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Chapter 1

Introduction

In this study, we consider some tests for mean vectors when each data set has a monotone
missing data pattern. We deal with the Hotelling’s T 2-type test statistics and the likeli-
hood ratio test (LRT) statistics. First we consider the Hotelling’s T 2-type test statistics
for one-sample, two-sample, and multi-sample problems. We give simplified T 2-type test
statistics and approximate upper percentiles of the statistics. Using the approximations,
approximate simultaneous confidence intervals for the mean components are obtained.
We also consider approximate simultaneous confidence intervals for pairwise comparisons
among mean vectors and comparisons with a control are obtained using Bonferroni’s ap-
proximation procedure. The accuracy and asymptotic behavior of the approximations are
investigated by Monte Carlo simulation.

Second, as for LRT, we give the likelihood ratio (LR) for one-sample problem. And
then, we derive modified test (MT) and modified likelihood ratio test (MLRT) statistics
by using decomposition of the LR. In addition, we deal with the LRT, MT, and MLRT
statistics to test the equality of mean vectors in a one-way MANOVA when each dataset
has a monotone pattern of missing observations. The accuracy of the approximation for
the chi-square distribution is investigated using a Monte Carlo simulation. Throughout
this paper, we assume that the data are missing completely at random (MCAR).

The remainder of this paper is as follows. In Chapter 2, we discuss the simplified
T 2-type test statistics in one-sample problem with three-step and general step monotone
missing data. For the one-sample problem with k-step monotone missing data, Jinadasa
and Tracy (1992) obtained closed form expressions for the maximum likelihood estima-
tors (MLEs) of the mean vector and the covariance matrix of the multivariate normal
distribution. In particular, Anderson (1957) and Anderson and Olkin (1985) considered
a two-step monotone missing data pattern. Kanda and Fujikoshi (1998) discussed the
properties of the MLEs in the case of k-step monotone missing data using the conditional
approach.

Tests for a mean vector with monotone missing data have been discussed by many
authors. For discussions related to the statistics based on the Hotelling’s T 2 statistic
in one-sample problem, see Krishnamoorthy and Pannala (1999), Chang and Richards
(2009), Seko, Yamazaki and Seo (2012), Yagi and Seo (2014), and Kawasaki and Seo
(2016), among others. For example, Chang and Richards (2009) gave the Hotelling’s
T 2-type statistic and its some properties, and Seko et al. (2012) proposed approximate
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upper percentiles of the Hotelling’s T 2-type statistic with two-step monotone missing
data. Krishnamoorthy and Pannala (1999) derived a pivotal quantity, similar to the
Hotelling’s T 2 statistic and gave an approximation to the null distribution of the statistic
with monotone missing data. In Section 2.1, we give the simplified T 2-type statistic and
approximate upper percentiles of its null distribution with three-step monotone missing
data. This is a summary of Yagi and Seo (2014). A generalization of Section 2.1 is given
in Section 2.2, which is a summary of Yagi and Seo (2017).

In Chapter 3, as an extension of Chapter 2 to the two-sample or multi-sample prob-
lem, the simplified T 2-type test statistic in two-sample or multi-sample problem with
three-step and general step monotone missing data are given in Section 3.1 and Section
3.2, respectively. In the two-sample problem, for two-step monotone missing data, Seko,
Kawasaki and Seo (2011) gave the Hotelling’s T 2-type statistic and their approximate
upper percentiles for the null distributions, using the linear interpolation approxima-
tion. Yu, Krishnamoorthy and Pannala (2006) proposed a pivotal quantity, similar to
the Hotelling’s T 2 statistic and discussed the approximate distributions for the statistic.
Indeed, we note that the simplified Hotelling’s T 2-type statistics coincide with the pivotal
quantities similar to the Hotelling’s T 2 statistic in Krishnamoorthy and Pannala (1999)
and Yu et al. (2006). We also present simultaneous confidence intervals for multiple com-
parisons among mean vectors under the two-sample and multi-sample problems. These
are summaries of Yagi and Seo (2015b) and Yagi and Seo (2017).

On the other hand, since the simplified T 2-type test is not the LR test in the case of
the data with monotone missing data pattern unlike the complete data case, the LR test
for one-sample problem is discussed in Chapter 4. The LR test for a mean vector is also
discussed by many authors. Krishnamoorthy and Pannala (1998) gave the decomposition
of LR and provided comparisons with several approximation procedures. Then, Seko et
al. (2012) discussed the LRT statistic and the linear interpolation approximation to the
null distribution in the two-step monotone missing case. For a discussion on developing
estimation and testing procedures for the mean vector and the scale matrix of the elliptical
distributions with monotone missing data, see Batsidis and Zografos (2006). In this
chapter, the MT and MLRT statistics of the one-sample test for a normal mean vector
with monotone missing data are obtained, which is a summary of Yagi, Seo and Srivastava
(2017a). We present that the LR for the one-sample test of the mean vector with monotone
missing data can be expressed as the products of the LR of the test for a mean vector and
those of subvector, and we derive the asymptotic expansion by the perturbation method.
A related discussion of a test for a subvector and a decomposition with complete data
was given by Siotani et al. (1985). Under nonnormality with complete data, Gupta,
Xu and Fujikoshi (2006) discussed the asymptotic expansion of the distribution of Rao’s
U -statistic, which is proposed as test for a subvector or additional information. For the
simultaneous testing of the mean vector and the covariance matrix with monotone missing
data, see Hao and Krishnamoorthy (2001), Tsukada (2014), Hosoya and Seo (2015, 2016),
among others.

Finally, in Chapter 5, as an extension of Chapter 4 to the multi-sample problem, the
LRT, MT and MLRT statistics in a one-way MANOVA is considered. This is a summary
of Yagi, Seo and Srivastava (2017b).
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Chapter 2

A test for a mean vector

In this chapter, we consider the problem of testing for a mean vector and simultaneous
confidence intervals when the data have three-step (Section 2.1) or general k-step (Section
2.2) monotone pattern of missing observations. The MLEs of the mean vector and the
covariance matrix with a three-step or general step monotone missing data pattern are
presented. We propose an approximate upper percentile of simplified T 2-type statistic to
test a mean vector. Further, we obtain the approximate simultaneous confidence intervals
for any and all linear compounds of the mean, and testing the equality of mean components
is discussed. Finally, the accuracy of the approximation is investigated by Monte Carlo
simulation and a numerical example is given to illustrate the method.

The case in which the missing observations are of the monotone type has been con-
sidered by several authors, including Rao (1956), Anderson (1957), and Bhargava (1962).
Jinadasa and Tracy (1992) obtained closed form expressions for the MLEs of the mean
vector and the covariance matrix of the multivariate normal distribution in the case of
the k-step monotone missing data. Kanda and Fujikoshi (1998) discussed the distribution
of the MLEs in the case of the k-step monotone missing data.

In this chapter, we consider the problem of testing H0 : μ = μ0 vs. H1 : μ �= μ0

when the data have monotone pattern of missing observations and μ0 is known. In the
case of a two-step monotone missing data, Chang and Richards (2009) and Seko et al.
(2012) derived a Hotelling’s T 2-type statistic and some properties. For the case of a k-step
monotone missing data pattern (k ≥ 3), Krishnamoorthy and Pannala (1999) derived a
simplified T 2-type statistic since the usual T 2-type statistic becomes very complicated to
derive the exact covariance matrix for MLE of the mean vector (see, Kanda and Fujikoshi,
1998, p.185). They proposed an approximation to the upper percentile.

In Section 2.1, using other definitions, we give the simplified T 2-type statistic and
propose its approximate upper percentile in the case of a three-step monotone missing
data. Our approximation procedure is essentially based on that given in Seko et al.
(2012). The related discussion is given by Hao and Krishnamoorthy (2001), Little and
Rubin (2002), Chang and Richards (2009), among others.

Section 2.1 is organized in the following way. In Section 2.1.1, we present the MLEs
of the mean vector and the covariance matrix with a three-step monotone missing data
using the notations and derivation used by Jinadasa and Tracy (1992). These results
are simple and useful in order to derive a simplified T 2-type statistic and the covariance
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for the MLE of the mean vector. In Section 2.1.2, we present the simplified T 2-type
statistic for testing the mean vector and its approximate upper percentile. In Section
2.1.3, the approximate simultaneous confidence intervals for any and all linear compounds
of the mean are obtained. Further, we discuss testing the equality of mean components.
In Sections 2.1.4 and 2.1.5, we give some simulation results and a numerical example,
respectively. Indeed, Section 2.1 is organized based on Yagi and Seo (2014).

On the other hand, in Section 2.2, which is summarized using the parts of Yagi and
Seo (2017), we consider the distribution of the simplified T 2-type test statistic in the case
of general k-step monotone missing data. That is, we give an extension of three-step case
in Section 2.1. In Section 2.2.1, some preliminary notations are presented, and the MLEs
of the mean vector, and the common covariance matrix are obtained in the case of k-step
monotone missing data. In Section 2.2.2, we give the simplified T 2-type statistic to test
for a mean vector and their approximate upper percentiles. Further, we give approximate
simultaneous confidence intervals for any and all linear compounds of the mean and the
testing equality of mean components. In Section 2.2.3, we give the simulation results.
We present the numerical comparisons of our linear interpolation approximation with the
approximation by Krishnamoorthy and Pannala (1999). Finally, we state our conclusions
in Section 2.3.

2.1 Three-step monotone missing data

In this section, we propose a simplified T 2-type statistic and its approximate upper per-
centile in the case of a three-step monotone missing data, similar to that in the case of
a two-step monotone missing data. We deal with the problem of testing for mean vector
with a three-step monotone missing data:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 · · · x1p3 x1,p3+1 · · · x1p2 x1,p2+1 · · · x1p1
...

...
...

...
...

...
xn11 · · · xn1p3 xn1,p3+1 · · · xn1p2 xn1,p2+1 · · · xn1p1

xn1+1,1 · · · xn1+1,p3 xn1+1,p3+1 · · · xn1+1,p2 ∗ · · · ∗
...

...
...

...
...

...
xn1+n2,1 · · · xn1+n2,p3 xn1+n2,p3+1 · · · xn1+n2,p2 ∗ · · · ∗
xn1+n2+1,1 · · · xn1+n2+1,p3 ∗ · · · ∗ ∗ · · · ∗

...
...

...
...

...
...

xn1+n2+n3,1 · · · xn1+n2+n3,p3 ∗ · · · ∗ ∗ · · · ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where p = p1 > p2 > p3 > 0, n1 > p, and “ ∗ ” indicates a missing observation. That is,
we have a complete data set for n1 observations with p1 dimensions and two incomplete
data sets which have n2 observations with p2 dimensions and n3 observations with p3
dimensions. Further, let x be distributed as Np(μ,Σ), and let xi = (x)i be the vector
of the first pi elements of x. Then, xi(= (x1, x2, . . . , xpi)

′) is distributed as Npi(μi,Σi),
i = 1, 2, 3, where μi = (μ)i = (μ1, μ2, . . . , μpi)

′ and Σi is the principal submatrix of
Σ(= Σ1) of order pi × pi.
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Let (Σi)j be the principal submatrix of Σi of order pj × pj, 1 ≤ i < j ≤ 3. We define

Σi+1 = (Σ1)i+1, Σ1 = Σ =

(
Σi+1 Σi+1,2

Σ′
i+1,2 Σi+1,3

)
and

Σi =

(
Σi+1 Σ(i,2)

Σ′
(i,2) Σ(i,3)

)
, i = 1, 2.

For example, we can express Σ1 as

Σ1 =

p2
︷ ︸︸ ︷

p1−p2
︷ ︸︸ ︷(

Σ2 Σ22

Σ′
22 Σ23

)}p2
}p1 − p2

or Σ1 =

p3
︷ ︸︸ ︷

p1−p3
︷ ︸︸ ︷(

Σ3 Σ32

Σ′
32 Σ33

)}p3
}p1 − p3 .

Also, we have

Σ2 =

p3
︷ ︸︸ ︷

p2−p3
︷ ︸︸ ︷(

Σ3 Σ(2,2)

Σ′
(2,2) Σ(2,3)

)}p3
}p2 − p3 ,

where Σ2 is the upper left submatrix of Σ1.
If xij denotes the jth observation on xi, then the three-step monotone missing data

set is of the form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′
11
...

x′
1n1

x′
21 ∗ · · · ∗
...

...
...

x′
2n2

∗ · · · ∗
x′
31 ∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

x′
3n3

∗ · · · ∗ ∗ · · · ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Such a data set is called a three-step monotone missing data pattern. For a k-step
monotone sample or a k-step monotone missing data pattern, see Bhargava (1962), Sri-
vastava and Carter (1983), Little and Rubin (2002), Srivastava (2002), among others.

2.1.1 MLEs of the mean vector and the covariance matrix

Let the MLEs of μ and Σ be denoted by μ̂ and Σ̂, respectively. If the data have three-step
monotone pattern missing observations, then we have the following theorem based on the
derivation of Jinadasa and Tracy (1992).

Theorem 2.1 (Yagi and Seo, 2014) If the data have three-step monotone pattern
missing observations, then the MLE of the mean vector is given by

μ̂ = x1 + T̂ 2d2 + T̂ 2T̂ 3d3,
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where

xi =
1

ni

ni∑
j=1

xij, i = 1, 2, 3,

d2 =
n2

N3

{x2 − (x1)2} , d3 =
n3

N4

[
x3 − 1

N3

{n1(x1)3 + n2(x2)3}
]
,

T̂ 2 =

(
Ip2

Σ̂
′
(1,2)Σ̂

−1

2

)
, T̂ 3 =

(
Ip3

Σ̂
′
(2,2)Σ̂

−1

3

)
, Ni+1 =

i∑
j=1

nj, i = 1, 2, 3,

and then, the MLE of the covariance matrix is given by

Σ̂ =
1

N2

E1 +
1

N3

G2

[
E2 +

N2N3

n2

d2d
′
2 −

n2

N2

L11

]
G′

2

+
1

N4

G2G3

[
E3 +

N3N4

n3

d3d
′
3 −

n3

N3

L21

]
G′

3G
′
2,

where

Ei =

ni∑
j=1

(xij − xi)(xij − xi)
′, i = 1, 2, 3, G2 =

(
Ip2

L′
12L

−1
11

)
, G3 =

(
Ip3

L′
22L

−1
21

)
,

L1 = E1, L2 = L11 +E2 +
N2N3

n2

d2d
′
2, Li =

(
Li1 Li2

L′
i2 Li3

)
, i = 1, 2.

Figure 2.1 shows the data set with a three-step monotone missing data pattern that
is used to calculate d2 and d3, respectively.

