量の TE 緩衝液を加え、4℃で 16 時間放置した。ゲノム DNA が均一に TE 緩衝液に溶解したことを確認した後、溶液の 100 分の 1 量の 10 mg/ml RNase (NIPPON GENE) を加え、ゲノム DNA 溶液として使用した。

8. 機器分析

HPLC 分析は、日立製作所 L-6000 ポンプ、日立製作所 L-4200 紫外可視検出器、島津製作所ク ロマトパック C-R8A データ処理装置を用いて行った。紫外吸収スペクトルは、島津製作所 UV-1700 紫外可視分光光度計により測定した。赤外吸収スペクトルは、Perkin-Elmer Spectrum 100 FT-IR フーリエ変換赤外分光分析装置を用い、ATR 法にて測定した。質量スペクトルは、日 本電子 JMS-SX102A 質量分析計または Varian 910-MS FT-ICR 質量分析装置を使用し、FAB モ ードまたは ESI モードにて測定した。NMR スペクトルは、日本電子 JNM-LA400 核磁気共鳴装 置または JNM-ECZ400S 核磁気共鳴装置を用い、¹H-NMR は 400 MHz、¹³C-NMR は 100 MHz にて CDCl₃ 溶液中で測定した。¹H-NMR は CHCl₃ を 7.24 ppm、¹³C-NMR は CDCl₃ を 77.0 ppm として化学シフトを表した。

9. 細胞障害活性評価

10%牛胎児血清と 0.1%グルコースを含むダルベッコ変法イーグル培地中にて、コンフルエント まで増殖した HeLa 細胞または HT1080 細胞をトリプシン処理した後、10 分の 1 に希釈し、96 穴プレートに 100 µl ずつ分注した。4 時間後、希釈したサンプルを含む培地を 10 µl 添加し、37 °C で 48 時間培養した。培養後、5 mg/ml の MTT を 10 µl ずつ添加し、4 時間培養した。培養液を 除き、DMSO を 100 µL ずつ添加して、生成したホルマザンを溶解させた。TECAN サンライズ リモートプレートリーダーで 540 nm における吸光度を測定し、コントロール群の生存細胞数に 対する生存率を評価した。 第1章に関する実験

1. 二次代謝遺伝子発現プラスミドの構築

1) hrbA、rphD および rphM プロモーター領域の PCR による増幅

各プロモーターについて、転写開始点および σ 因子認識配列を含む領域を増幅する Table 6-2-1 に示すプライマーを設計した。 σ 因子認識配列は、プロモーター予測プログラム SoftBerry BPROM を用いて推定した。放線菌で汎用されている *ermE**プロモーター20が 200 b であること から、増幅する領域を 200 b 以上とした。*hrbA* プロモーターには *Mfe*I および *Eco*RI 認識部位を、 *rphD* プロモーターには *Eco*RI および *Xba*I 認識部位を付加したプライマーを用いた。*rphM* プロ モーター領域 875 b を増幅させるためのプライマーとして、上流側は pWHM3 のクローニングサ イトを増幅する M13 プライマーを使用した。また、*rphM* プロモーターの下流側は *Xba*I 認識部 位を付加したプライマーを設計した。

hrbA プライマー	5'-TCT <u>CAATTG</u> GACGAGGA AAGCTGGACTGCA -3'
	5'- GCA <u>GAATTC</u> ACAGAGCTCCGGACCCTGACA -3'
rphDプライマー	5'- CAT <u>TCTAGA</u> CCCCGCCCATGGTCACCG-3'
	5'- CGG <u>GAATTC</u> GACCATGTCCCGCCTTTGGGCA -3'
rphMプライマー	5'- GTTTTCCCAGTCACGAC-3'
	5'- CAT <u>TCTAGA</u> GTCCCTCCGCGTGTCACC-3"

Table 6-2-1 プロモーター領域増幅に用いた各種 PCR プライマー

hrbAプロモーター領域の増幅には Streptomyces sp. 2238-SVT4 のゲノム DNA を、rphDプ ロモーター領域の増幅には S. griseoviridis のゲノム DNA を、rphMプロモーター領域の増幅に は rphM-rphG4領域をクローニングしたプラスミドである pWHM-rphMG4を鋳型として用いた (Fig. 6-2-1)。各プロモーター領域の DNA 伸長酵素として KOD Plus DNA polymerase (TOYOBO)を用い、Table 6-2-2 に示す反応条件で PCR 反応を行った。hrbA プロモーター領 域については、増幅した DNA 断片を Mfel および EcoRI で消化した。得られた断片をアガロー スゲル電気泳動後、抽出、精製した。これを、pWHM3 の EcoRI 部位に連結した。rphDプロモ ーター領域および rphMプロモーター領域については、増幅した各 DNA 断片を EcoRI、XbaI で 消化した。次いで、各断片をアガロースゲル電気泳動後、抽出、精製した。これを、pWHM3 の EcoRI/XbaI 部位に連結した。クローニングしたプラスミドの塩基配列解析を行い、プロモーター 領域の増幅を確認した。

Fig. 6-2-1 rphMプロモーター領域の増幅に用いたプラスミド

hrbA		rphD		rphM	
1. 98℃	2 min	1. 98°C	$2 \min$	1. 98℃	2 min
2. 98°C	15 sec	2. 98°C	15 sec	2. 98°C	10 sec
3. 57℃	30 sec	3. 57℃	30 sec	3. 60℃	30 sec
4. 68°C	30 sec	4. 68°C	30 sec	4. 68°C	30 sec
$2\sim\!4$	30 cycles	$2\sim 4$ 30 cycle	es	$2\sim 4$	30 cycles