The values of both MLEs coincide with those of Kanda and Fujikoshi (1998) derived
by the conditional approach. In this paper, we present the MLEs for the case of a three-
step monotone missing data in order to obtain a simplified T 2-type statistic for testing
the mean vector.

p1

p2

p3

n1

n2

n3

(x1)2

x2

p1

p2

p3

n1

n2

n3

(x1)3

(x2)3

x3

(a) (b)

Figure 2.1: (a) Data used to calculate d2 and (b) Data used to calculate d3
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2.1.2 Simplified T 2-type statistic

In this section, we consider the following hypothesis test with a three-step monotone
missing data pattern:

H0 : μ = μ0 vs. H1 : μ �= μ0,

where μ0 is known. Without loss of generality, we can assume that μ0 = 0. To test the
hypothesis H0, we consider a usual Hotelling’s T 2-type statistic given by

T 2 = μ̂′ Γ̂
−1
μ̂,

where μ̂ = x1+ T̂ 2d2+ T̂ 2T̂ 3d3 and Γ̂ is an estimator of Γ = Cov(μ̂). In order to discuss
the distribution of T 2, the covariance matrix of μ̂, Cov(μ̂), is a key quantity. However,

we use the simplified T 2-type statistic with Ĉov(μ̃) instead of Ĉov(μ̂) since Ĉov(μ̂) is

complicated and Ĉov(μ̃) and Ĉov(μ̂) are asymptotically equivalent.
Therefore, we adopt that

T̃ 2 = μ̂′ Γ̃
−1
μ̂,

where Γ̃ = Ĉov(μ̃) and μ̃ = x1+T 2d2+T 2T 3d3. Then we have Cov(μ̃) = E[μ̃μ̃′]−μμ′,
where

E[μ̃μ̃′] =E[(x1 + T 2d2 + T 2T 3d3)(x1 + T 2d2 + T 2T 3d3)
′]

=E[x1x
′
1 + x1d

′
2T

′
2 + x1d

′
3T

′
3T

′
2 + T 2d2x

′
1 + T 2d2d

′
2T

′
2

+ T 2d2d
′
3T

′
3T

′
2 + T 2T 3d3x

′
1 + T 2T 3d3d

′
2T

′
2 + T 2T 3d3d

′
3T

′
3T

′
2].

Further, using the results,

E[x1x
′
1] =

1

n1

Σ+ μμ′, E[x1d
′
2] = − n2

N2N3

(
Σ2

Σ′
22

)
, E[x1d

′
3] = − n3

N3N4

(
Σ3

Σ′
32

)
,

E[d2d
′
2] =

n2

N2N3

Σ2, E[d2d
′
3] = O, and E[d3d

′
3] =

n3

N3N4

Σ3,

we can obtain

Γ̃ = Ĉov(μ̃) =
1

N2

Σ̂1 − n2

N2N3

Û − n3

N3N4

V̂ ,

where

Û =

(
Σ̂2

Σ̂
′
22

)
T̂

′
2, V̂ =

(
Σ̂3

Σ̂
′
32

)
T̂

′
3T̂

′
2.

Therefore, we can determine a simplified T 2-type statistic. We note that, under H0,
the simplified T 2-type statistic is asymptotically distributed as a χ2 distribution with p
degrees of freedom when n1, N4 → ∞ with n1/N4 → δ ∈ (0, 1]. However, it is noted that
χ2 approximation is not a good approximation to the upper percentile of the simplified
T 2-type statistic when the sample is not large. Using the same concept adopted for two-
step monotone missing data by Seko et al. (2012), we propose the approximate upper

percentile of T̃ 2 statistic since it is difficult to find the exact upper percentiles of the T̃ 2

statistic. That is
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p1

N4=n1 + n2 + n3

p1

p2

p3

n1

n2

n3

p1

n1

T 2
N4,α

T 2
n1,α t2(α)> >

Figure 2.2: Approximation for the upper percentiles of T̃ 2

t2YS·L1(α) =

{
1− n2p2 + n3p3

(n2 + n3)p1

}
T 2
n1,α

+
n2p2 + n3p3
(n2 + n3)p1

T 2
N4,α

,

where

T 2
n1,α

=
n1p1

n1 − p1
Fp1,n1−p1,α, T 2

N4,α
=

N4p1
N4 − p1

Fp1,N4−p1,α,

and Fp,q,α is the upper 100α percentile of the F distribution with p and q degrees of

freedom. We note that T 2
n1

= n1x
′
1Σ̂

−1

MLx1 is distributed as n1p1/(n1 − p1)Fp1,n1−p1

since Σ̂ML = (1/n1)
∑n1

j=1(x1j − x1)(x1j − x1)
′ is not unbiased estimator but maximum

likelihood estimator based on n1 × p1 complete data set. As in Figure 2.2, T 2
n1,α

and
T 2
N4,α

are calculated from an n1 × p1 complete data set (left-hand side) and an N4 × p1
complete data set (right-hand side), respectively. We also noted from Figure 2.2 that

the upper percentiles of T̃ 2, t2(α) may be between T 2
N4,α

and T 2
n1,α

, and the value of
t2YS·L1(α) is an approximation for t2(α) using the linear interpolation for the coordinates
(n1p1, T

2
n1,α

) and (N4p1, T
2
N4,α

). Indeed, t2YS·L1(α) converges to T 2
n1,α

as n2 → 0, n3 → 0,
and t2YS·L1(α) converges to T 2

N4,α
as p2 → p1, p3 → p1. As a remark, Seko et al. (2012) gave

the approximation using unbiased estimator of Σ but we adopt the maximum likelihood
estimator as our approximation. In this sense, it may be noted that our approximation
gives a slight improvement.

2.1.3 Simultaneous confidence intervals and testing equality of
mean components

We consider the simultaneous confidence intervals for any and all linear compounds of
the mean when the data have three-step monotone missing observations. Using the
approximate upper percentiles of T̃ 2 from Section 2.1.2, for any nonnull vector a =
(a1, a2, . . . , ap)

′, the approximate simultaneous confidence intervals for a′μ are given by

a′μ̂−
√

t2YS·L1(α)a
′Γ̃a ≤ a′μ ≤ a′μ̂+

√
t2YS·L1(α)a

′Γ̃a, ∀a ∈ Rp − {0}.
12



For a two-step monotone missing data, see Seko et al. (2012). Further, we consider the
testing equality of mean components for the case of a three-step monotone missing data,
that is,

H0 : μ1 = μ2 = · · · = μp vs. H1 : At least two means are different.

In this case, let yij = Cixij, i = 1, 2, 3, j = 1, 2, . . . , ni, where Ci is a (pi − 1)× pi matrix
such that Ci1 = 0 and CiC

′
i = Ipi−1, then yij’s are distributed as Npi−1(Ciμi, Ipi−1),

because without loss of generality, we can assume that Σ = I when we consider the
T 2-type statistic with a monotone missing data. Hence, the simplified T 2-type statistic
is given by

T̃ 2
c = μ̂∗′Γ̃

∗−1

μ̂∗,

where μ̂∗ is the MLE of μ∗ = C1μ and Γ̃
∗
= Ĉov(μ̃∗), μ̃∗ = C1μ̃. Therefore, essentially,

using the same values of t2YS·L1(α) obtained in Section 2.1.2 for the approximate upper

percentile of the T̃ 2
c statistic, we can test the equality of mean components with a three-

step monotone missing data.

2.1.4 Simulation studies

We compute the upper percentiles of the simplified T 2-type statistic with a three-step
monotone missing data using the Monte Carlo simulation. One million simulations were
conducted for each combination of selected values of pi, ni, i = 1, 2, 3 and α. It is inter-
esting to see how the approximations are close to the exact upper percentiles. Simulation
results related to this problem are summarized in Tables 2.1–2.3. Computations are made
for the following two cases:

Case I : (p1, p2, p3) = (6, 4, 2), (12, 8, 4),

n1 = 30, 50, 100, 200, 300, n2, n3 = 10, 20, α = 0.05, 0.01,

where the sets of (n1, n2, n3) are combinations of n1, n2 and n3.

Case II : (p1, p2, p3) = (12, 4, 2),

(n1, n2, n3) = (30w, 10w, 10w), w = 1(1)5, 8, 12, α = 0.05, 0.01.

Tables 2.1 and 2.2 list the simulated upper percentiles of T̃ 2, t̃ 2simu(α), the approximate

upper percentiles of T̃ 2, t2YS·L1(α), and the upper percentiles of χ2 distribution with p
degrees of freedom, χ2

p(α) for Case I. It may be noted from Tables 2.1 and 2.2 that the
simulated values are closer to the upper percentiles of χ2 distribution when the sample
size n1 becomes large. Therefore, we note that the χ2 approximation χ2

p(α) is not good
for cases where n1 is small. However, it is seen that the proposed approximation t2YS·L1(α)
is considerably good even for cases where n1 is not large. In addition, Tables 2.1 and 2.2
list the simulated coverage probabilities for t2YS·L1(α) and χ2

p(α) for Case I. The simulated
coverage probabilities for t2YS·L1(α) and χ2

p(α) are defined as

CP(t2YS·L1(α)) = 1− Pr{T̃ 2 > t2YS·L1(α)}, CP(χ2
p(α)) = 1− Pr{T̃ 2 > χ2

p(α)},

13



Table 2.1: The simulated and the approximate values for T̃ 2, χ2 approximation,
and the simulated coverage probabilities when (p1, p2, p3) = (6, 4, 2)

Sample size Upper percentile Coverage probability

n1 n2 n3 t̃ 2simu(α) t2YS·L1(α) χ2
p(α) CP(t2YS·L1(α)) CP(χ2

p(α))

α = 0.05
30 10 10 17.68 17.29 12.59 0.946 0.851
50 10 10 15.36 15.25 12.59 0.948 0.896
100 10 10 13.92 13.89 12.59 0.950 0.925
200 10 10 13.22 13.24 12.59 0.950 0.938
300 10 10 13.02 13.02 12.59 0.950 0.942

30 20 10 17.25 16.78 12.59 0.944 0.859
50 20 10 15.17 15.02 12.59 0.948 0.900
100 20 10 13.84 13.82 12.59 0.950 0.926
200 20 10 13.23 13.22 12.59 0.950 0.938
300 20 10 13.03 13.01 12.59 0.950 0.942

30 10 20 17.56 17.18 12.59 0.946 0.853
50 10 20 15.28 15.17 12.59 0.948 0.897
100 10 20 13.91 13.86 12.59 0.949 0.925
200 10 20 13.25 13.23 12.59 0.950 0.938
300 10 20 13.03 13.02 12.59 0.950 0.942

30 20 20 17.16 16.77 12.59 0.945 0.860
50 20 20 15.11 14.99 12.59 0.948 0.901
100 20 20 13.85 13.80 12.59 0.949 0.926
200 20 20 13.23 13.21 12.59 0.950 0.938
300 20 20 13.01 13.01 12.59 0.950 0.942

α = 0.01
30 10 10 25.53 24.81 16.81 0.988 0.940
50 10 10 21.40 21.22 16.81 0.990 0.966
100 10 10 18.98 18.94 16.81 0.990 0.980
200 10 10 17.86 17.86 16.81 0.990 0.986
300 10 10 17.55 17.51 16.81 0.990 0.987

30 20 10 24.76 23.91 16.81 0.988 0.945
50 20 10 21.02 20.84 16.81 0.989 0.968
100 20 10 18.86 18.82 16.81 0.990 0.981
200 20 10 17.83 17.83 16.81 0.990 0.986
300 20 10 17.49 17.50 16.81 0.990 0.987

30 10 20 25.27 24.63 16.81 0.989 0.941
50 10 20 21.25 21.09 16.81 0.990 0.967
100 10 20 18.90 18.89 16.81 0.990 0.980
200 10 20 17.87 17.85 16.81 0.990 0.985
300 10 20 17.50 17.50 16.81 0.990 0.987

30 20 20 24.54 23.91 16.81 0.988 0.946
50 20 20 20.92 20.78 16.81 0.990 0.969
100 20 20 18.84 18.79 16.81 0.990 0.981
200 20 20 17.84 17.82 16.81 0.990 0.986
300 20 20 17.47 17.49 16.81 0.990 0.987
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Table 2.2: The simulated and the approximate values for T̃ 2, χ2 approximation,
and the simulated coverage probabilities when (p1, p2, p3) = (12, 8, 4)

Sample size Upper percentile Coverage probability

n1 n2 n3 t̃ 2simu(α) t2YS·L1(α) χ2
p(α) CP(t2YS·L1(α)) CP(χ2

p(α))

α = 0.05
30 10 10 42.70 39.35 21.03 0.931 0.598
50 10 10 30.55 29.85 21.03 0.944 0.779
100 10 10 25.10 24.99 21.03 0.949 0.881
200 10 10 22.95 22.93 21.03 0.950 0.919
300 10 10 22.27 22.28 21.03 0.950 0.931

30 20 10 41.16 37.15 21.03 0.925 0.620
50 20 10 29.89 29.04 21.03 0.942 0.791
100 20 10 24.92 24.77 21.03 0.948 0.884
200 20 10 22.90 22.87 21.03 0.950 0.920
300 20 10 22.26 22.25 21.03 0.950 0.931

30 10 20 42.40 39.09 21.03 0.931 0.601
50 10 20 30.37 29.60 21.03 0.943 0.782
100 10 20 25.06 24.90 21.03 0.948 0.881
200 10 20 22.94 22.90 21.03 0.950 0.919
300 10 20 22.30 22.27 21.03 0.950 0.930

30 20 20 41.01 37.35 21.03 0.928 0.622
50 20 20 29.74 28.93 21.03 0.943 0.792
100 20 20 24.89 24.71 21.03 0.948 0.884
200 20 20 22.89 22.85 21.03 0.950 0.921
300 20 20 22.28 22.24 21.03 0.950 0.931

α = 0.01
30 10 10 60.93 54.96 26.22 0.984 0.752
50 10 10 40.48 39.41 26.22 0.988 0.900
100 10 10 32.16 32.01 26.22 0.990 0.961
200 10 10 28.96 28.97 26.22 0.990 0.979
300 10 10 28.04 28.02 26.22 0.990 0.983

30 20 10 58.48 51.46 26.22 0.981 0.773
50 20 10 39.41 38.17 26.22 0.988 0.908
100 20 10 31.88 31.68 26.22 0.990 0.963
200 20 10 28.91 28.89 26.22 0.990 0.979
300 20 10 27.98 27.99 26.22 0.990 0.983

30 10 20 60.48 54.65 26.22 0.984 0.756
50 10 20 40.22 39.04 26.22 0.988 0.902
100 10 20 32.10 31.87 26.22 0.989 0.961
200 10 20 28.98 28.93 26.22 0.990 0.979
300 10 20 28.02 28.01 26.22 0.990 0.983

30 20 20 58.52 51.86 26.22 0.982 0.774
50 20 20 39.31 38.02 26.22 0.988 0.909
100 20 20 31.80 31.59 26.22 0.989 0.963
200 20 20 28.90 28.85 26.22 0.990 0.979
300 20 20 28.06 27.97 26.22 0.990 0.983
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Table 2.3: The simulated and the approximate values for T̃ 2, χ2 approximation,
and the simulated coverage probabilities when (p1, p2, p3) = (12, 4, 2)

Sample size Upper percentile Coverage probability

n1 n2 n3 t̃ 2simu(α) t2YS·L1(α) χ2
p(α) CP(t2YS·L1(α)) CP(χ2

p(α))

α = 0.05
30 10 10 45.82 43.09 21.03 0.937 0.561
60 20 20 28.92 28.41 21.03 0.945 0.809
90 30 30 25.71 25.45 21.03 0.947 0.869

120 40 40 24.33 24.19 21.03 0.948 0.895
150 50 50 23.59 23.48 21.03 0.949 0.908
240 80 80 22.56 22.50 21.03 0.949 0.926
360 120 120 22.06 21.99 21.03 0.949 0.934

α = 0.01
30 10 10 65.85 61.19 26.22 0.986 0.718
60 20 20 37.87 37.18 26.22 0.989 0.920
90 30 30 33.05 32.70 26.22 0.989 0.955

120 40 40 30.94 30.81 26.22 0.990 0.968
150 50 50 29.89 29.78 26.22 0.990 0.974
240 80 80 28.39 28.34 26.22 0.990 0.981
360 120 120 27.69 27.60 26.22 0.990 0.985

respectively. It may be noted from Tables 2.1 and 2.2 that the simulated coverage proba-
bilities for t2YS·L1(α), CP(t

2
YS·L1(α)) are considerably close to the nominal level 1−α even for

cases where n1 is small. Therefore, it can be concluded that our approximation procedure
is very accurate even for small samples. Table 2.3 lists the values of t2simu(α), t

2
YS·L1(α) and

χ2
p(α) for Case II. In addition, the values of CP(t2YS·L1(α)) and CP(χ2

p(α)) for Case II are
listed in Table 2.3. We note that the missing rate of the data sets in Case II is constant
(= 0.3), where

the missing rate = 1− 1

N4p1

3∑
i=1

nipi.