Table 6-2-2 各プロモーター領域の PCR 反応条件

Fig. 6-2-2 pWHM3 に二次代謝遺伝子プロモーターを挿入した発現用プラスミド

2. KM 耐性遺伝子発現プラスミドおよび UP 環化遺伝子発現プラスミドの構築

DNA 断片の抽出には Quick Gel Extraction Kit (QIAGEN) を使用した。また、目的遺伝子の 塩基配列解析には ABI PRISM Genetic Analyzer 3100 (Applied Biosystems) を用いた。

1) aphII、redGの PCR による増幅

*aphII*領域、*redG*領域 1.2 kbp を増幅させるために、*Xba*I および *Hin*dIII 制限酵素部位を付加したプライマーを設計した(Table 6-2-3)。

aphIIプライマー	5'- GCA <u>TCTAGA</u> ATGATTGAAAAGATGGATTGCA-3'
	5'- ACC <u>AAGCTT</u> TCAGAAGAACTCGTCAAGAAGG-3'
redGプライマー	5'- GC <u>TCTAGA</u> ATGATCCCCAACCAGTGGTATCCC-3'
	5'- ACC <u>AAGCTT</u> CTACGGGCGCGCGGCGGCGTCCTC-3'

Table 6-2-3 プロモーター領域増幅に用いた各種 PCR プライマー

*aphII*の増幅にはコスミド pWE15 を、*redG*の増幅には *S. coelicolor*のゲノム DNA を鋳型と して用いた。*aphII、redG*の DNA 伸長酵素として KOD Plus DNA polymerase (TOYOBO) を 用いた。Table 6・2・4 に示す反応条件で PCR 反応を行い、増幅した各 DNA 断片を *Xba*I、*Hin*dIII で消化した。次いで、各断片をアガロースゲル電気泳動後、抽出、精製した。得られた断片を、 クローニングベクターである pGEM-11Z の *Xba*I/*Hin*dIII 部位に連結した。クローニングしたプ ラスミドの塩基配列解析を行い、目的遺伝子の増幅を確認した。

Table 6-2-4 各遺伝子の PCR 反応条件

aphII		redG	
1. 94°C	$2 \min$	1. 98°C	1 min
2. 94°C	15 m sec	2. 98°C	15 sec
3. 53℃	$30 \sec$	3. 60°C	30 sec
4. 68°C	1 min	4. 68°C	1.2 min
$2\sim\!4$	30 cycles	$2\sim 4$ 30 cyc	eles

2) 遺伝子発現用プラスミドの作製

pWHMexA、pWHMexD、pWHMexMの*Xbal-Hin*dIII 部位に、1)で得られたプラスミドから 同制限酵素で消化した *aphII*断片および *redG*断片を連結した。

Fig. 6-2-3 KM 耐性遺伝子発現用プラスミド

Fig. 6-2-4 UP 環化遺伝子発現用プラスミド

3. *redG*破壊プラスミドの作製

1) S. coelicolor の redG 周辺領域の PCR による増幅

redG 破壊株作製のために *redG* 周辺領域 3.4 kb 領域を増幅させた。Fig. 6-2-5 に示すような *redH* と *redE* の一部および *redF* を含む *redG* 遺伝子を各制限酵素部位を付加したプライマー (Table 6-2-5) で増幅した。プライマーの合成はオペロンバイオテクノロジー社に依頼した。

Fig. 6-2-5 redG 周辺領域の PCR 増幅

Table 6-2-5 redG破壊株作製に用いた各種 PCR プライマー

<i>redH-Xba</i> Iプライマー(F)	5'-GC <u>TCTAGA</u> CGTACTACATCAACGCGTTCGCCT -3'
<i>redGBgI</i> IIプライマー(R)	5'-GA <u>AGATCT</u> TGTAGTTGAACCAGTGGTCCCGGT-3'
<i>redG-BgI</i> IIプライマー(F)	5'-GA <u>AGATCT</u> TCGACTACCTGCTCCTGTACGGCA-3'
<i>redE Hin</i> dIII プライマー(R)	5'-ACC <u>AAGCTT</u> GCGGTCAGGGACGCCTCGGCCTCT -3'

*redG*破壊株の作製法をFig. 6-2-5に示す。*redG*周辺領域の増幅には*S. coelicolorのゲノム*DNA を鋳型として用いた。DNA 伸長酵素として KOD Plus DNA polymerase (TOYOBO) を用いた。 Table 6-2-6 に示す反応条件で PCR 反応を行い、増幅した各 DNA 断片を *Xbal/BgI*II または *BgI*II/*Hin*dIII で消化した。次いで、各断片をアガロースゲル電気泳動後、抽出し、QIAprep Spin Miniprep Kit (QIAGEN) を用いて精製することにより、目的の遺伝子断片を得た。また、アプ ラマイシン耐性遺伝子が組み込まれた LITMUS28-apr を *BgI*II 処理することによりアプラマイシ ン耐性遺伝子 (*apr*) 断片を得た。その後、*Xbal/Hin*dIII 消化した pGEM11Z、*BgI*II 消化した *apr* 断片および上述で得た各 *red* 遺伝子断片を連結した。クローニングしたプラスミドの塩基配 列解析を行い、目的遺伝子の増幅を確認した。

redH-redG	領域	<i>redG-redE</i> 翁	領域	
1. 98°C	60 sec	1. 98°C	60 sec	
2. 98°C	15 sec	2. 98°C	15 sec	
3.58° C	30 sec	3. 61°C	30 sec	
4. 68°C	110 sec	4. 68°C	100 sec	
$2\sim\!4$	30 cycles	$2\sim\!\!4$	30 cycles	

Table 6-2-6 redG 周辺領域の PCR 反応条件

2) *redG*破壊プラスミドの作製

1)で得られたプラスミドを XbaI および HindIII で消化し、遺伝子破壊用プラスミドである pWHM3·DIS の XbaI/HindIII 部位に連結して redG破壊用プラスミド pRedG-DIS を得た(Fig. 6·2·5)。