It appears from Table 2.3 that our approximation is considerably good even when (n1, n2,
n3) is small.

2.1.5 Numerical example

In this section, we shall discuss an example to illustrate the approximation developed in
this paper. In this example, we treat a three-step monotone missing data taken from
Wei and Lachin (1984). A data material is presented where serum cholesterol on each
patient has been measured five different time points: before start (baseline) and at 6,
12, 20 and 24 months after study start. In our analysis, we consider only the case of
three-step monotone missing data. We are interested in the change from the baseline at
each post-baseline time point. Thus, we have the three-step monotone missing data of
(p1, p2, p3) = (4, 3, 2) and (n1, n2, n3) = (36, 7, 12). We consider the hypothesis H0 : μ =
(μ2 − μ1, μ3 − μ1, μ4 − μ1, μ5 − μ1)

′ = 0. From this three-step monotone missing data,
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Table 2.4: 99% simultaneous confidence intervals

α = 0.01 t̃ 2simu(α) t2YS·L1(α) χ2
p(α)

μ2 − μ1 ( 2.77, 36.98 ) ( 2.85, 36.90 ) ( 4.72, 35.02 )

μ3 − μ1 ( 6.53, 44.31 ) ( 6.62, 44.22 ) ( 8.69, 42.15 )

μ4 − μ1 ( 6.02, 48.11 ) ( 6.12, 48.01 ) ( 8.42, 45.70 )

μ5 − μ1 (−1.91, 60.29 ) (−1.76, 60.14 ) ( 1.65, 56.73 )

we can compute the maximum likelihood estimate for μ, which is given by

μ̂ = (19.87, 25.42, 27.06, 29.19)′ .

Also, an estimate for the covariance matrix Γ for μ̃ is given by

Γ̃ = Ĉov(μ̃) =

⎛⎜⎜⎝
17.29 9.98 12.74 13.98
9.98 21.08 11.20 18.80
12.74 11.20 26.17 17.55
13.98 18.80 17.55 57.13

⎞⎟⎟⎠ .

Therefore, the value of the test statistic T̃ 2 is 40.58 > t̃ 2simu(0.01) = 16.93. Thus, the
hypothesisH0 is rejected at the significance level of 0.01. When we use t2YS·L1(0.01) = 16.77
or χ2

4(0.01) = 13.28, the hypothesis H0 is also rejected and the simultaneous confidence
intervals for the change from the baseline at each time point can be obtained. The
approximate simultaneous confidence intervals for μj −μ1, j = 2, . . . , 5 with level 1−α =
0.99 as in Section 2.1.3 can be computed and are summarized in Table 2.4. It can be
seen from Table 2.4 that t2YS·L1(α) gives very similar confidence intervals to the simulation
value t̃ 2simu(α), while χ2

p(α) gives an incorrect result for μ5 − μ1. This implies that the

approximation t2YS·L1(α) is good approximate upper percentile of T̃ 2 statistic.

2.2 k-step monotone missing data

In this section, we consider the distribution of the Hotelling’s T 2-type test statistic to
test a mean vector with monotone missing data. We give a simplified T 2-type statistic
and propose the approximate upper percentiles of the simplified T 2-type statistic in the
case of data with general k-step monotone missing data pattern. We also consider the
approximate simultaneous confidence intervals for any and all linear compounds of the
mean and the testing equality of mean components. Finally, the accuracy and asymptotic
behavior of the approximations are investigated by Monte Carlo simulation.

2.2.1 Monotone missing data and MLE

We first present some notations, definitions, and the setting in this paper, and we derive
the MLEs. Let x be distributed as Np(μ,Σ) and let xi = (x)i be the subvector of
x containing the first pi components of x. Then, xi(= (x1, x2, . . . , xpi)

′) is distributed
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as Npi(μi,Σi), i = 1, 2, . . . , k, with p = p1 > p2 > · · · > pk, where μi = (μ)i =
(μ1, μ2, . . . , μpi)

′ and Σi is the pi × pi principal submatrix of Σ(= Σ1). Further, for the
covariance matrix, for 1 ≤ i < j ≤ k, let (Σi)j be the principal submatrix of Σi of order
pj × pj; we define

Σi = (Σ1)i, Σ1 =

(
Σi Σi2

Σ′
i2 Σi3

)
and

Σi−1 =

(
Σi Σ(i−1,2)

Σ′
(i−1,2) Σ(i−1,3)

)
, i = 2, 3, . . . , k.

We use these notations, which are based on Jinadasa and Tracy (1992), throughout this
paper.

Suppose we have n1 observations on x1, n2 observations on x2, · · · , nk observations
on xk. If xij denotes the jth observation on xi, then the k-step monotone missing data
set is of the form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′
11
...

x′
1n1

x′
21 ∗ · · · ∗
...

...
...

x′
2n2

∗ · · · ∗
·

·
·

x′
k1 ∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

x′
knk

∗ · · · ∗ ∗ · · · ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where“∗”indicates a missing observation. Let xi1,xi2, . . . ,xini
be distributed asNpi(μi,Σi)

for i = 1, 2, . . . , k, with n1 − 1 ≥ p1, and let

xi =
1

ni

ni∑
j=1

xij, Ei =

ni∑
j=1

(xij − xi)(xij − xi)
′, i = 1, 2, . . . , k.

Further, we define

N1 = 0, Ni+1 = Ni + ni

(
=

i∑
j=1

nj

)
, i = 1, 2, . . . , k,

d1 = x1, di =
ni

Ni+1

[
xi − 1

Ni

i−1∑
j=1

nj(xj)i

]
, i = 2, 3, . . . , k,

f 1 = d1, f i = U idi, i = 2, 3, . . . , k, U 1 = T 1, U i = U i−1T i, i = 2, 3, . . . , k,

T 1 = Ip1 , T i+1 =

(
Ipi+1

Σ′
(i,2)Σ

−1
i+1

)
, T̂ i+1 =

(
Ipi+1

Σ̂
′
(i,2)Σ̂

−1

i+1,

)
, i = 1, 2, . . . , k − 1,
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H1 = E1, H i = Ei +
NiNi+1

ni

did
′
i, i = 2, 3, . . . , k

L1 = H1, Li = (Li−1)i +H i, i = 2, 3, . . . , k

Li1 = (Li)i+1, Li =

(
Li1 Li2

L′
i2 Li3

)
, i = 1, 2, . . . , k − 1,

F 1 = G1, F i = F i−1Gi, i = 2, 3, . . . , k

G1 = Ip1 , Gi+1 =

(
Ipi+1

L′
i2L

−1
i1

)
, i = 1, 2, . . . , k − 1.

Then, μ̂ and Σ̂ are given in the following theorem.

Theorem 2.2 (Jinadasa and Tracy, 1992) The MLEs of μ and Σ for the monotone
sample are

μ̂ =
k∑

i=1

f̂ i

with

f̂ 1 = d1, f̂ i = T 1T̂ 2 · · · T̂ idi, i = 2, 3, . . . , k and

Σ̂ =
1

n1

H1 +
k∑

i=2

1

Ni+1

F i

[
H i− ni

Ni

Li−1,1

]
F ′

i.

2.2.2 A simplified T 2-type statistic and simultaneous confidence
intervals

In this section, we consider the following hypothesis test with a k-step monotone missing
data pattern:

H0 : μ = μ0 vs. H1 : μ �= μ0,

where μ0 is known. Without loss of generality, we can assume that μ0 = 0. To test the
hypothesis H0, we consider the simplified T 2-type statistic given by

T̃ 2 = μ̂′ Γ̃
−1
μ̂,

where μ̂(=
∑k

i=1 f̂ i) is given in Theorem 2.2, Γ̃ = Ĉov[μ̃], and μ̃ =
∑k

i=1 f i. Then, we
have the following theorem.

Theorem 2.3 (Yagi and Seo, 2017) If the data have a k-step monotone pattern of
missing observations, then an estimator of the covariance matrix of μ̃ is given by

Ĉov[μ̃] =
1

n1

Σ̂1 −
k∑

i=2

ni

NiNi+1

Û iΣ̂iÛ
′
i,
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where

Û 1 = T 1, Û i = Û i−1T̂ i, i = 2, 3, . . . , k,

T 1 = Ip1 , T̂ i+1 =

(
Ipi+1

Σ̂
′
(i,2)Σ̂

−1

i+1

)
, i = 1, 2, . . . , k − 1.

proof First, since Cov[μ̃] = E[μ̃μ̃′]− μμ′ and μ̃ =
∑k

i=1 f i, we have

E[μ̃μ̃′] = E[f 1f
′
1] +

k∑
r=2

E[f rf
′
r] + 2

[ k∑
s=2

E[f 1f
′
s] +

k∑
r=2

k∑
s=3

r<s

E[f rf
′
s]

]
.

Further, using the following results,

E[f 1f
′
1] =

1

n1

Σ1 + μ1μ
′
1, E[f rf

′
r] =

nr

NrNr+1

U rΣrU
′
r, r = 2, 3, . . . , k,

E[f 1f
′
s] = − ns

NsNs+1

(
Σs

Σ′
s2

)
U ′

s, s = 2, 3, . . . , k,

and
E[f rf

′
s] = O, 2 ≤ r < s ≤ k,

we obtain

Cov[μ̃] =
1

n1

Σ1 +
k∑

r=2

nr

NrNr+1

[
U rΣr − 2

(
Σr

Σ′
r2

)]
U ′

r,

where U 1 = T 1, U i = U i−1T i, i = 2, 3, . . . , k. Therefore,

Cov[μ̃] =
1

n1

Σ1 −
k∑

r=2

nr

NrNr+1

U rΣrU
′
r

since U rΣr =

(
Σr

Σ′
r2

)
. After replacing the unknown parameters in this equation by their

MLEs, we get the result.

For a two-step monotone missing data pattern, Yagi and Seo (2015a) gave Cov(μ̂) as
well as Cov(μ̃), and Seko et al. (2012) discussed the usual Hotelling’s T 2-type statistic,

T 2 = μ̂′ Γ̂
−1
μ̂, and its null distribution using other definitions. Comparing our notation

with that of Krishnamoorthy and Pannala (1999), we can confirm that the simplified

T 2-type statistic, T̃ 2, coincides with the pivotal quantity of the Hotelling’s T 2 statistic in
Krishnamoorthy and Pannala (1999, p.397).

We note that under H0, the simplified T 2-type statistic is asymptotically distributed
as a χ2 distribution with p degrees of freedom when n1, Nk+1 → ∞ with n1/Nk+1 → δ ∈
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(0, 1]. The derivation idea of the condition for sample sizes is as follows. For k = 2, the
condition is given by n1, N3 → ∞ with n1/N3 → δ ∈ (0, 1] (see, Chang and Richards,
2009, p.1891). In the general k-step case, the condition can be written as

n1, N3, N4 . . . , Nk+1 → ∞ with n1/N3 → δ3 ∈ (0, 1],

n1/N4 → δ4 ∈ (0, 1], . . . , and n1/Nk+1 → δk+1 ∈ (0, 1],

where Ni+1 =
∑i

j=1 nj, i = 1, 2, . . . , k. That is, this condition is equivalent to

n1, Nk+1 → ∞ with n1/Nk+1 → δ ∈ (0, 1]

since “n1/N3 → δ3 ∈ (0, 1], n1/N4 → δ4 ∈ (0, 1], . . . , and n1/Nk → δk ∈ (0, 1]” is included
in “n1/Nk+1 → δ ∈ (0, 1]”. However, it has been noted that the χ2 approximation is not
a good approximation to the upper percentile of the simplified T 2-type statistic when the
sample is not large. Using the same concept for three-step monotone missing data used
in Section 2.1.2, we propose the approximate upper percentile of the T̃ 2 statistic since
it is difficult to find the exact upper percentiles of the T̃ 2 statistic. The two kinds of
approximate upper 100α percentiles of the T̃ 2 statistic are given by

t2YS·L1(α) = (1− ω1)T
2
n1,α

+ ω1T
2
Nk+1,α

,

t2YS·F1(α) =
n∗
1p1

n∗
1 − p1

Fp1,n∗
1−p1,α,

where

T 2
n1,α

=
n1p1

n1 − p1
Fp1,n1−p1,α, T 2

Nk+1,α
=

Nk+1p1
Nk+1 − p1

Fp1,Nk+1−p1,α,

ω1 =

∑k
i=2 nipi

p1
∑k

i=2 ni

, n∗
1 =

1

p1

k∑
i=1

nipi,

and Fp,q,α is the upper 100α percentile of the F distribution with p and q degrees of
freedom.

Further, we consider the simultaneous confidence intervals for any and all linear com-
pounds of the mean when the data have k-step monotone missing observations. Using
the approximate upper percentiles of T̃ 2, for any nonnull vector c = (c1, c2, . . . , cp)

′, the
approximate simultaneous confidence intervals for c′μ are given by

c′μ̂−
√
t2app·1(α)c′Γ̃c ≤ c′μ ≤ c′μ̂+

√
t2app·1(α)c′Γ̃c, ∀c ∈ Rp − {0}.

where t2app·1(α) is the value of t2YS·L1(α) or t
2
YS·F1(α).