Fig. 6-2-5 redG破壊プラスミドの作製

4. *redG*破壊株の作製

- 1) 試薬類
- T 緩衝液

Polyethylenglycol を 25%になるように P10.3⁺緩衝液で希釈した。

R5 再生培地

Table 1-2-6 に示す培地に 2.2% Bacto Agar (Difco) を加えたものをプロトプラスト再生培地とした。

• Soft agar

Nutrient broth 0.8%, Bacto Agar 0.5%

2) 方法

S. coelicolor M511 のプロトプラスト 100 µl を氷上で融解後、10-2)で作製した pRedG-DIS 溶 液 7 µl (0.7~1.4 µg) を加えて混合し、氷上で 1 分間静地した。4 倍量の T 緩衝液を加え、直ち にピペッティングにより完全に混合した後、100 µl ずつ R5 再生培地に塗布した。27℃で 16 時間 培養し、プロトプラストを再生させた後、apramycin (終濃度 100 µg/ml、Duchefa Biochemie) を含む 3 ml の soft agar を重層し、固化後、形質転換体が出現するまで 27℃で培養した。増殖し たコロニーを thiostrepton (終濃度 20 µg/ml、SIGMA) を含む R5 培地に接種し、ゲノム DNA と 2 回の相同組換えを起こして得られる thiostrepton 感受性株を選択した。

5. *S. coelicolor* M511 株、*S. coelicolor* M511 *redG*破壊株および *S. lividans* TK23 株における各 遺伝子の発現

S. coelicolor M511 株および S. lividans TK23 株のプロトプラスト 100 µl を氷上で融解後、 pWHM3、pWHMexA-KM、pWHMexD-KM および pWHMexM-KM 溶液 7 µl (0.7~1.4 µg) を 加えて混合し、氷上で 1 分間静地した。また、S. coelicolor M511 の redG 破壊株のプロトプラス ト 100 µl を氷上で融解後、pWHM3、pWHMexA-redG、pWHMexD-redG、および pWHMexM-redG 溶液 7 µl (0.7~1.4 µg) を加えて混合し、氷上で 1 分間静地した。各溶液に 4 倍量の T 緩衝液を加え、直ちにピペッティングにより完全に混合した後、100 µl ずつ R5 再生培 地に塗布した。27℃で 16 時間培養し、プロトプラストを再生させた後、thiostrepton (終濃度 20 µg/ml) を含む 3 ml の soft agar を重層し、固化後、形質転換体が出現するまで 27℃で培養した。

6. redGを用いた二次代謝遺伝子発現系の評価

1) PG 類の分析および単離

培養液(30 ml)を遠心分離して得た菌体を15 mlのアセトンで抽出し、アセトンを除去した濃 縮液を20 mlの酢酸エチルで2回抽出した。酢酸エチル抽出液を濃縮後、86%メタノール-3%ア セトニトリル-0.15%トリフルオロ酢酸を展開溶媒としてODS-HPLCで分析した(Fig. 6-2-6)。 Culture broth (30 ml) centrifuged Mycelium extracted with acetone concentrated extracted with EtOAc HPLC (YMC-Pack R-ODS-7 4.6 i.d.×250 mm) 86% MeOH-3% MeCN-0.15% TFA

Fig. 6-2-6 PG 類の分析

HPLC 分析は、Table 6-2-7 の条件下で行った。

Table 6-2-7 PG 類の分析に用いた HPLC 条件

カラム	YMC-Pack R-ODS-7 (4.6 i. d. $\times 250$ mm)
測定波長	530 nm
流速	2 ml/min

7. rph 遺伝子発現プラスミドの構築

1) rphG、rphG2~rphG4の PCR による増幅

*rphG*領域 1.1 kb、*rphG2~rphG4*領域 3.6 kb を増幅させるために、*Xba*I および *Hin*dIII 制 限酵素部位を付加したプライマーを設計した(Table 6-2-8)。

Table 6-2-8 rphGおよび rphG2~rphG4 増幅に用いた PCR プライマー

rphGプライマー	5'- GC <u>TCTAGA</u> ATGATCCCGAATCAGTGGTACGCC-3'
	5'- ACC <u>AAGCTT</u> TTACGGTGCCCGTTGGGTGTGCCC-3'
rphG2~rphG4プライマー	5'- GCT <u>TCTAGA</u> CGCAGTACGGAAAGGCAGCTGAAC-3'
	5'- GG <u>GAATTC</u> AGCATGGACACAATGAAAGCTTGGT-3'

rphG および rphG2~rphG4 の増幅には S. griseoviridis のゲノム DNA を鋳型として用いた。

*rphG*の DNA 伸長酵素として KOD Plus DNA polymerase (TOYOBO) を、*rphG2~rphG4*の DNA 伸長酵素として KOD Plus ver. 2 DNA polymerase (TOYOBO) を用いた。Table 2-2 に示 す反応条件で PCR 反応を行い、増幅した各 DNA 断片を *Xba*I、*Hin*dIII で消化した。次いで、 各断片をアガロースゲル電気泳動後、抽出、精製した。得られた断片を、クローニングベクター である pGEM-11Z の *Xba*I/*Hin*dIII 部位に連結した。クローニングしたプラスミドの塩基配列解 析を行い、目的遺伝子の増幅を確認した。

Table 6-2-9 rphG および rphG2~rphG4の PCR 反応条件

rphG		$rphG2 \sim rphG4$	
1. 98°C	1 min	1. 98°C 1 min	
2. 98°C	15 sec	2. 98°C 15 sec	
3. 60°C	30 sec	3. 60°C 30 sec	
4. 68°C	1.2 min	4. 68°C 3.4 min	
$2\sim\!4$	30 cycles	$2\sim 4$ 30 cycles	

2) rphG発現用プラスミドおよび rphG2~rphG4発現用プラスミドの作製

作製した pWHMexM の *Xba*I-*Hin*dIII 部位に、1)で得られたプラスミドから同制限酵素で消化 した *rphG* 断片および *rphG2~rphG4* 断片を連結した。

Fig. 6-2-7 *rphG*発現用プラスミドおよび *rphG2~rphG4*発現用プラスミド
8. *S. coelicolor* M511 の *redG*破壊株および形質転換株の培養

S. coelicolor M511 の redG 破壊株および形質転換株の培養は以下のようにして行った。各章共通の実験の Table 6-1-1 に示す P10.3 前培養培地 5 ml あるいは 7 ml を分注した試験管に S. coelicolor M511 の redG 破壊株の凍結保存菌または形質転換株を接種し、27℃にて 3~7 日間振盪 培養したものを種母とした。

PG 生産培地として Table 6-2-10 に示す R5 寒天培地を用いた。20 mL の R5 寒天培地上に上記 種母を塗布し、27℃にて7日間静置培養した。

Sucrose	10.3%	TES buffer	0.573%
Glucose	1%	MTE	2 ml/l
Yeast extract (Difco)	0.5%	NaOH	0.028%
Casamino acids (Difco)	0.01%	$\mathrm{KH}_2\mathrm{PO}_4$	0.005%
$ m K_2SO_4$	0.025%	$\mathrm{CaCl}_2 \cdot 2\mathrm{H}_2\mathrm{O}$	0.294%
$\mathrm{MgCl}_2 \cdot 6\mathrm{H}_2\mathrm{O}$	1.012%	L-proline (20%)	0.3%
Agar	2.2%		

Table 6-2-10 R5 寒天培地

MTE (metal trace elements)

$$\label{eq:2.1} \begin{split} &ZnCl_2\,0.004\%,\,FeCl_2\,\cdot\,6H_2O\,\,0.02\%,\,CuCl_2\,\cdot\,2H_2O\,\,0.001\%,\,MnCl_2\,\cdot\,4H_2O\,\,0.001\%,\\ &Na_2B_4O_7\,\cdot\,10H_2O\,\,0.001\%,\,(NH_4)_6Mo_7O_{24}\,\cdot\,4H_2O\,\,0.001\% \end{split}$$

9. PG 類の分析および単離

培養した寒天培地(20 ml)を粉砕し、50 mlのアセトンで抽出した。アセトンを減圧留去した 濃縮液を30 mlの酢酸エチルで2回抽出した。抽出液を濃縮後、HPLCにて分析した(Fig. 6-2-8)。

> Solid culture (20 ml) extracted with acetone concentrated extracted with EtOAc HPLC

> > Fig. 6-2-8 PG 類の分析

HPLC 分析は Table 6-2-11 の条件下で行った。

カラム	Waters XBridge C ₁₈	Senshu Pack PEGASIL ODS SP-100
	(4.6 i.d.×250 nm)	(4.6 i.d.×250 nm)
溶媒	90% MeOH-0.2% Et ₃ N	90% MeOH-5 mM NaH ₂ citrate
測定波長	485 nm	530 nm
流速	1 m/min	1 ml/min

Table 6-2-11 PG 類の分析に用いた HPLC 条件

10. PCPのNMR スペクトル PCP (CP2)のCOSY スペクトルを Fig. 6-2-9に、HMBC スペクトルを Fig. 6-2-10に示す。

Fig. 6-2-9 PCP の COSY スペクトル (CDCl₃中)

Fig. 6-2-10 PCP の HMBC スペクトル (CDCl₃中)

第2章に関する実験

1. PGR2 および PGR3 の NMR スペクトル

PGR2 の COSY スペクトルを Fig. 6-3-1 に、HMBC スペクトルを Fig. 6-3-2 に、NOESY スペ クトルを Fig. 6-3-3 に示す。PGR3 の COSY スペクトルを Fig. 6-3-4 に、HMBC スペクトルを Fig. 6-3-5 に、NOESY スペクトルを Fig. 6-3-6 に示す。

Fig. 6-3-1 PGR2 の COSY スペクトル (CDCl₃中)

Fig. 6-3-2 PGR2 の HMBC スペクトル (CDCl₃中)

Fig. 6-3-3 PGR2 の NOESY スペクトル (CDCl₃中)

Fig. 6-3-4 PGR3 の COSY スペクトル (CDCl₃中)

Fig. 6-3-5 PGR3 の HMBC スペクトル (CDCl₃中)

Fig. 6-3-6 PGR3 の NOESY スペクトル (CDCl₃中)

第3章に関する実験

1. redP破壊プラスミドの作製

1) S. coelicolorの redP上流および下流領域の PCR による増幅

redP 破壊株作製のために、Fig. 6-4-1 に示す矢印の位置に設計したプライマーを用いて *redP* の上流および下流のそれぞれ約 1 kb 領域を増幅した。Table 6-4-1 に用いた各制限酵素を付加し たプライマーの配列を示す。

Fig. 6-4-1 redP破壊プラスミドの作製

Table 6-4-1 redP 破壊株作製に用いた各種 PCR プライマー

<i>redP-Eco</i> RI プライマー(F)	$5`\text{-AAA}\underline{\text{GAATTC}}\text{ACCGCTTCGGGGGCCGCGCTCCAGCA-3}`$
redP-Xbal プライマー(R)	$5`\text{-}AAA\underline{TCTAGA}ACCGCCGCGGAGCGGCCGCGGTGT\text{-}3'$
<i>redP-Xba</i> I プライマー(F)	5'-AAA <u>TCTAGA</u> CCCGGCCGAAGCGCGCGCAGACGAC-3'
<i>redE-Hin</i> dIII プライマー(R)	5'- AAA <u>AAGCTT</u> ATGGAGCGGTGGTCCCAGCCGTCCG-3'