2.2.3 Simulation studies

In this section, we investigate the accuracy and asymptotic behavior of the approximations
for the upper percentiles of the simplified T 2-type statistic by Monte Carlo simulation. We
provide the simulated upper percentiles and their approximations for selected parameters.
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Table 2.5: Simulated and approximate values and coverage probabilities when
(p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n1 n2 = · · · = n5 t̃ 2simu t2YS·L1 t2YS·F1 t2KP CPYS·L1 CPYS·F1 CPKP CPχ2

α = 0.05
19 5 367.43 234.37 76.53 – 0.898 0.567 – 0.094
20 5 237.96 163.63 72.10 237.66 0.900 0.643 0.950 0.128
30 5 63.20 57.08 50.13 60.33 0.927 0.886 0.940 0.429
40 5 46.14 44.02 42.06 43.89 0.938 0.924 0.937 0.598
50 5 39.79 38.71 37.90 38.06 0.943 0.936 0.937 0.693
100 5 31.07 30.86 30.79 30.26 0.948 0.947 0.942 0.849
200 5 27.81 27.76 27.75 27.43 0.949 0.949 0.945 0.907
400 5 26.36 26.34 26.34 26.17 0.950 0.950 0.948 0.930
800 5 25.68 25.66 25.66 25.57 0.950 0.950 0.949 0.940

19 10 355.91 227.80 51.37 – 0.901 0.419 – 0.117
20 10 229.07 157.51 50.13 225.80 0.903 0.501 0.949 0.155
30 10 59.06 53.73 42.06 57.45 0.928 0.838 0.944 0.471
40 10 43.97 41.90 37.90 42.25 0.937 0.903 0.940 0.630
50 10 38.32 37.25 35.36 36.99 0.942 0.925 0.940 0.716
100 10 30.68 30.43 30.22 29.99 0.948 0.945 0.943 0.856
200 10 27.72 27.64 27.61 27.35 0.949 0.949 0.946 0.909
400 10 26.32 26.31 26.31 26.15 0.950 0.950 0.948 0.931
800 10 25.65 25.65 25.65 25.57 0.950 0.950 0.949 0.941

α = 0.01
19 5 942.52 541.02 113.59 – 0.974 0.724 – 0.154
20 5 519.17 325.87 105.67 510.04 0.973 0.793 0.990 0.204
30 5 91.50 80.66 68.40 82.83 0.982 0.964 0.984 0.589
40 5 62.47 58.84 55.65 56.58 0.986 0.981 0.982 0.759
50 5 52.02 50.57 49.28 48.09 0.988 0.986 0.983 0.840
100 5 39.10 38.89 38.78 37.43 0.990 0.989 0.986 0.945
200 5 34.52 34.45 34.44 33.71 0.990 0.990 0.988 0.974
400 5 32.44 32.45 32.45 32.08 0.990 0.990 0.989 0.983
800 5 31.51 31.50 31.50 31.32 0.990 0.990 0.989 0.987

19 10 914.54 530.70 70.41 – 0.974 0.565 – 0.185
20 10 515.45 316.31 68.40 489.88 0.973 0.654 0.989 0.241
30 10 86.11 75.57 55.65 79.40 0.982 0.937 0.986 0.633
40 10 59.02 55.68 49.28 54.47 0.986 0.972 0.984 0.788
50 10 50.04 48.41 45.48 46.71 0.988 0.981 0.984 0.858
100 10 38.56 38.27 37.95 37.07 0.989 0.989 0.986 0.949
200 10 34.34 34.28 34.24 33.61 0.990 0.990 0.988 0.975
400 10 32.46 32.41 32.40 32.06 0.990 0.990 0.989 0.983
800 10 31.45 31.49 31.49 31.31 0.990 0.990 0.990 0.987

Note. CPYS·L1=CP(t2YS·L1(α)), CPYS·F1=CP(t2YS·F1(α)), CPKP=CP(t2KP(α)), CPχ2 =CP(χ2
p(α)),

χ2
15(0.05)=25.00, χ2

15(0.01)=30.58.

We also present the numerical comparisons of our approximation proposed in Section
2.2.2 and the approximation using F distribution in Krishnamoorthy and Pannala (1999).
We compute the upper percentiles of the simplified T 2-type statistic with k-step mono-

tone missing data using Monte Carlo simulation (106 runs). That is, the T̃ 2 statistic
is computed 106 times based on the normal random vectors generated from Npi(0, Ipi),
i = 1, 2, . . . , k. Note that the simplified T 2-type statistic with two-step monotone missing
data is lower triangular invariant (e.g., see Krishnamoorthy and Pannala, 1999 and Romer
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Table 2.6: Simulated and approximate values and coverage probabilities when
(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2)

Sample Size Upper Percentile Coverage Probability

n1 n2 = · · · = n10 t̃ 2simu t2YS·L1 t2YS·F1 t2KP CPYS·L1 CPYS·F1 CPKP CPχ2

α = 0.05
24 5 531.75 373.34 69.54 – 0.915 0.368 – 0.060
25 5 333.66 252.88 67.91 332.87 0.918 0.447 0.950 0.083
30 5 120.46 107.28 61.48 118.41 0.929 0.696 0.947 0.208
40 5 68.61 65.16 53.61 64.92 0.936 0.858 0.935 0.418
50 5 55.72 53.88 48.99 52.86 0.940 0.903 0.934 0.554
100 5 40.89 40.49 40.01 39.63 0.947 0.942 0.939 0.795
200 5 35.82 35.71 35.66 35.20 0.949 0.948 0.944 0.886
400 5 33.52 33.53 33.52 33.25 0.950 0.950 0.947 0.921
800 5 32.47 32.46 32.46 32.32 0.950 0.950 0.948 0.936

24 10 510.29 368.57 50.37 – 0.920 0.284 – 0.095
25 10 316.45 248.27 49.96 306.21 0.924 0.354 0.947 0.125
30 10 108.24 103.34 48.12 109.07 0.943 0.609 0.951 0.277
40 10 62.23 62.18 45.35 60.09 0.950 0.812 0.941 0.491
50 10 51.75 51.55 43.37 49.78 0.949 0.878 0.938 0.613
100 10 39.84 39.54 38.40 38.80 0.947 0.937 0.941 0.814
200 10 35.51 35.39 35.22 34.97 0.949 0.947 0.944 0.891
400 10 33.47 33.43 33.41 33.19 0.950 0.949 0.947 0.922
800 10 32.43 32.44 32.43 32.30 0.950 0.950 0.948 0.937

α = 0.01
24 5 1415.31 873.19 92.91 – 0.977 0.512 – 0.105
25 5 756.91 509.35 90.38 726.25 0.978 0.601 0.989 0.142
30 5 194.70 162.55 80.52 178.83 0.981 0.840 0.987 0.328
40 5 93.16 87.16 68.77 83.17 0.986 0.951 0.981 0.589
50 5 72.39 69.48 62.03 65.50 0.987 0.973 0.981 0.727
100 5 50.48 49.97 49.29 47.82 0.989 0.988 0.984 0.916
200 5 43.44 43.37 43.29 42.25 0.990 0.990 0.987 0.965
400 5 40.47 40.41 40.40 39.83 0.990 0.990 0.988 0.980
800 5 39.00 38.97 38.97 38.68 0.990 0.990 0.989 0.985

24 10 1379.64 866.39 64.03 – 0.978 0.401 – 0.155
25 10 737.05 502.77 63.43 677.89 0.979 0.488 0.988 0.202
30 10 179.42 156.96 60.77 169.46 0.984 0.762 0.988 0.414
40 10 84.31 82.97 56.81 77.26 0.989 0.924 0.984 0.664
50 10 66.62 66.21 54.00 61.67 0.990 0.961 0.983 0.780
100 10 48.87 48.66 47.05 46.79 0.990 0.986 0.985 0.927
200 10 43.07 42.93 42.70 41.96 0.990 0.989 0.987 0.967
400 10 40.32 40.28 40.24 39.75 0.990 0.990 0.988 0.980
800 10 38.93 38.94 38.93 38.66 0.990 0.990 0.989 0.986

Note. CPYS·L1=CP(t2YS·L1(α)), CPYS·F1=CP(t2YS·F1(α)), CPKP=CP(t2KP(α)), CPχ2 =CP(χ2
p(α)),

χ2
20(0.05)=31.41, χ2

20(0.01)=37.57.

and Richards, 2013). Tables 2.5 and 2.6 give the simulated upper 100α percentiles of

the T̃ 2 statistic with five-step and ten-step monotone missing data patterns. That is, we
provide t̃ 2simu(= t̃ 2simu(α)) for the following cases:

Five-step Case: (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3),

n1 = 19, 20(10)50, 100, 200, 400, 800, n2 = n3 = · · · = n5 = 5, 10,

α = 0.05, 0.01.
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Ten-step Case: (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2),

n1 = 24, 25, 30(10)50, 100, 200, 400, 800, n2 = n3 = · · · = n10 = 5, 10,

α = 0.05, 0.01.

These tables also give the approximations to the upper 100α percentiles of the T̃ 2 statistic,
that is, t2YS·L1(= t2YS·L1(α)) and t2YS·F1(= t2YS·F1(α)) in Section 2.2.2, and t2KP(= t2KP(α)). We
denote t2KP(α) as the approximation in Krishnamoorthy and Pannala (1999). In addition,
we provide the actual coverage probabilities for the approximate upper 100α percentiles
in Tables 2.5 and 2.6, which are given by

CP(t2YS·L1(α)) = 1− Pr{T̃ 2 > t2YS·L1(α)}, CP(t2YS·F1(α)) = 1− Pr{T̃ 2 > t2YS·F1(α)},
CP(t2KP(α)) = 1− Pr{T̃ 2 > t2KP(α)}, CP(χ2

p(α)) = 1− Pr{T̃ 2 > χ2
p(α)}.

It may be noted from Tables 2.5 and 2.6 that the simulated values, t̃ 2simu(α), are closer
to the upper percentiles of the χ2 distribution when the sample size n1 becomes large.
However, the upper 100α percentiles of the χ2 distribution, χ2

p(α), are not good approx-

imations to those of the T̃ 2 statistic even for moderately large sample sizes. At the
same time, the proposed approximate upper percentiles t2YS·L1 and t2YS·F1 as well as t

2
KP are

good for moderately large sample sizes; in particular, t2YS·L1 is considerably good when n1

is greater than 40. We note that the condition that t2YS·L1 and t2YS·F1 can be defined is
n1 − 1 ≥ p1 and the condition for t2KP is n1 − 5 ≥ p1. For example, when p1 = 15 and
n1 = 19 in Table 2.5, the value of t2KP cannot be computed but that of t2YS·L1 or t2YS·F1 can
be computed.

2.3 Conclusions

In conclusion, we have developed the approximate upper percentiles of the simplified
T 2-type statistic for testing a mean vector with monotone missing data. We presented
the numerical comparisons of our approximation proposed in this paper with the ap-
proximation using F distribution in Krishnamoorthy and Pannala (1999). The proposed
approximate values as well as the approximation by Krishnamoorthy and Pannala (1999)
can be calculated easily and the approximations are considerably better than the χ2 ap-
proximation even when the sample size is small.
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Chapter 3

Testing the equality of mean vectors
and simultaneous confidence
intervals

In this chapter, we consider the problem of testing the equality of two mean vectors
when the data have a three-step (Section 3.1) or general k-step (Section 3.2) monotone
pattern of missing observations. We give a simplified T 2-type statistic and propose an
approximate upper percentile of the statistic where each data set has a three-step or k-
step monotone missing data pattern and the population covariance matrices are equal.
Further, we obtain the Hotelling’s T 2-type and simplified T 2-type statistics and their
approximate upper percentiles in the case of data with unequal two-step monotone missing
data patterns. We also consider multivariate multiple comparisons for mean vectors.
Approximate simultaneous confidence intervals for pairwise comparisons among mean
vectors and comparisons with a control are obtained using Bonferroni’s approximate upper
percentiles of the T 2

max·p and T 2
max·c statistics, respectively. Finally, the accuracy of the

approximations is investigated via Monte Carlo simulation.

Section 3.1 extends the one-sample problem investigated by Yagi and Seo (2014) (see,
Section 2.1) to the two-sample or m-sample problem in the case of three-step monotone
missing data. In other words, we use the concepts of Yagi and Seo (2014) to develop
an approximate upper percentile of the simplified T 2-type statistic for the two-sample
problem. In Section 3.1, we consider the problem of testing the equality of two mean
vectors when the data have a three-step monotone pattern of missing observations. In
the case of the two-step monotone missing data pattern, Seko et al. (2011) derived a
Hotelling’s T 2-type statistic, the likelihood ratio test statistic and their approximate upper
percentiles. In addition, Yu, Krishnamoorthy and Pannala (2006) gave the results of two-
sample case similar to that of one-sample case in Krishnamoorthy and Pannala (1999).
That is, they derived the simplified T 2-type statistic and its approximate distribution
using another approach. Recently, Seko (2012) discussed tests for mean vectors with
two-step monotone missing data for the m-sample problem.

Section 3.1 is a summary of Yagi and Seo (2015b) and organized as follows. In Section
3.1.1, we present some preliminary notations and the MLEs of the mean vector and the
covariance matrix for the m-sample problem that includes the two-sample problem. In

25



Section 3.1.2, we present a simplified T 2-type statistic to test the equality of two mean
vectors and its approximate upper percentiles in the case of three-step monotone missing
data. In Section 3.1.3, we discuss the Hotelling’s T 2-type statistic and the simplified T 2-
type statistic when two data sets have different two-step monotone missing data patterns.
In Section 3.1.4, we present approximate simultaneous confidence intervals for multiple
comparisons among mean vectors under the two-sample or m-sample problem. In order
to obtain the simultaneous confidence intervals, we derive approximate upper percentiles
of the T 2

max-type statistics via Bonferroni’s approximation. Finally, in Section 3.1.5, we
present some simulation results.

In Section 3.2, we consider testing the equality of mean vectors in the case of general k-
step monotone missing data, which is summarized using the parts of Yagi and Seo (2017).
In Section 3.2.1, some preliminary notations are presented, and the MLEs of the mean
vectors, and the common covariance matrix for the m-sample problem are obtained in the
case of k-step monotone missing data. In Section 3.2.2, we give the simplified T 2-type
statistic to test the equality of two mean vectors and their approximate upper percentiles
in the case of k-step monotone missing data. Under the m-sample problem (m ≥ 3), we
give approximate simultaneous confidence intervals for multiple comparisons among mean
vectors in Section 3.2.3. Finally, we give the simulation results in Section 3.2.4 and state
our conclusions in Section 3.3.

3.1 Two-step or three-step monotone missing data

Consider the problem of testing the equality of mean vectors with two-step or three-step
monotone missing data.

3.1.1 Three-step monotone missing data and MLE

As preliminaries, we present some notations for the vector and matrix needed to express
the three-step monotone missing data for the general m-sample problem. Using the as-
sumptions and notations in Section 2.1, we consider the MLEs of the mean vectors and
the common covariance matrix for the m-sample problem.

Let x
(�)
i1 ,x

(�)
i2 , . . . ,x

(�)

in
(�)
i

be distributed asNpi(μ
(�)
i ,Σi) for i = 1, 2, 3 and � = 1, 2, . . . ,m,

where μ
(�)
i = (μ

(�)
1 , μ

(�)
2 , . . . , μ

(�)
pi )

′ and Σi is the pi × pi covariance matrix, where p = p1 >

p2 > p3 > 0, ν1 −m ≥ p and ν1 =
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x
(�)
i =

1
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Then the MLEs of μ(�) and Σ are given in the following theorem.