*redP*周辺領域の増幅には *S. coelicolor*のゲノム DNA を鋳型として用いた。DNA 伸長酵素として Tks Gflex DNA polymerase (タカラバイオ)を用いた。Table 6-4-2 に示す反応条件で PCR 反応を行い、増幅した各 DNA 断片を *Eco*RI/*Xba*I または *Xba*I/*Hin*dIII で消化した。次いで、各

断片をアガロースゲル電気泳動後、抽出し、QIAprep Spin Miniprep Kit (QIAGEN) を用いて 精製することにより、目的の遺伝子断片を得た。その後、*Eco*RI/*Xba*I で消化した pGEM11Z と 上述で得た *redP*上流領域の断片を連結した。一方、上述で得た *redP*下流領域の断片を、遺伝子 破壊用プラスミドである pWHM3-DIS の *Xba*I/*Hin*dIII 部位に連結した。クローニングしたプラ スミドの塩基配列解析を行い、目的遺伝子の増幅を確認した。さらに、*redP*下流領域の断片を挿 入した pWHM3-DIS の *Eco*RI/*Xba*I 部位に *redP*上流領域の断片を連結し、*redP*破壊用プラスミ ド pRedP-DIS を得た。

作製した pRedP-DIS を *S. coelicolor* の *redG* 破壊株に導入し、ゲノム DNA と 2 回の相同組み 換えを起こして得られる thiostrepton 感受性株を選択した。

1. 94°C	1 min
2. 98°C	$10 \sec$
3. 60°C	15 sec
4. 68°C	30 sec
$2\sim\!4$	30 cycles

Table 6-4-2 redP上流および下流領域の PCR 反応条件

2. rph 遺伝子発現プラスミドの構築

1) rphGの PCR による増幅

*rphG*領域 1.1 kb を増幅させるために、*Xba*I 制限酵素部位を付加したプライマーを設計した (Table 6-4-3)。

Table 6-4-3 rphG および rphG2~rphG4 増幅に用いた PCR プライマー

rphG-XbaI プライマー	5'- GC <u>TCTAGA</u> ATGATCCCGAATCAGTGGTACGCC-3'
	5'- ACC <u>TCTAGA</u> TTACGGTGCCCGTTGGGTGTGCCC -3'

*rphG*の増幅には pWHMexM-rphG を鋳型として用いた。*rphG*の DNA 伸長酵素として KOD Plus DNA polymerase (TOYOBO) を用いた。Table 6-4-4 に示す反応条件で PCR 反応を行い、 増幅した各 DNA 断片を *Xba*I で消化した。次いで、各断片をアガロースゲル電気泳動後、抽出、 精製した。得られた断片を、クローニングベクターである pGEM-11Z の *Xba*I 部位に連結した。 クローニングしたプラスミドの塩基配列解析を行い、目的遺伝子の増幅を確認した。

Table 6-4-4 rphGの PCR 反応条件

2 min
$15~{ m sec}$
30 sec
1 min
30 cycles

2) rphG および rphG2~rphG4 発現プラスミドの構築

 1 章にて構築した *rphG2~rphG4* 発現プラスミドである pWHM-rphG2G3G4 の *Xba*I 部位に、
 1)で得られたプラスミドから同制限酵素で消化した *rphG* 断片を連結した。塩基配列を確認して 挿入の向きを確認し、*rphG*および *rphG2~rphG4*を発現する pWHM-rphGG2G3G4 プラスミド を構築した。

Fig. 6-4-2 pWHM-rphGG2G3G4 プラスミド

3. S. coelicolor M511 AredGAredP株の培養

S. coelicolor M511 *AredGAredP* 株および形質転換株の培養は以下のようにして行った。各章共通の実験の Table 6-1-1 に示す P10.3 前培養培地 5 ml あるいは 7 ml を分注した試験管に *S. coelicolor* M511 の *redG* 破壊株の凍結保存菌または形質転換株を接種し、27℃にて 3~7 日間振盪培養したものを種母とした。

PG 生産培地として各章共通の実験の Table 6-1-3 に示す R5 培地、およびこれに 2.2%の Agar を加えた R5 寒天培地、さらに 50 mM の L-valine を加えた 50 mM valine 添加 R5 培地、50 mM valine 添加 R5 寒天培地を用いた。

1) R5 培地による培養抽出物の分析

培養液 (30 ml)を遠心分離して得た菌体を 15 ml のアセトンで抽出し、アセトンを除去した濃 縮液を 20 ml の酢酸エチルで 2 回抽出した。酢酸エチル抽出液を濃縮後、メタノールに溶解し、 HPLC にて分析した(Fig. 6-4-3)。

> Culture broth (30 ml) centrifuged Mycelium extracted with acetone concentrated extracted with EtOAc HPLC

Fig. 6-4-3 R5 培地による培養抽出物の分析

2) R5 寒天培地による培養抽出物の分析

培養した寒天培地(20 ml)を粉砕し、50 mlのアセトンで抽出した。アセトンを減圧留去した 濃縮液を 30 mlの酢酸エチルで 2 回抽出した。抽出液を濃縮後、メタノールに溶解し、HPLC に て分析した(Fig. 6-4-4)。HPLC 分析は Table 6-4-5 の条件下で行った。

> Solid culture (20 ml) extracted with acetone concentrated extracted with EtOAc HPLC