Theorem 3.1 (Yagi and Seo, 2015b) Let x
(�)
ij , i = 1, 2, 3, j = 1, 2, . . . , n

(�)
i , � =

1, 2, . . . ,m be the j-th random vector of the i-th step from the �-th population distributed
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as Npi(μ
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i ,Σi). Then, the MLEs of μ(�), � = 1, 2, . . . ,m are given by
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We note that the result of Theorem 3.1 can be obtained in a straightforward manner
based on the case of the one-sample problem investigated in Section 2.1. In the next
section, in order to obtain a simplified T 2-type statistic to test the equality of two mean
vectors, we present the covariance matrix of μ̃(1) − μ̃(2), where μ̃(�) = x

(�)
1 + T 2d

(�)
2 +

T 2T 3d
(�)
3 . The simplified T 2-type statistic with Ĉov[μ̃(1)− μ̃(2)] instead of Ĉov[μ̂(1)− μ̂(2)]

is adopted because Ĉov[μ̂(1) − μ̂(2)] is complicated for more than three-step case whereas

Ĉov[μ̃(1) − μ̃(2)] is asymptotically equivalent to Ĉov[μ̂(1) − μ̂(2)].
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3.1.2 Simplified T 2-type statistic

In this section, we consider the hypothesis test

H0 : μ
(1) = μ(2) vs. H1 : μ

(1) �= μ(2)

when two data sets have the same three-step monotone missing data pattern. In order to
test the hypothesis H0, under the assumption of a common population covariance matrix,
we adopt the simplified T 2-type statistic given by

T̃ 2 = (μ̂(1) − μ̂(2))′ Γ̃
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We note that under H0, T̃
2 is asymptotically distributed as a χ2 distribution with p

degrees of freedom when n
(�)
1 , N

(�)
4 → ∞ with n

(�)
1 /N

(�)
4 → δ(�) ∈ (0, 1], � = 1, 2. However,

note that the χ2 approximation is not an accurate approximate upper percentile of the T̃ 2

statistic when the sample size is small. Then, the two approximate upper 100α percentiles
of the T̃ 2 statistic when two data sets have the same three-step monotone missing data
pattern are given by

t2YS·L2(α) = (1− d)T 2
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and Fp,q,α is the upper 100α percentile of the F distribution with p and q degrees of
freedom.
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For the t2YS·L2(α) values, T 2
N,α and T 2

n,α are calculated from the complete data sets

((N
(1)
4 ×p1)+(N
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4 ×p1)) and ((n

(1)
1 ×p1)+(n

(2)
1 ×p1)), respectively. We note that the upper

percentiles of T̃ 2 may lie between T 2
N,α and T 2

n,α. Then, we propose t
2
YS·L2(α) as an approxi-

mate upper percentile of T̃ 2 by linear interpolation of the coordinates ((n
(1)
1 +n

(2)
1 )p1, T

2
n,α)

and ((N
(1)
4 +N

(2)
4 )p1, T

2
N,α). This approach is essentially based on that adopted in Section

2.1. As another approximation procedure, we propose t2YS·F2(α) by adjusting the degrees
of freedom of the F distribution. If two data sets have the same type of two-step mono-
tone missing data pattern, then the approximation adjusting the degrees of freedom of
the F distribution are given in Theorem 10 of Yagi and Seo (2015a).

3.1.3 Simplified T 2-type and Hotelling’s T 2-type statistics with
different two-step monotone missing data patterns

In this section, we test the equality of two mean vectors when two data sets have different
two-step monotone missing data patterns. That is, two data sets Π1 and Π2 are of the
forms given in Figure 3.1. Then, we can reduce Theorem 3.1 to the following result.

Corollary 3.2 (Yagi and Seo, 2015b) Let x
(�)
ij , i = 1, 2, 3, j = 1, 2, . . . , n

(�)
i , � = 1, 2 be

the j-th random vector of the i-th step from the �-th population distributed as Npi(μ
(�)
i ,Σi),

where n
(1)
3 = 0, n

(2)
2 = 0. Then, the MLEs of μ(�), � = 1, 2 and Σ are given by

μ̂(1) = x
(1)
1 + T̂

[pl]

2 d
(1)
2 ,

μ̂(2) = x
(2)
1 + T̂

[pl]

2 T̂
[pl]

3 d
(2)
3 ,

Σ̂
[pl]

=
1

N
(1)
2 +N

(2)
2

2∑
�=1

E
(�)
1

+
1

N
(1)
3 +N

(2)
3

F
[pl]
2

{
E

(1)
2 +

N
(1)
2 N

(1)
3

n
(1)
2

d
(1)
2 d

(1)′
2 − n

(1)
2

N
(1)
2 +N

(2)
2

(L
(1)
11 +L

(2)
11 )

}
F

[pl]′
2

+
1

N
(1)
4 +N

(2)
4

F
[pl]
3

{
E

(2)
3 +

N
(2)
3 N

(2)
4

n
(2)
3

d
(2)
3 d

(2)′
3 − n

(2)
3

N
(1)
3 +N

(2)
3

(L
(1)
21 +L

(2)
21 )

}
F

[pl]′
3 .
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n
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1
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(1)
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p3

n
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n
(2)
3

Π1 Π2

p1

Figure 3.1: Different two-step monotone missing data patterns
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Further, the simplified T 2-type statistic is reduced to

T̃ 2 = (μ̂(1) − μ̂(2))′ Γ̃
[pl]−1

(μ̂(1) − μ̂(2)),

where

μ̃(1) = x
(1)
1 + T 2d

(1)
2 , μ̃(2) = x

(2)
1 + T 2T 3d

(2)
3 ,

Γ̃
[pl]

=

(
2∑

�=1

1

N
(�)
2

)
Σ̂

[pl]

1 − n
(1)
2

N
(1)
2 N

(1)
3

Û
[pl]

2 − n
(2)
3

N
(2)
3 N

(2)
4

Û
[pl]

3 ,

Û
[pl]

2 =

(
Σ̂

[pl]

2

Σ̂
[pl]′

22

)
T̂

[pl]′

2 , Û
[pl]

3 =

(
Σ̂

[pl]

3

Σ̂
[pl]′

32

)
T̂

[pl]′

3 T̂
[pl]′

2 ,

and Σ̂
[pl]

is the MLE in Corollary 3.2. Indeed, Kanda and Fujikoshi (1998) obtained
Cov[μ̂] with two-step monotone missing data under the one-sample problem. Under

the two-sample problem, we can easily obtain Cov[μ̂(1) − μ̂(2)] with different two-step
monotone missing data: therefore, we can obtain the Hotelling’s T 2-type statistic as

T 2 = (μ̂(1) − μ̂(2))′ Γ̂
[pl]−1

(μ̂(1) − μ̂(2)),

where

μ̂(1) = x
(1)
1 + T̂

[pl]

2 d
(1)
2 , μ̂(2) = x

(2)
1 + T̂

[pl]

2 T̂
[pl]

3 d
(2)
3 , Γ̂

[pl]
=

2∑
�=1

(
Ĉov[μ̂(�)] + R̂

[pl]

(�)

)
,

R̂
[pl]

(1)=

⎛⎜⎝O O

O
n
(1)
2 p2

N
(1)
2 N

(1)
3 (N

(1)
2 − p2 − 2)

Σ̂
[pl]

23·2

⎞⎟⎠ , Σ̂
[pl]

23·2 = Σ̂
[pl]

23 − Σ̂
[pl]′

22 (Σ̂
[pl]

2 )−1Σ̂
[pl]

22 ,

R̂
[pl]

(2)=

⎛⎜⎝O O

O
n
(2)
3 p3

N
(2)
2 N

(2)
4 (N

(2)
2 − p3 − 2)

Σ̂
[pl]

33·3

⎞⎟⎠ , Σ̂
[pl]

33·3 = Σ̂
[pl]

33 − Σ̂
[pl]′

32 (Σ̂
[pl]

3 )−1Σ̂
[pl]

32 ,

N
(1)
2 > p2 + 2, N

(2)
2 > p3 + 2.

For details on the case in which two data sets have the same two-step monotone missing
data pattern, see Yagi and Seo (2015a). Further, in the case of data with different two-
step monotone missing data patterns, the two approximate upper 100α percentiles of the
T 2 (or T̃ 2) statistic are given by

t2YS·L2(α) = (1− d)T 2
n,α + dT 2

N,α,

t2YS·F2(α) =
n∗p1

n∗ − p1 − 1
Fp1,n∗−p1−1,α,
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where

d =
n
(1)
2 p2 + n

(2)
3 p3(

n
(1)
2 + n

(2)
3

)
p1
, T 2

n,α =
np1

n− p1 − 1
Fp1,n−p1−1,α,

T 2
N,α =

Np1
N − p1 − 1

Fp1,N−p1−1,α, n = n
(1)
1 + n

(2)
1 ,

N = n
(1)
1 + n

(1)
2 + n

(2)
1 + n

(2)
3 , n∗ =

1

p1

(
p1

2∑
�=1

n
(�)
1 + n

(1)
2 p2 + n

(2)
3 p3

)
.

Next, under the two-sample problem, we consider the simultaneous confidence intervals
when each data set has three-step monotone missing observations.

For any nonnull vector c = (c1, c2, . . . , cp)
′, the simultaneous confidence intervals for

c′(μ(1) − μ(2)) with the confidence level (1− α) are given by

c′(μ̂(1) − μ̂(2))−
√
L ≤ c′(μ(1) − μ(2)) ≤ c′(μ̂(1) − μ̂(2)) +

√
L, ∀c ∈ Rp − {0},

where L = t2(α)c′Γ̂
[pl]

c, t2(α) is the upper 100α percentile of the T 2(= (μ̂(1)− μ̂(2))′Γ̂
[pl]−1

(μ̂(1) − μ̂(2))) statistic, and Γ̂
[pl]

is an estimator of Cov[μ̂(1) − μ̂(2)]. However, it is not

easy to obtain t2(α). Therefore, using the approximate upper percentiles of the T̃ 2 statis-
tic, t2YS·L2(α) or t2YS·F2(α), for any nonnull vector c = (c1, c2, . . . , cp)

′, the approximate
simultaneous confidence intervals for c′(μ(1) − μ(2)) are given by

c′(μ̂(1) − μ̂(2))−√Lapp ≤ c′(μ(1) − μ(2)) ≤ c′(μ̂(1) − μ̂(2)) +
√

Lapp, ∀c ∈ Rp − {0},

where Lapp = t2app(α)c
′Γ̃

[pl]
c and the value of t2app(α) is t

2
YS·L2(α) or t

2
YS·F2(α).

3.1.4 Simultaneous confidence intervals for multiple compar-
isons among mean vectors

Under the m-sample problem, we consider the simultaneous confidence intervals for pair-
wise multiple comparisons among mean vectors when each data set has three-step mono-
tone missing observations. Similarly, we also construct the simultaneous confidence inter-
vals for comparisons with a control. Let x

(�)
i1 ,x

(�)
i2 , . . . , x

(�)

in
(�)
i

be distributed as Npi(μ
(�)
i ,Σi)

for i = 1, 2, 3 and � = 1, 2, . . . ,m. Further, we define the T 2
max·p statistic as

T 2
max·p = max

1≤a<b≤m
T 2
ab,

where T 2
ab = (μ̂(a) − μ̂(b))′Γ̂

[pl]−1

ab (μ̂(a) − μ̂(b)), and Γ̂
[pl]

ab is an estimator of Cov[μ̂(a) − μ̂(b)].
Then, for the case of pairwise multiple comparisons, the simultaneous confidence intervals
for c′(μ(a) − μ(b)), 1 ≤ a < b ≤ m are given by

c′(μ̂(a) − μ̂(b))−√Lp ≤ c′(μ(a) − μ(b)) ≤ c′(μ̂(a) − μ̂(b)) +
√

Lp,

1 ≤ a < b ≤ m, ∀c ∈ Rp − {0},
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where Lp = t2max·p(α)c
′Γ̂

[pl]

ab c and t2max·p(α) is the upper percentile of the T 2
max·p statistic.

Similarly, for the case of comparisons with a control, let μ(1) be a control and define
the T 2

max·c statistic as

T 2
max·c = max

2≤b≤m
T 2
1b,

where T 2
1b = (μ̂(1) − μ̂(b))′Γ̂

[pl]−1

1b (μ̂(1) − μ̂(b)) and Γ̂
[pl]

1b is an estimator of Cov[μ̂(1) − μ̂(b)].
Then, the simultaneous confidence intervals for c′(μ(1) − μ(b)), 2 ≤ b ≤ m are given by

c′(μ̂(1) − μ̂(b))−
√
Lc ≤ c′(μ(1) − μ(b)) ≤ c′(μ̂(1) − μ̂(b)) +

√
Lc,

2 ≤ b ≤ m, ∀c ∈ Rp − {0},

where Lc = t2max·c(α)c
′Γ̂

[pl]

1b c and t2max·c(α) is the upper percentile of the T 2
max·c statistic.

However, it is not easy to obtain t2max·p(α) and t2max·c(α) even under non-missing multi-
variate normality (see Seo and Siotani, 1992; Seo, Mano and Fujikoshi, 1994). Therefore,
in this paper, we adopt Bonferroni’s approximation which is one of the solutions to this
problem. Let n

(1)
i = n

(2)
i = · · · = n

(m)
i , i = 1, 2, 3: then, the null distributions of T 2

ab or T
2
1b

are identical. Therefore, the approximate simultaneous confidence intervals for pairwise
comparisons and comparisons with a control are given by

c′(μ̂(a) − μ̂(b))−
√

L∗
p ≤ c′(μ(a) − μ(b)) ≤ c′(μ̂(a) − μ̂(b)) +

√
L∗
p,

1 ≤ a < b ≤ m, ∀c ∈ Rp − {0},

and

c′(μ̂(1) − μ̂(b))−
√
L∗

c ≤ c′(μ(1) − μ(b)) ≤ c′(μ̂(1) − μ̂(b)) +
√
L∗
c,

2 ≤ b ≤ m, ∀c ∈ Rp − {0},

respectively, where

L∗
p = t2Bon(α1)c

′Γ̃
[pl]

ab c, L∗
c = t2Bon(α2)c

′Γ̃
[pl]

1b c,

the value of t2Bon(αi) is t
2
YS·Lm(αi) or t

2
YS·Fm(αi), i = 1, 2, and

α1 =
2α

m(m− 1)
, α2 =

α

m− 1
.

We note that Γ̃
[pl]

ab and Γ̃
[pl]

1b are estimated by the use of Σ̂
[pl]

in Theorem 3.1, and t2YS·Lm(αi)
or t2YS·Fm(αi) is the approximation that extended t2YS·Lm(α) or t

2
YS·Fm(α) in Section 3.1.2 to

the case of m-sample problem. That is, t2YS·Lm(α1), t
2
YS·Fm(α1), t

2
YS·Lm(α2), and t2YS·Fm(α2)

are t2YS·Lm(αp), t
2
YS·Fm(αp), t

2
YS·Lm(αc), and t2YS·Fm(αc) in Section 3.2.3 when k = 3, respec-

tively.
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3.1.5 Simulation studies

In order to investigate the accuracy of some of the approximations, we compute the
upper percentiles of the T 2, T̃ 2, T̃ 2

max·p and T̃ 2
max·c statistics via Monte Carlo simula-

tion, where T̃ 2
max·p = max

1≤a<b≤m
(μ̂(a) − μ̂(b))′Γ̃

[pl]−1

ab (μ̂(a) − μ̂(b)), and T̃ 2
max·c = max

2≤b≤m
(μ̂(1) −

μ̂(b))′Γ̃
[pl]−1

1b (μ̂(1) − μ̂(b)). For each parameter, the simulation involved 1,000,000 trials
based on three-step and two-step monotone missing data sets. That is, 1,000,000 of the
values of the test statistics are computed for each set (α, pi, n

(�)
i ) of parameters based on

the normal random vectors x
(�)
ij ’s generated from Npi(0, Ipi).

Computations are carried out for the following cases:

Case I : (p1, p2, p3) = (6, 4, 2), (12, 8, 4), n
(1)
1 = n

(2)
1 = 20, 50, 100,

(n
(1)
2 , n

(1)
3 ) = (n

(2)
2 , n

(2)
3 ) = (10, 10), (20, 20), α = 0.05, 0.01,

Case II : (p1, p2, p1, p3) = (6, 4, 6, 2),

n
(1)
1 = n

(2)
1 = 20, 50, 100, n

(1)
2 = n

(2)
3 = 10, 20, α = 0.05, 0.01,

Case III : m = 6, 10, (p1, p2, p3) = (12, 8, 4), α = 0.05, 0.01,

n
(�)
1 = 20, 50, 100, (n

(�)
2 , n

(�)
3 ) = (10, 10), (20, 20), � = 1, 2, . . . ,m.