Fig. 6-4-4 R5 培地による培養抽出物の分析

Table 6-4-5 PG 類の分析に用いた HPLC 条件

MC-Pack R-ODS-7	Senshu Pack PEGASIL ODS SP-100
4.6 i.d.×250 nm)	(4.6 i.d.×250 nm)
36% MeOH-0.15% TFA	90% MeOH-5 mM NaH ₂ citrate
530 nm	530 nm
2 m/min	1 ml/min
	7MC-Pack R-ODS-7 4.6 i.d.×250 nm) 36% MeOH-0.15% TFA 330 nm 2 m/min

第4章に関する実験

1. 菌株およびプラスミド

タンパク質発現用宿主として *E. coli* M15 株を用いた。*fre* 遺伝子のクローニングに用いるゲノ ム DNA は *E. coli* BL21 株から調製した。タンパク質発現用プラスミドとして pQE30 を用いた。

2. S. griseoviridisのドラフトゲノム解析

S. griseoviridis 2464-S5 株のドラフトゲノム解析は、タカラバイオ株式会社にて行った。 illumina HiSeq 2000 を用いてゲノム DNA 配列について解析した。Edena assembler version 3 を用いて配列アセンブリングを行い、総塩基数 7096849 bp から成る 333 の contig が明らかにな った。アノテーションツールである 2nd find、FramePlot を用いて、得られた配列を解析した。

3. クロル化遺伝子候補のクローニング

DNA 断片の抽出には Quick Gel Extraction Kit (QIAGEN) を使用した。また、目的遺伝子の 塩基配列解析には ABI PRISM Genetic Analyzer 3100 (Applied Biosystems) を用いた。

1) orf16-3、freのPCR による増幅

*orf16-3*領域 1.3 kb、*fre* 領域 0.7 kb を増幅させるために、*Sac*I または *Hin*dIII 制限酵素部位 を付加したプライマーを設計した(Table 6-5-1)。

CA <u>GAGCTC</u> ACGGACACCAACACCACCGCCGA-3'
TT <u>AAGCTT</u> TCAGGCCGGTGCGGGAGCGCCC-3'
CA <u>GAGCTC</u> ACAACCTTAAGCTGTAA-3'
CC <u>AAGCTT</u> GATAAATGCAAACGCAT-3'

Table 6-5-1 orf16-3 および fre 遺伝子増幅に用いた PCR プライマー

*orf16-3*の増幅には *S. griseoviridis* 2464-S5 のゲノム DNA を鋳型として用いた。*fre*の増幅に は *E. coli* BL21 株のゲノム DNA を鋳型として用いた。*orf16-3* および *fre*の DNA 伸長酵素とし て Q5 High-Fidelity DNA Polymerase (New England Biolabs)を用いた。Table 6-5-2 に示す反 応条件で PCR 反応を行い、増幅した各 DNA 断片を *Sac*I、*Hin*dIII で消化した。次いで、各断片 をアガロースゲル電気泳動後、抽出、精製した。得られた断片を、クローニングベクターである pGEM-7Z の *SacI/Hin*dIII 部位に連結した。クローニングしたプラスミドの塩基配列解析を行い、 目的遺伝子の増幅を確認した。

orf16 - 3		fre	
1. 98°C	30 sec	1. 98°C	30 sec
2. 98°C	10 sec	2. 98°C	10 sec
3. 67°C	10 sec	3. 68°C	10 sec
4. 72°C	2 min	4. 72°C	25 sec
$2\sim 4$ 30 cycl	es	$2\sim 4$ 30 cycl	es
		5. 72°C	$2 \min$

Table 6-5-2 orf16-3 および fre 遺伝子増幅の PCR 条件

2) Orf16-3 発現用プラスミドおよび Fre 発現用プラスミドの作製

タンパク質発現ベクターである pQE30 の *Sac*I-*Hin*dIII 部位に、1)で得られたプラスミドから 同制限酵素で消化した *orf16-3* 断片および *fre* 断片を連結した。

4. pQE ベクターに挿入した遺伝子の発現と酵素溶液の調製

orf16・3 または fre 遺伝子を挿入した pQE30 で形質転換した E. coli M15 株の培養および遺伝子 産物の精製は以下のようにして行った。100 µg/mlの ampicillin および 25 µg/mlの kanamycin (終 濃度を含む LB 培地 5 ml を分注した試験管に E. coli M15 株の凍結保存菌または形質転換株を接 種し、37°C にて 10 時間振盪培養したものを種母とした。同濃度の ampicillin、kanamycin を含 む LB 培地 100 ml を分注した 500 ml 三角フラスコに 5 ml の上記種母を添加後、37°C にて培養 した。濁度 (600 nm) が 0.5 に達した時点で終濃度 100 µM となるように IPTG を添加し、27°C で 16 時間培養した。培養液を回収し、5000 rpm で 5 分間遠心して上清を除き、沈殿させた菌体 に緩衝液 (10 mM Tris-HCl, 2 mM PMSF, pH 7.5) を 5 mL 加えて懸濁した。SONIFIER 250 (BRANSON) を用いて、懸濁液を氷冷しつつ超音波破砕 (duty cycle 20%, output control 5, 20 sec x 6) した。得られた菌体破砕液を 7500 rpm で 5 分間遠心分離して上清を回収し、フィルタ ーろ過し、これを酵素溶液として用いた。酵素溶液中のタンパク質が単一であることは、 SDS-PAGE で確認した。SDS-PAGE は、Model 3000Xi Computer Controlled Electrophoresis Power Supply (Bio-Rad) を用いて、7.5%ゲルで行った。タンパク質の染色には、Quick-CBB (Wako) を使用した。

5. Fre タンパク質粗精製物の FAD 還元活性評価

FreのFAD 還元活性について、反応の進行に伴い減少するNADHの量を測定することで評価 した。反応前後の溶液を用いて、NADHの吸収波長である340 nmの吸光度を測定し、NADH の濃度変化を求めた。

6. クロル化反応生成物の HPLC 分析

クロル化反応生成物の HPLC 分析については、Table 6-5-3 の条件下で行った。

Table 6-5-3 クロル化反応生成物の分析に用いた HPLC 条件

カラム	Senshu Pack PEGASIL ODS SP-100 (4.6 i. d. $\times 250$ mm)
溶媒	90% MeOH-5 mM Na ₂ H citrate
測定波長	530 nm
流速	1 ml/min

7. orf16-3、orf16-3~orf16-5 遺伝子発現プラスミドの構築

1) orf16-3、orf16-3~orf16-5の PCR による増幅

*orf16-3*領域 1.3 kb、*orf16-3~orf16-5*領域 3.6 kb を増幅させるために、*Xba*I または *Hin*dIII 制限酵素部位を付加したプライマーを設計した(Table 6-5-4)。

Table 6-5-4 orf16-3 および orf16-3~orf16-5 増幅に用いた PCR プライマー

orf16-3プライマー	5'-GTA <u>TCTAGA</u> ATGACGGACACCAACACCACCGCCG-3'
	5'-ATT <u>AAGCTT</u> TCAGGCCGGTGCGGGAGCGCCC-3'
orf16-3~orf16-5プライマー	5'-ATT <u>AAGCTT</u> GGCCGGTGCGGGAGCGCCC-3'
	5'-ACT <u>AAGCTT</u> TCAGCGCCGGACCGCGAAGGCCG-3'

*orf16-3*および *orf16-3~orf16-5*の増幅には *S. griseoviridis* 2464-S5 のゲノム DNA を鋳型とし て用いた。*orf16-3*および *orf16-3~orf16-5*の DNA 伸長酵素として Q5 High-Fidelity DNA Polymerase (New England Biolabs)を用いた。Table 6-5-5 に示す反応条件で PCR 反応を行い、 増幅した各 DNA 断片を *Xba*I、*Hin*dIII で消化した。次いで、各断片をアガロースゲル電気泳動 後、抽出、精製した。得られた断片を、クローニングベクターである pGEM-7Z の *Xba*I/*Hin*dIII 部位または *Hin*dIII 部位に連結した。クローニングしたプラスミドの塩基配列解析を行い、目的 遺伝子の増幅を確認した。

Table 6-5-5 orf16-3 および orf16-3~orf16-5の PCR 条件

orf16-3		orf16-3~orf16-5	
1. 98°C	30 sec	1. 98°C 30 sec	
2. 98°C	10 sec	2. 98°C 10 sec	
3. 67°C	10 sec	3. 67°C 10 sec	
4. 72°C	$2 \min$	4. 72°C 5 min	
$2\sim\!4$	30 cycles	$2\sim 4$ 30 cycles	

2) orf16-3発現用プラスミドおよび orf16-3~orf16-5発現用プラスミドの作製

1 章で作製した pWHMexM の *Xbal-Hin*dIII 部位に、1)で得られたプラスミドから同制限酵素 で消化した *orf16-3* 断片を連結した。また、pWHM3 の *Hin*dIII 部位に、1)で得られたプラスミ ドから同制限酵素で消化した *orf16-3~orf16-5* 断片を連結した。

Fig. 6-5-1 orf16-3発現用プラスミドおよび orf16-3~orf16-5発現用プラスミド

8. orf16-3 および orf16-3~orf16-5 導入株が生産する PG 類の分析

培養した寒天培地 (20 ml) を粉砕し、50 ml のアセトンで抽出した。アセトンを減圧留去した 濃縮液を 30 ml の酢酸エチルで 2 回抽出した。抽出液を濃縮後、HPLC にて分析した。

> Solid culture (20 ml) extracted with acetone concentrated extracted with EtOAc HPLC

> > Fig. 6-5-2 PG 類の分析

HPLC 分析は、Table 6-5-6 の条件下で行った。

Table 6-5-6 PG 類の分析に用いた HPLC 条件

カラム	YMC-Pack R-ODS-7 (4.6 i. d. $\times 250$ mm)
溶媒	86% MeOH-3% MeCN-0.15% TFA
測定波長	530 nm
流速	2 ml/min

- Hayakawa Y, Kawakami K, Seto H. Structure of a new antibiotic, roseophilin. *Tetrahedron Lett.* 33: 2701-2704 (1992)
- Kawasaki T, Sakurai F, Hayakawa Y. A prodigiosin from the roseophilin producer Streptomyces griseoviridis. J. Nat. Prod. 71: 1265-1267 (2008)
- Hubbard R, Rimington C. The biosynthesis of prodigiosin, the tripyrrylmethene pigment from *Bacillus* prodigiosus (*Serratia marcescens*). *Biochem. J.* 46: 220-225 (1950)
- Gandhi NM, Patell JR, Gandhi J, De Souza NJ, Kohl H. Prodigiosin metabolites of a marine *Pseudomonas* species. *Marine Biology*. 34: 223-227 (1976)
- Tsao SW, Rudd BAM, He XG, Chang GJ, Floss HG. Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J. Antibiot. 38: 128-131 (1985)
- 6) Wasserman NH, Sykes RJ, Peverada P, Chaw CK. Biosynthesis of prodigiosin. Incorporation patterns of ¹³C-labeled alanine, proline, glycine, and serine elucidated by Fourier transform nuclear magnetic resonance. J. Am. Chem. Soc. 95: 6874-6875 (1973)
- Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GPC. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in *Serratia* is under quorum sensing control. *Mol. Microbiol.* 36: 539-556 (2000)
- 8) Thomson NR, Simonsen HT, Ahmed RAA, Goldet G, Slater H, Woodly L, Leeper FJ and Salmond GPC. Biosynthesis of the *red* antibiotic, prodigiosin, in *Serratia*: identification of a novel 2-methyl-3-n-amyl-pyrrol (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin in biosynthesis in *Streptomyces. Mol. Microbiol.* 56: 971-989 (2005)
- Cerdeno AM, Bibb MJ, Challis GL. Analysis of the prodiginine biosynthesis gene cluster of *Streptomyces coelicolor* A3(2): new mechanisms for chain initiation and termination in modular multienzymes. *Chem. Biol.* 8: 817-829 (2001)
- Mo S, Kim BS, Reynolds KA. Production of branched-chain alkylprodiginines in S. coelicolor by replacement of the 3-ketoacyl ACP synthase III initiation enzyme, RedP. Chem. Biol. 12: 191-200 (2005)
- Stanley AE, Walton LJ, Zerikly MK, Core C, Challis GL. Elucidation of the *Streptomyces coelicolor* pathway to 4-methoxy-2,2'-bipyrrole-5-carboxaldehyde, an intermediate in prodiginine biosynthesis. *Chem. Commun.* 3981-3983 (2006)
- Kawasaki T, Sakurai F, Nagatsuka S, Hayakawa Y. Prodigiosin biosynthesis gene cluster in the roseophilin producer *Streptomyces griseoviridis*. J. Antibiot. 62: 271-276 (2009)