The simulation results related to the upper percentiles of T̃ 2 statistic and their approx-
imations in the case of three-step monotone missing data are summarized in Table 3.1.
Table 3.1 lists the simulated upper 100α percentiles of the T̃ 2 statistic (t̃ 2simu(α)), the

approximate upper 100α percentiles of T̃ 2 (t2YS·L2(α), t
2
YS·F2(α)), and the upper 100α per-

centiles of the χ2 distribution with p degrees of freedom (χ2
p(α)). In Table 3.1, we denote

t̃ 2simu(α), t
2
YS·L2(α), and t2YS·F2(α) as t̃ 2simu, t

2
YS·L2, and t2YS·F2 respectively. In addition, we

provide the simulated coverage probabilities for the approximate upper 100α percentiles
given by

C̃P(t2YS·L2(α)) = 1− Pr{T̃ 2 > t2YS·L2(α)}, C̃P(t2YS·F2(α)) = 1− Pr{T̃ 2 > t2YS·F2(α)},
C̃P(χ2

p(α)) = 1− Pr{T̃ 2 > χ2
p(α)}.

It may be noted from Table 3.1 that the simulated values are not close to the upper
percentiles of the χ2 distribution even when the sample size n

(�)
1 is moderately large.

However, it is seen that the proposed approximations are accurate even for cases where n
(�)
1

is not large. In particular, it is noted that the values of t2YS·L2(α) are highly accurate for all
cases. In other words, the simulated coverage probabilities for t2YS·L2(α) are considerably
close to the nominal level 1 − α. Further, we compute the simulated values and their
approximations for the unbalanced cases when n

(1)
1 �= n

(2)
1 . It may be noted that the

proposed approximations are accurate and that t2YS·L2(α) is also considerably close to the
simulated value t̃ 2simu(α). Thus, it can be concluded that the approximation t2YS·L2(α)
is highly accurate even for small samples and unbalanced cases when the data have a
three-step monotone pattern of missing observations.

Table 3.2 lists the simulated values t2simu(α) and t̃ 2simu(α), the approximate values
t2YS·L2(α), t

2
YS·F2(α) and χ2

p(α) for the case of two-step monotone missing data. Further,
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Table 3.1: Simulated and approximate values and coverage probabilities for Case I

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 n

(�)
3 t̃ 2simu t2YS·L2 t2YS·F2 C̃PYS·L2 C̃PYS·F2 C̃Pχ2

(p1, p2, p3) = (6, 4, 2)

α = 0.05
20 10 10 16.22 16.01 15.46 0.947 0.940 0.877
50 10 10 13.97 13.93 13.89 0.949 0.949 0.923
100 10 10 13.29 13.28 13.27 0.950 0.950 0.937

20 20 20 15.79 15.63 14.63 0.948 0.933 0.886
50 20 20 13.86 13.80 13.69 0.949 0.947 0.926
100 20 20 13.22 13.23 13.21 0.950 0.950 0.938

α = 0.01
20 10 10 22.79 22.44 21.49 0.989 0.986 0.957
50 10 10 19.04 18.97 18.90 0.990 0.990 0.980
100 10 10 17.94 17.91 17.90 0.990 0.990 0.985

20 20 20 22.05 21.83 20.12 0.989 0.984 0.962
50 20 20 18.77 18.76 18.57 0.990 0.989 0.981
100 20 20 17.84 17.83 17.80 0.990 0.990 0.986

(p1, p2, p3) = (12, 8, 4)

α = 0.05
20 10 10 34.25 32.56 30.10 0.937 0.912 0.713
50 10 10 25.15 24.96 24.81 0.948 0.946 0.880
100 10 10 23.01 22.96 22.95 0.949 0.949 0.918

20 20 20 33.07 31.36 27.22 0.936 0.886 0.734
50 20 20 24.80 24.57 24.20 0.947 0.943 0.886
100 20 20 22.89 22.83 22.77 0.949 0.948 0.920

α = 0.01
20 10 10 46.34 43.64 39.65 0.986 0.976 0.853
50 10 10 32.23 31.92 31.70 0.989 0.989 0.960
100 10 10 29.01 29.00 28.97 0.990 0.990 0.979

20 20 20 44.73 41.85 35.28 0.985 0.963 0.869
50 20 20 31.60 31.35 30.79 0.989 0.988 0.964
100 20 20 28.82 28.81 28.72 0.990 0.990 0.979

Note. C̃PYS·L2=C̃P(t2YS·L2(α)), C̃PYS·F2=C̃P(t2YS·F2(α)), C̃Pχ2 =C̃P(χ2
p(α)), χ2

6(0.05)=12.59,

χ2
6(0.01)=16.81, χ2

12(0.05)=21.03, χ2
12(0.01)=26.22.

the simulated coverage probabilities for their approximate values are provided in Table
3.2, i.e.,

CP(t2YS·L2(α)) = 1− Pr{T 2 > t2YS·L2(α)}, CP(t2YS·F2(α)) = 1− Pr{T 2 > t2YS·F2(α)},
CP(χ2

p(α)) = 1− Pr{T 2 > χ2
p(α)},

and C̃P(t2YS·L2(α)), C̃P(t
2
YS·F2(α)), and C̃P(χ2

p(α)). In Table 3.2, we denote CP(t2YS·L2(α)),

CP(t2YS·F2(α)), CP(χ
2
p(α)), C̃P(t

2
YS·L2(α)), C̃P(t

2
YS·F2(α)), and C̃P(χ2

p(α)) as CPYS·L2, CPYS·F2,

CPχ2 , C̃PYS·L2, C̃PYS·F2, and C̃Pχ2 , respectively. In this simulation study, it may be seen

that the upper percentile of the T̃ 2 statistic is larger than that of the T 2 statistic, and
that the values of t2YS·L2(α) is larger than that of t2YS·F2(α) for all cases. Further, it may be
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Table 3.2: Simulated and approximate values and coverage probabilities for Case II
((p1, p2, p1, p3) = (6, 4, 6, 2))

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(1)
2 = n

(2)
3 t̃ 2simu t2YS·L2 t2YS·F2 C̃PYS·L2 C̃PYS·F2 C̃Pχ2

α = 0.05
20 10 16.64 16.42 16.18 0.947 0.944 0.869
50 10 14.07 14.03 14.02 0.949 0.949 0.922
100 10 13.31 13.31 13.30 0.950 0.950 0.936

20 20 16.25 16.01 15.46 0.947 0.939 0.877
50 20 13.97 13.93 13.89 0.949 0.949 0.924
100 20 13.29 13.28 13.27 0.950 0.950 0.937

α = 0.01
20 10 23.41 23.13 22.70 0.989 0.988 0.952
50 10 19.22 19.13 19.11 0.990 0.990 0.979
100 10 17.94 17.95 17.95 0.990 0.990 0.985

20 20 22.82 22.44 21.49 0.989 0.986 0.956
50 20 18.97 18.97 18.90 0.990 0.990 0.980
100 20 17.95 17.91 17.90 0.990 0.990 0.985

n
(�)
1 n

(1)
2 = n

(2)
3 t2simu t2YS·L2 t2YS·F2 CPYS·L2 CPYS·F2 CPχ2

α = 0.05
20 10 16.07 16.42 16.18 0.954 0.951 0.882
50 10 14.00 14.03 14.02 0.951 0.950 0.923
100 10 13.29 13.31 13.30 0.950 0.950 0.937

20 20 15.40 16.01 15.46 0.957 0.951 0.896
50 20 13.84 13.93 13.89 0.951 0.951 0.926
100 20 13.25 13.28 13.27 0.950 0.950 0.938

α = 0.01
20 10 22.55 23.13 22.70 0.991 0.990 0.958
50 10 19.12 19.13 19.11 0.990 0.990 0.979
100 10 17.92 17.95 17.95 0.990 0.990 0.985

20 20 21.56 22.44 21.49 0.992 0.990 0.965
50 20 18.80 18.97 18.90 0.991 0.990 0.981
100 20 17.91 17.91 17.90 0.990 0.990 0.985

Note. χ2
6(0.05)=12.59, χ2

6(0.01)=16.81.

noted from Table 3.2 that the approximation t2YS·L2(α) is highly accurate approximate

upper percentile of T̃ 2 for unbalanced case of the number of dimensions.
In order to compare the approximate values with the simulated values in the two cases

of pairwise comparisons and comparisons with a control, computations are carried out for
the Case III. Tables 3.3–3.4 list the simulated upper 100α percentiles of the T̃ 2

max·p statistic
(t̃ 2simu·p(α)), the simulated upper 100α1 percentiles of the T̃ 2

ab statistic (t̃ 2simu·Bon(α1)), the

approximate upper 100α1 percentiles of the T̃ 2
ab statistic (t2YS·Lm(α1), t

2
YS·Fm(α1)) and the

upper 100α1 percentiles of the χ2 distribution with p degrees of freedom (χ2
p(α1)), where

α1 = 2α/[m(m−1)]. We note that the values of t̃ 2simu·Bon(α1) are simulated values obtained
via Monte Carlo simulation. In the tables, we denote t̃ 2simu·p(α), t̃

2
simu·Bon(α1), t

2
YS·Lm(α1)

and t2YS·Fm(α1) as t̃
2
simu·p, t̃

2
simu·Bon, t

2
YS·Lm, and t2YS·Fm, respectively. In addition, we provide

the simulated coverage probabilities given by
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Table 3.3: Simulated and approximate values and coverage probabilities for pairwise
comparisons for Case III (m = 6 and (p1, p2, p3) = (12, 8, 4))

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 n

(�)
3 t̃ 2simu·p t̃ 2simu·Bon t2YS·Lm t2YS·Fm C̃PYS·Lm C̃PYS·Fm C̃Pχ2

α = 0.05
20 10 10 34.95 35.71 35.44 34.56 0.956 0.945 0.831
50 10 10 31.40 31.94 31.92 31.84 0.957 0.956 0.916
100 10 10 30.25 30.88 30.74 30.73 0.957 0.956 0.937

20 20 20 34.21 34.86 34.79 33.15 0.957 0.935 0.851
50 20 20 31.16 31.61 31.68 31.48 0.957 0.955 0.921
100 20 20 30.18 30.73 30.66 30.62 0.957 0.956 0.939

α = 0.01
20 10 10 41.46 41.89 41.60 40.45 0.990 0.987 0.938
50 10 10 36.84 37.08 37.09 36.99 0.991 0.991 0.977
100 10 10 35.39 35.72 35.60 35.59 0.991 0.991 0.984

20 20 20 40.50 40.85 40.77 38.65 0.991 0.984 0.948
50 20 20 36.56 36.77 36.80 36.54 0.991 0.990 0.978
100 20 20 35.27 35.82 35.50 35.46 0.991 0.991 0.985

Note. C̃PYS·Lm=C̃P(t2YS·Lm(α1)), C̃PYS·Fm=C̃P(t2YS·Fm(α1)), C̃Pχ2 =C̃P(χ2
p(α1)), α1 = α/15,

χ2
12(0.05/15) = 29.49, χ2

12(0.01/15) = 34.03.

Table 3.4: Simulated and approximate values and coverage probabilities for pairwise
comparisons for Case III (m = 10 and (p1, p2, p3) = (12, 8, 4))

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 n

(�)
3 t̃ 2simu·p t̃ 2simu·Bon t2YS·Lm t2YS·Fm C̃PYS·Lm C̃PYS·Fm C̃Pχ2

α = 0.05
20 10 10 36.48 37.11 37.14 36.52 0.958 0.950 0.865
50 10 10 33.98 34.58 34.52 34.46 0.958 0.957 0.925
100 10 10 33.05 33.55 33.61 33.60 0.958 0.958 0.943

20 20 20 35.87 36.34 36.64 35.46 0.959 0.944 0.882
50 20 20 33.80 34.38 34.34 34.19 0.958 0.955 0.929
100 20 20 33.02 33.34 33.54 33.52 0.958 0.957 0.943

α = 0.01
20 10 10 42.20 42.38 42.54 41.77 0.991 0.989 0.957
50 10 10 39.05 39.54 39.33 39.26 0.991 0.991 0.980
100 10 10 37.95 38.12 38.22 38.21 0.991 0.991 0.986

20 20 20 41.46 41.69 41.93 40.48 0.991 0.987 0.964
50 20 20 38.89 39.23 39.11 38.93 0.991 0.990 0.982
100 20 20 37.94 37.80 38.14 38.11 0.991 0.991 0.986

Note. C̃PYS·Lm=C̃P(t2YS·Lm(α1)), C̃PYS·Fm=C̃P(t2YS·Fm(α1)), C̃Pχ2 =C̃P(χ2
p(α1)), α1 = α/45,

χ2
12(0.05/45) = 32.62, χ2

12(0.01/45) = 37.01.

C̃P(t2YS·Lm(α1)) = 1− Pr{T̃ 2
max·p > t2YS·Lm(α1)},

C̃P(t2YS·Fm(α1)) = 1− Pr{T̃ 2
max·p > t2YS·Fm(α1)},

C̃P(χ2
p(α1)) = 1− Pr{T̃ 2

max·p > χ2
p(α1)}.

It may be noted from Tables 3.3–3.4 that the simulated values for t̃ 2simu·Bon(α1) are larger
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Table 3.5: Simulated and approximate values and coverage probabilities for comparisons
with a control for Case III (m = 6 and (p1, p2, p3) = (12, 8, 4))

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 n

(�)
3 t̃ 2simu·c t̃ 2simu·Bon t2YS·Lm t2YS·Fm C̃PYS·Lm C̃PYS·Fm C̃Pχ2

α = 0.05
20 10 10 30.80 31.32 31.14 30.42 0.954 0.945 0.861
50 10 10 27.84 28.28 28.24 28.17 0.955 0.954 0.923
100 10 10 26.84 27.26 27.26 27.25 0.956 0.956 0.940

20 20 20 30.21 30.74 30.60 29.26 0.955 0.937 0.874
50 20 20 27.65 28.07 28.04 27.88 0.955 0.953 0.926
100 20 20 26.82 27.22 27.19 27.16 0.955 0.955 0.941

α = 0.01
20 10 10 37.36 37.64 37.41 36.45 0.990 0.987 0.952
50 10 10 33.41 33.71 33.58 33.50 0.991 0.990 0.979
100 10 10 32.11 32.26 32.31 32.30 0.991 0.991 0.986

20 20 20 36.55 36.78 36.70 34.92 0.990 0.985 0.958
50 20 20 33.16 33.35 33.33 33.11 0.991 0.990 0.981
100 20 20 32.03 32.14 32.22 32.18 0.991 0.990 0.986

Note. C̃PYS·Lm=C̃P(t2YS·Lm(α2)), C̃PYS·Fm=C̃P(t2YS·Fm(α2)), C̃Pχ2 =C̃P(χ2
p(α2)), α2 = α/5,

χ2
12(0.05/5) = 26.22, χ2

12(0.01/5) = 30.96.

Table 3.6: Simulated and approximate values and coverage probabilities for comparisons
with a control for Case III (m = 10 and (p1, p2, p3) = (12, 8, 4))

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 n

(�)
3 t̃ 2simu·c t̃ 2simu·Bon t2YS·Lm t2YS·Fm C̃PYS·Lm C̃PYS·Fm C̃Pχ2

α = 0.05
20 10 10 30.97 31.61 31.56 31.08 0.957 0.951 0.895
50 10 10 28.94 29.55 29.50 29.46 0.958 0.957 0.934
100 10 10 28.25 28.73 28.78 28.77 0.957 0.957 0.946

20 20 20 30.51 31.17 31.17 30.25 0.958 0.946 0.904
50 20 20 28.82 29.38 29.36 29.24 0.957 0.956 0.936
100 20 20 28.20 28.76 28.73 28.70 0.957 0.957 0.947

α = 0.01
20 10 10 36.86 37.06 37.14 36.52 0.991 0.989 0.968
50 10 10 34.20 34.53 34.52 34.46 0.991 0.991 0.983
100 10 10 33.35 33.52 33.61 33.60 0.991 0.991 0.987

20 20 20 36.29 36.60 36.64 35.46 0.991 0.987 0.972
50 20 20 34.09 34.26 34.34 34.19 0.991 0.990 0.984
100 20 20 33.29 33.63 33.54 33.52 0.991 0.991 0.988

Note. C̃PYS·Lm=C̃P(t2YS·Lm(α2)), C̃PYS·Fm=C̃P(t2YS·Fm(α2)), C̃Pχ2 =C̃P(χ2
p(α2)), α2 = α/9,

χ2
12(0.05/9) = 27.99, χ2

12(0.01/9) = 32.62.

than the simulated values for t̃ 2simu·p(α) because Bonferroni’s approximation is always
an overestimate for the T 2

max-type statistic: this can be shown theoretically. It may be
seen from the tables that the approximate values of t2YS·Lm(α1) and t2YS·Fm(α1) are closer
to the simulated values of t̃ 2simu·p(α) when the sample size becomes large. The simula-

tion studies show that t2YS·L(α1) is close to t̃ 2simu·p(α) and is a conservative approximation.
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Further, Tables 3.5–3.6 list the results for the case of comparisons with a control. We pro-
vide t̃ 2simu·c(α), t̃

2
simu·Bon(α2), t

2
YS·Lm(α2), t

2
YS·Fm(α2) and χ2

p(α2), as well as C̃P(t
2
YS·Lm(α2)),

C̃P(t2YS·Fm(α2)) and C̃P(χ2
p(α2)), where α2 = α/(m− 1). The accuracy of the approxima-

tions is similar to that in the case of pairwise comparisons.

3.2 k-step monotone missing data

In this section, we consider testing the equality of mean vectors and simultaneous con-
fidence intervals when each data set has a monotone missing data pattern. We give a
simplified T 2-type statistic and propose the approximate upper percentiles of the statistic
in the case of data with general k-step monotone missing data patterns. We also consider
multivariate multiple comparisons for mean vectors with general k-step monotone miss-
ing data. Approximate simultaneous confidence intervals for pairwise comparisons among
mean vectors and comparisons with a control are obtained using Bonferroni’s approxima-
tion procedure. Finally, the accuracy and asymptotic behavior of the approximations are
investigated by Monte Carlo simulation.

3.2.1 MLEs of the mean vectors and the covariance matrix

Using the notations in Section 2.2, we consider the MLEs of the mean vectors and the
common covariance matrix for the m-sample problem.

Let x
(�)
i1 ,x

(�)
i2 , . . . ,x

(�)

in
(�)
i

be distributed as Npi(μ
(�)
i ,Σi) for i = 1, 2, . . . , k and � =

1, 2, . . . ,m, where μ
(�)
i = (μ

(�)
1 , μ

(�)
2 , . . . , μ

(�)
pi )

′ and
∑m

�=1 n
(�)
1 −m ≥ p1. Let

x
(�)
i =

1

n
(�)
i

n
(�)
i∑

j=1

x
(�)
ij , E

(�)
i =

n
(�)
i∑

j=1

(x
(�)
ij − x

(�)
i )(x

(�)
ij − x

(�)
i )′, i = 1, 2, . . . , k.

Further, we define

N
(�)
1 = 0, N

(�)
i+1 =

i∑
j=1

n
(�)
j , i = 1, 2, . . . , k,

νi·m =
m∑
�=1

n
(�)
i , i = 1, 2, . . . , k, Mi·m =

m∑
�=1

N
(�)
i , i = 1, 2, . . . , k + 1,

d
(�)
1 = x

(�)
1 , d

(�)
i =

n
(�)
i

N
(�)
i+1

[
x
(�)
i − 1

N
(�)
i

i−1∑
j=1

n
(�)
j (x

(�)
j )i

]
, i = 2, 3, . . . , k,

f
(�)
1 = d

(�)
1 , f

(�)
i = U id

(�)
i , i = 2, 3, . . . , k,

U 1 = T 1, U i = U i−1T i, i = 2, 3, . . . , k,

T 1 = Ip1 , T i+1 =

(
Ipi+1

Σ′
(i,2)Σ

−1
i+1

)
, i = 1, 2, . . . , k − 1.
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Using a straightforward manner based on the case of the one-sample problem by Jinadasa
and Tracy (1992), we can derive the MLEs of μ(�) � = 1, 2, . . . ,m and Σ. We partially
differentiate the loglikelihood function with respect to μ(�) and Σ, respectively, then
solving the likelihood equation, we obtain the following theorem.

Theorem 3.3. (Yagi and Seo, 2017) Let x
(�)
ij i = 1, 2, . . . , k, j = 1, 2, . . . , n

(�)
i , � =

1, 2, . . . ,m be the j-th random vector of the i-th step from the �-th population distributed
as Npi(μ

(�)
i ,Σi). Then, the MLEs of μ(�), � = 1, 2, . . . ,m are given by

μ̂(�) =
k∑

i=1

f̂
(�)

i ,

where

f̂
(�)

1 = d
(�)
1 , f̂

(�)

i = Û
[pl]

i d
(�)
i , i = 2, 3, . . . , k,

Û
[pl]

1 = T 1, Û
[pl]

i = Û
[pl]

i−1T̂
[pl]

i , i = 2, 3, . . . , k,

T 1 = Ip1 , T̂
[pl]

i+1 =

(
Ipi+1

Σ̂
[pl]′

(i,2)Σ̂
[pl]−1

i+1

)
, i = 1, 2, . . . , k − 1;

then, the MLE of the covariance matrix is given by

Σ̂
[pl]

=
1

M2·m

m∑
�=1

H
(�)
1 +

m∑
�=1

k∑
i=2

1

Mi+1·m
F

[pl]
i

[
H

(�)
i − νi·m

Mi·m
L

(�)
i−1,1

]
F

[pl]′
i ,

where

H
(�)
1 = E

(�)
1 , H

(�)
i = E

(�)
i +

N
(�)
i N

(�)
i+1

n
(�)
i

d
(�)
i d

(�)′
i , i = 2, 3, . . . , k,

L
(�)
1 = H

(�)
1 , L

(�)
i = (L

(�)
i−1)i +H

(�)
i , i = 2, 3, . . . , k,

L
(�)
i1 = (L

(�)
i )i+1, L

(�)
i =

(
L

(�)
i1 L

(�)
i2

L
(�)′
i2 L

(�)
i3

)
, i = 1, 2, . . . , k − 1,

and

F
[pl]
1 = G1, F

[pl]
i = F

[pl]
i−1G

[pl]
i , i = 2, 3, . . . , k,

G1 = Ip1 , G
[pl]
i+1 =

⎛⎝ Ipi+1( m∑
�=1

L
(�)
i2

)′( m∑
�=1

L
(�)
i1

)−1

⎞⎠ , i = 1, 2, . . . , k − 1.

We note that, in the case of one-sample problem (m = 1), μ̂(�) and Σ̂
[pl]

in Theorem 3.3

are reduced to μ̂(=
∑k

i=1 f̂ i), and Σ̂ in Jinadasa and Tracy (1992), respectively.

3.2.2 Two-sample problem

In this section, we test the equality of two mean vectors with k-step monotone missing
data. We give the simplified T 2-type statistic and its approximate upper percentiles. To
test the hypothesis H0 : μ(1) = μ(2) vs. H1 : μ(1) �= μ(2) when two data sets have the
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same k-step monotone missing data pattern, we adopt the simplified T 2-type statistic
given by

T̃ 2 = (μ̂(1) − μ̂(2))′ Γ̃
[pl]−1

(μ̂(1) − μ̂(2)),

where μ̂(�) =
∑k

i=1 f̂
(�)

i , � = 1, 2, and Γ̃
[pl]

is an estimator of Cov[μ̃(1) − μ̃(2)], μ̃(�) =∑k
i=1 f

(�)
i , � = 1, 2. Then, using Theorem 2.3 for the one-sample problem, we have

Γ̃
[pl]

=
n
(1)
1 + n

(2)
1

n
(1)
1 n

(2)
1

Σ̂
[pl]

1 −
2∑

�=1

k∑
i=2

n
(�)
i

N
(�)
i N

(�)
i+1

Û
[pl]

i Σ̂
[pl]

i Û
[pl]′

i ,

where Σ̂
[pl]

is the MLE when m = 2 in Theorem 3.3. We note that under H0, T̃
2 is asymp-

totically distributed as a χ2 distribution with p degrees of freedom when n
(�)
1 , N

(�)
k+1 → ∞

with n
(�)
1 /N

(�)
k+1 → δ(�) ∈ (0, 1], � = 1, 2. However, as with the one-sample problem, we

note that the χ2 approximation is not a good approximate upper percentile of the T̃ 2

statistic when the sample size is not large. We propose the two approximate upper 100α
percentiles of the T̃ 2 statistic given by

t2YS·L2(α) = (1− ω2)T
2
ν1·2,α + ω2T

2
Mk+1·2,α,

t2YS·F2(α) =
n∗
2p1

n∗
2 − p1 − 1

Fp1,n∗
2−p1−1,α,

where

ω2 =

∑k
i=2 νi·2pi

p1
∑k

i=2 νi·2
, n∗

2 =
1

p1

k∑
i=1

νi·2pi,

T 2
ν1·2,α =

ν1·2p1
ν1·2 − p1 − 1

Fp1,ν1·2−p1−1,α, T 2
Mk+1·2,α =

Mk+1·2p1
Mk+1·2 − p1 − 1

Fp1,Mk+1·2−p1−1,α.

Further, we can test the equality of two mean vectors when two data sets have unequal
general step monotone missing data patterns. For two-step case, see Section 3.1.3.

Next, under the two-sample problem, we consider the simultaneous confidence intervals
when each data set has k-step monotone missing observations.

For any nonnull vector c = (c1, c2, . . . , cp)
′, the simultaneous confidence intervals for

c′(μ(1) − μ(2)) with the confidence level (1− α) are given by

c′(μ̂(1) − μ̂(2))−
√
L ≤ c′(μ(1) − μ(2)) ≤ c′(μ̂(1) − μ̂(2)) +

√
L, ∀c ∈ Rp − {0},

where L = t2(α)c′Γ̂
[pl]

c and t2(α) is the upper 100α percentile of the T 2(= (μ̂(1) −
μ̂(2))′Γ̂

[pl]−1

(μ̂(1)− μ̂(2))) statistic and Γ̂
[pl]

is an estimator of Cov[μ̂(1)− μ̂(2)]. However, it

is not easy to obtain t2(α). Therefore, using the approximate upper percentiles of the T̃ 2

statistic, t2YS·L2(α) or t
2
YS·F2(α), for any nonnull vector c = (c1, c2, . . . , cp)

′, the approximate
simultaneous confidence intervals for c′(μ(1) − μ(2)) can be obtained by

c′(μ̂(1) − μ̂(2))−√Lapp ≤ c′(μ(1) − μ(2)) ≤ c′(μ̂(1) − μ̂(2)) +
√

Lapp, ∀c ∈ Rp − {0},

where Lapp = t2app(α)c
′Γ̃

[pl]
c and the value of t2app(α) is t

2
YS·L2(α) or t

2
YS·F2(α).
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3.2.3 Simultaneous confidence intervals for multiple compar-
isons among mean vectors

Under the m-sample problem, we consider the simultaneous confidence intervals for
pairwise multiple comparisons among mean vectors when each data set has k-step mono-
tone missing observations. As with the three-step case in Section 3.1.4, we adopt Bon-
ferroni’s approximation. Let n

(1)
i = n

(2)
i = · · · = n

(m)
i , i = 1, 2, . . . , k; then, the null

distributions of T 2
ab and T 2

1b are identical. Their approximate simultaneous confidence
intervals for pairwise comparisons and comparisons with a control are given by

c′(μ̂(a) − μ̂(b))−
√

L∗
p ≤ c′(μ(a) − μ(b)) ≤ c′(μ̂(a) − μ̂(b)) +

√
L∗
p,

1 ≤ a < b ≤ m, ∀c ∈ Rp − {0},

and

c′(μ̂(1) − μ̂(b))−
√
L∗

c ≤ c′(μ(1) − μ(b)) ≤ c′(μ̂(1) − μ̂(b)) +
√
L∗
c,

2 ≤ b ≤ m, ∀c ∈ Rp − {0},

respectively, where

L∗
p = t2Bon(αp)c

′Γ̃
[pl]

ab c, L∗
c = t2Bon(αc)c

′Γ̃
[pl]

1b c.

Further, the value of t2Bon(αp) is t2YS·Lm(αp) or t2YS·Fm(αp), and the value of t2Bon(αc) is
t2YS·Lm(αc) or t

2
YS·Fm(αc), which are given in

t2YS·Lm(αp) = (1− ωm)T
2
ν1·m,αp

+ ωmT
2
Mk+1·m,αp

,

t2YS·Fm(αp) =
n∗
mp1

n∗
m − p1 − (m− 1)

Fp1,n∗
m−p1−(m−1),αp ,

and

t2YS·Lm(αc) = (1− ωm)T
2
ν1·m,αc

+ ωmT
2
Mk+1·m,αc

,

t2YS·Fm(αc) =
n∗
mp1

n∗
m − p1 − (m− 1)

Fp1,n∗
m−p1−(m−1),αc ,

respectively, where

αp =
2α

m(m− 1)
, αc =

α

m− 1
, ωm =

∑k
i=2 νi·mpi

p1
∑k

i=2 νi·m
, n∗

m =
1

p1

k∑
i=1

νi·mpi,

T 2
ν1·m,α =

ν1·mp1
ν1·m − p1 − (m− 1)

Fp1,ν1·m−p1−(m−1),α,

T 2
Mk+1·m,α =

Mk+1·mp1
Mk+1·m − p1 − (m− 1)

Fp1,Mk+1·m−p1−(m−1),α.

We note that Γ̃
[pl]

ab and Γ̃
[pl]

1b are estimated by the use of Σ̂
[pl]

in Theorem 3.3.
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3.2.4 Simulation studies

To investigate the accuracy of some of the approximations under the two-sample problem,
we compute the upper percentiles of the T̃ 2 statistic by Monte Carlo simulation. As with
the one-sample problem in Section 2.2.3, the T̃ 2 statistic are computed 106 times for
each set (α, pi, n

(�)
i ) of parameters based on the normal random vectors x

(�)
ij generated

from Npi(0, Ipi), i = 1, 2, . . . , k, � = 1, 2. The simulation results related to the upper

percentiles of the T̃ 2 statistic and their approximations in the cases of five-step and ten-
step monotone missing data are summarized in Tables 3.7 and 3.8. Computations are
carried out for the following two cases:

Five-step Case: (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3),

n
(1)
1 = n

(2)
1 = 10, 11, 30(10)50, 100, 200, 400, 800,

n
(�)
2 = n

(�)
3 = · · · = n

(�)
5 = 5, 10, � = 1, 2, α = 0.05, 0.01.

Ten-step Case: (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2),

n
(1)
1 = n

(2)
1 = 12, 13, 30(10)50, 100, 200, 400, 800,

n
(�)
2 = n

(�)
3 = · · · = n

(�)
10 = 5, 10, � = 1, 2, α = 0.05, 0.01.