- 13) Maharjan S, Aryal N, Bhattarai S, Koju D, Lamichhane J, Sohng JK. Biosynthesis of the nargenicin A₁ pyrrole moiety from *Nocardia* sp. CS682. *Appl. Microbiol. Biotechnol.* 93: 687-696 (2012)
- 14) Sydor PK, Barry SM, Odulate OM, Gomez FB, Haynes SW, Corre C, Song L, Chalis GL.
 Regio- and stereodivergent antibiotic oxidative carbocyclizations catalyzed by Rieske oxygenase-like enzymes. *Nature Chemistry*. 3: 388-392 (2011)
- Montaner B, Perez-Tomas R. The prodigiosins: a new family of anticancer drugs.
 Curr Cancer Drug Targets. 3: 57-65 (2003)
- 16) Gerber NN, and Gauthier MJ. New prodigiosin-like pigment from Alteromonas rubra.
 Appl. Environ. Microbiol. 37: 1176-1179 (1979)
- Clift DC, Thomson RJ. Development of a merged conjugate addition/oxidative coupling sequence. Application to the enantioselective total synthesis of metacycloprodigiosin and prodigiosin R1. J. Am. Chem. Soc. 131: 14579-14583 (2009)
- 18) Gerber NN. Prodigiosin-like Pigments from Actinomadura (Nocardia) pelletieri.
 J. Antibiot. 24: 636-639 (1971)
- 19) Gerber NN. Minor prodiginine pigments from *Actinomadura madurae* and *Actinomadura pelletieri*. J. Het. Chem. 10: 925-929 (1973)
- 20) Salem SM, Kancharla P, Florova G, Gupta S, Lu W, Reynolds KA. Elucidation of final steps of the marineosins biosynthetic pathway through identification and characterization of the corresponding gene cluster . J. Am. Chem. Soc. 136: 4565-4574 (2014)
- 21) Piraee, M., and L. C. Vining. Use of degenerate primers and touchdown PCR to amplify a halogenase gene fragment from *Streptomyces venezuelae* ISP5230. *Journal of industrial microbiology & biotechnology* 29.1: 1-5. (2002)
- 22) Kimata S, Izawa M, Kawasaki T, Hayakawa Y. Identification of a prodigiosin cyclization gene in the roseophilin producer and production of a new cyclized prodigiosin in a heterologous host. *J. Antibiot.* 70: 196-199 (2017)
- 23) Wattanapitayakul SK, Chularojmontri L, Herunsalee A, Charuchongkolwongse S, Niumsakul S, Baue JA. Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. *Basic & clinical pharmacology & toxicology* 96.1: 80-87 (2005)
- 24) Cubitt CL, Menth J, Dawson J, Martinez GV, Foroutan P, Morse DL, Bui MM, Letson GD, Sullivan DM, Reed DR. Rapid screening of novel agents for combination therapy in sarcomas. *Sarcoma* 2013 (2013).
- 25) Kimata S, Matsuda T, Suizu Y, Hayakawa Y. Prodigiosin R2, a new prodigiosin from the roseophilin producer *Streptomyces griseoviridis* 2464-S5. *J. Antibiot.* in press.
- 26) Bibb, Mervyn J., Gary R. Janssen, and Judy M. Ward. Cloning and analysis of the promoter region of the erythromycin resistance gene (*ermE*) of *Streptomyces erythraeus*.

Gene 38.1: 215-226 (1985)

本研究を行うにあたり、終始丁寧なるご指導、ご鞭撻を頂きました東京理科大学薬学部生命創 薬科学科、早川洋一教授に深く感謝し、厚く御礼申し上げます。

また、博士論文審査において懇切丁寧なご指導を頂きました東京理科大学薬学部青木伸教授、 内海文彰教授、羽田紀康教授、望月正隆教授に深く感謝いたします。

本研究に関して熱心なご指導と丁寧なご助言をして頂きました東京理科大学薬学部生命創薬科 学科、伊澤真澄助教に深く感謝いたします。

質量分析をして頂きました東京理科大学薬学部質量分析室、長谷川富喜子さんに深く感謝いた します。

同研究テーマで実験に取り組み、貴重な知見を提供して頂きました藤田奈菜さん、松田拓也さ ん、水津佑太さんに深く感謝いたします。

本研究を行うにあたり、貴重な知見を提供して頂きました立命館大学薬学部薬学科、川崎崇助教に深く感謝いたします。

日々の研究室生活において多くのご協力をして頂きました早川研究室の皆様に深く感謝し、今後の成功を祈願いたします。

最後に、大学生活を送るにあたり、経済面、精神面で支えて頂きました家族に深く感謝いたし ます。