Tables 3.7 and 3.8 give the simulated upper 100α percentiles of the T̃ 2 statistic (t̃ 2simu(α)),

the approximate upper 100α percentiles of T̃ 2 (t2YS·L2(α), t
2
YS·F2(α), and t2YKP(α)), where

t2YKP(α) is the approximation in Yu et al. (2006). In the tables, we denote t̃ 2simu(α),
t2YS·L2(α), t

2
YS·F2(α), and t2YKP(α) as t̃

2
simu, t

2
YS·L2, t

2
YS·F2, and t2YKP, respectively. In addition, we

provide the simulated coverage probabilities for the approximate upper 100α percentiles
given by

CP(t2YS·L2(α)) = 1− Pr{T̃ 2 > t2YS·L2(α)}, CP(t2YS·F2(α)) = 1− Pr{T̃ 2 > t2YS·F2(α)},
CP(t2YKP(α)) = 1− Pr{T̃ 2 > t2YKP(α)}, CP(χ2

p(α)) = 1− Pr{T̃ 2 > χ2
p(α)}.

It may be noted from Tables 3.7 and 3.8 that the simulated values are not close to χ2
p(α)

even when the sample size n
(�)
1 is moderately large. However, the proposed approxima-

tions are accurate even for cases in which n
(�)
1 is not large. In particular, the values of

t2YS·L2(α) are highly accurate when n
(�)
1 ≥ 30, � = 1, 2. In other words, the actual coverage

probabilities for t2YS·L2(α) are considerably close to the nominal level 1−α. Thus, it can be
concluded that the approximation t2YS·L2(α) is highly accurate for moderately large sample
sizes when the data have a k-step monotone pattern of missing observations. As with
the one-sample problem, the condition for t2YS·L2 and t2YS·F2 is

∑2
�=1 n

(�)
1 − 2 ≥ p1 and the

condition for t2YKP is
∑2

�=1 n
(�)
1 − 6 ≥ p1. For example, when p1 = 15 and n

(1)
1 = n

(2)
1 = 10

in Table 3.7, the value of t2YKP cannot be computed but that of t2YS·L2 or t2YS·F2 can be
computed.

Next, in order to compare the approximate values with the simulated values in the cases
of pairwise comparisons and comparisons with a control, we compute for the following
case:

Five-step Case: m = 6, 10, (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3),

n
(�)
1 = 25(5)50, 100, 200, 400, 800, n

(�)
2 = n

(�)
3 = · · · = n

(�)
5 = 5, 10,

� = 1, 2, . . . ,m, α = 0.05, 0.01.
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Table 3.7: Simulated and approximate values and coverage probabilities when
m = 2 and (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 = · · · = n

(�)
5 t̃ 2simu t2YS·L2 t2YS·F2 t2YKP CPYS·L2 CPYS·F2 CPYKP CPχ2

α = 0.05
10 5 374.58 239.10 52.69 – 0.901 0.412 – 0.106
11 5 173.46 127.40 50.20 174.30 0.906 0.563 0.951 0.181
30 5 36.17 35.39 34.23 34.97 0.944 0.933 0.940 0.753
40 5 32.77 32.38 31.91 31.90 0.946 0.942 0.942 0.816
50 5 31.02 30.76 30.52 30.31 0.947 0.945 0.943 0.849
100 5 27.84 27.78 27.75 27.49 0.949 0.949 0.946 0.906
200 5 26.38 26.38 26.37 26.22 0.950 0.950 0.948 0.930
400 5 25.68 25.68 25.68 25.60 0.950 0.950 0.949 0.941
800 5 25.33 25.34 25.34 25.30 0.950 0.950 0.949 0.945
10 10 369.14 235.62 38.87 – 0.902 0.306 – 0.131
11 10 168.55 124.17 38.21 166.62 0.908 0.451 0.949 0.216
30 10 34.75 34.23 31.91 33.89 0.946 0.921 0.942 0.778
40 10 31.91 31.58 30.52 31.23 0.947 0.935 0.943 0.832
50 10 30.46 30.18 29.60 29.85 0.947 0.941 0.944 0.860
100 10 27.67 27.59 27.50 27.36 0.949 0.948 0.946 0.909
200 10 26.36 26.32 26.31 26.18 0.949 0.949 0.948 0.930
400 10 25.64 25.67 25.67 25.59 0.950 0.950 0.949 0.941
800 10 25.33 25.34 25.34 25.29 0.950 0.950 0.950 0.945

α = 0.01
10 5 971.77 557.74 72.22 – 0.974 0.558 – 0.171
11 5 351.45 232.68 68.21 344.88 0.974 0.717 0.990 0.278
30 5 46.61 45.48 43.72 43.79 0.988 0.984 0.985 0.885
40 5 41.52 41.03 40.35 39.59 0.989 0.988 0.986 0.927
50 5 39.08 38.69 38.35 37.47 0.989 0.988 0.986 0.946
100 5 34.47 34.46 34.42 33.78 0.990 0.990 0.988 0.974
200 5 32.48 32.49 32.49 32.14 0.990 0.990 0.989 0.983
400 5 31.52 31.53 31.53 31.35 0.990 0.990 0.990 0.987
800 5 31.09 31.05 31.05 30.96 0.990 0.990 0.990 0.988
10 10 968.92 552.61 50.62 – 0.974 0.428 – 0.203
11 10 347.78 227.92 49.62 334.80 0.974 0.597 0.989 0.322
30 10 44.49 43.82 40.35 42.41 0.989 0.980 0.986 0.903
40 10 40.23 39.91 38.35 38.73 0.989 0.986 0.987 0.936
50 10 38.22 37.87 37.03 36.88 0.989 0.987 0.987 0.951
100 10 34.26 34.19 34.06 33.61 0.990 0.990 0.988 0.975
200 10 32.42 32.41 32.39 32.09 0.990 0.990 0.989 0.983
400 10 31.51 31.51 31.51 31.34 0.990 0.990 0.989 0.987
800 10 31.00 31.05 31.05 30.96 0.990 0.990 0.990 0.989

Note. CPYS·L2=CP(t2YS·L2(α)), CPYS·F2=CP(t2YS·F2(α)), CPYKP=CP(t2YKP(α)), CPχ2 =CP(χ2
p(α)),

χ2
15(0.05)=25.00, χ2

15(0.01)=30.58.

Then, we define
T̃ 2
max·p = max

1≤a<b≤m
T̃ 2
ab, T̃ 2

max·c = max
2≤b≤m

T̃ 2
1b,

where T̃ 2
ab = (μ̂(a) − μ̂(b))′Γ̃

[pl]−1

ab (μ̂(a) − μ̂(b)), T̃ 2
1b = (μ̂(1) − μ̂(b))′Γ̃

[pl]−1

1b (μ̂(1) − μ̂(b)), and

Γ̃
[pl]

ab and Γ̃
[pl]

1b are estimators of Cov[μ̃(a) − μ̃(b)] and Cov[μ̃(1) − μ̃(b)], respectively. Tables

3.9 and 3.10 give the simulated upper 100α percentiles of the T̃ 2
max·p statistic (t̃ 2simu·p(α)),
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Table 3.8: Simulated and approximate values and coverage probabilities when
m = 2 and (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2)

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 = · · · = n

(�)
5 t̃ 2simu t2YS·L2 t2YS·F2 t2YKP CPYS·L2 CPYS·F2 CPYKP CPχ2

α = 0.05
12 5 1105.49 713.46 51.55 – 0.916 0.203 – 0.060
13 5 326.95 257.56 50.67 316.67 0.925 0.348 0.947 0.117
30 5 47.81 47.61 42.42 46.15 0.949 0.903 0.938 0.670
40 5 42.74 42.47 40.20 41.49 0.948 0.927 0.940 0.759
50 5 40.18 39.94 38.72 39.17 0.948 0.937 0.941 0.807
100 5 35.66 35.56 35.39 35.14 0.949 0.947 0.945 0.888
200 5 33.59 33.51 33.49 33.27 0.949 0.949 0.946 0.921
400 5 32.50 32.48 32.47 32.34 0.950 0.950 0.948 0.936
800 5 31.94 31.95 31.95 31.88 0.950 0.950 0.949 0.943
12 10 1103.64 710.97 41.30 – 0.917 0.172 – 0.091
13 10 315.75 255.15 41.08 298.22 0.929 0.302 0.945 0.168
30 10 44.67 46.14 38.43 43.59 0.959 0.884 0.942 0.726
40 10 40.72 41.31 37.46 39.85 0.955 0.916 0.942 0.795
50 10 38.77 39.00 36.72 38.02 0.952 0.929 0.943 0.832
100 10 35.22 35.14 34.71 34.76 0.949 0.944 0.945 0.895
200 10 33.38 33.36 33.29 33.15 0.950 0.949 0.947 0.923
400 10 32.42 32.43 32.42 32.31 0.950 0.950 0.949 0.937
800 10 31.93 31.94 31.93 31.87 0.950 0.950 0.949 0.944

α = 0.01
12 5 3839.09 2160.69 65.62 – 0.979 0.296 – 0.101
13 5 774.54 522.10 64.33 701.70 0.979 0.481 0.988 0.191
30 5 60.29 60.18 52.59 56.50 0.990 0.973 0.984 0.828
40 5 52.96 52.74 49.50 50.25 0.990 0.982 0.984 0.893
50 5 49.37 49.17 47.46 47.25 0.990 0.986 0.985 0.923
100 5 43.26 43.14 42.90 42.16 0.990 0.989 0.987 0.966
200 5 40.50 40.37 40.34 39.85 0.990 0.990 0.988 0.980
400 5 38.99 38.99 38.98 38.71 0.990 0.990 0.989 0.985
800 5 38.32 38.28 38.28 38.14 0.990 0.990 0.990 0.988
12 10 3821.46 2157.26 51.02 – 0.978 0.247 – 0.141
13 10 755.81 518.77 50.72 666.97 0.979 0.417 0.987 0.255
30 10 56.04 58.17 47.06 53.34 0.993 0.964 0.985 0.870
40 10 50.07 51.16 45.72 48.22 0.992 0.979 0.986 0.917
50 10 47.38 47.90 44.71 45.83 0.991 0.983 0.987 0.938
100 10 42.67 42.58 41.98 41.70 0.990 0.988 0.988 0.969
200 10 40.19 40.17 40.07 39.71 0.990 0.990 0.989 0.981
400 10 38.92 38.92 38.91 38.67 0.990 0.990 0.989 0.986
800 10 38.27 38.26 38.26 38.13 0.990 0.990 0.990 0.988

Note. CPYS·L2=CP(t2YS·L2(α)), CPYS·F2=CP(t2YS·F2(α)), CPYKP=CP(t2YKP(α)), CPχ2 =CP(χ2
p(α)),

χ2
20(0.05)=31.41, χ2

20(0.01)=37.57.

the simulated upper 100αp percentiles of the T̃ 2
ab statistic (t̃

2
simu·Bon(αp)), and the approx-

imate upper 100αp percentiles of the T̃ 2
ab statistic (t2YS·Lm(αp), t

2
YS·Fm(αp)). The values of

t̃ 2simu·Bon(αp) are simulated values obtained via Monte Carlo simulation. In the tables, we
denote t̃ 2simu·p(α), t̃

2
simu·Bon(αp), t

2
YS·Lm(αp), and t2YS·Fm(αp) as t̃ 2simu·p, t̃

2
simu·Bon, t

2
YS·Lm, and

t2YS·Fm, respectively. In addition, we provide the actual coverage probabilities given by

CP(t2YS·Lm(αp)) = 1− Pr{T̃ 2
max·p > t2YS·Lm(αp)},

CP(t2YS·Fm(αp)) = 1− Pr{T̃ 2
max·p > t2YS·Fm(αp)},
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Table 3.9: Simulated and approximate values and coverage probabilities for pairwise
comparisons when m = 6 and (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 = · · · = n

(�)
5 t̃ 2simu·p t̃ 2simu·Bon t2YS·Lm t2YS·Fm CPYS·Lm CPYS·Fm CPχ2

α = 0.05
25 5 39.86 40.62 40.48 39.78 0.957 0.949 0.828
30 5 38.82 39.40 39.40 38.98 0.957 0.952 0.855
35 5 38.04 38.56 38.65 38.37 0.957 0.954 0.873
40 5 37.52 38.04 38.09 37.89 0.957 0.954 0.886
45 5 37.08 37.65 37.65 37.51 0.957 0.955 0.895
50 5 36.76 37.34 37.31 37.20 0.957 0.955 0.902
100 5 35.24 35.77 35.73 35.71 0.956 0.956 0.931
200 5 34.42 34.87 34.91 34.91 0.957 0.957 0.945
400 5 34.04 34.55 34.49 34.49 0.956 0.956 0.950
800 5 33.78 34.21 34.28 34.28 0.957 0.957 0.954
25 10 38.92 39.50 39.77 38.37 0.959 0.943 0.852
30 10 38.09 38.73 38.82 37.89 0.958 0.947 0.872
35 10 37.48 38.02 38.16 37.51 0.958 0.950 0.886
40 10 37.03 37.62 37.67 37.20 0.958 0.952 0.896
45 10 36.72 37.18 37.30 36.94 0.957 0.953 0.903
50 10 36.44 36.97 37.00 36.72 0.957 0.954 0.909
100 10 35.10 35.65 35.62 35.57 0.957 0.956 0.934
200 10 34.38 34.83 34.88 34.87 0.957 0.956 0.945
400 10 33.98 34.49 34.48 34.48 0.957 0.957 0.951
800 10 33.80 34.30 34.28 34.28 0.957 0.957 0.954

α = 0.01
25 5 46.58 46.98 46.88 45.99 0.991 0.988 0.938
30 5 45.25 45.41 45.52 44.98 0.991 0.989 0.951
35 5 44.31 44.29 44.57 44.22 0.991 0.990 0.959
40 5 43.62 43.92 43.87 43.63 0.991 0.990 0.965
45 5 43.06 43.36 43.33 43.15 0.991 0.990 0.969
50 5 42.65 43.18 42.90 42.77 0.991 0.990 0.971
100 5 40.73 41.01 40.94 40.92 0.991 0.991 0.982
200 5 39.71 40.08 39.93 39.93 0.991 0.991 0.987
400 5 39.23 39.55 39.41 39.41 0.991 0.991 0.989
800 5 38.89 39.27 39.15 39.15 0.991 0.991 0.990
25 10 45.36 45.85 45.99 44.22 0.992 0.987 0.950
30 10 44.30 44.85 44.79 43.63 0.991 0.988 0.959
35 10 43.54 43.61 43.96 43.15 0.991 0.989 0.965
40 10 42.99 43.30 43.36 42.77 0.991 0.989 0.969
45 10 42.65 42.75 42.89 42.44 0.991 0.989 0.972
50 10 42.21 42.42 42.51 42.17 0.991 0.990 0.974
100 10 40.61 40.76 40.80 40.74 0.991 0.990 0.983
200 10 39.66 39.64 39.89 39.88 0.991 0.991 0.987
400 10 39.14 39.44 39.40 39.40 0.991 0.991 0.989
800 10 38.92 39.01 39.15 39.15 0.991 0.991 0.990

Note. CPYS·Lm=CP(t2YS·Lm(αp)), CPYS·Fm=CP(t2YS·Fm(αp)), CPχ2 =CP(χ2
p(αp)), αp = α/15,

χ2
15(0.05/15) = 34.07, χ2

15(0.01/15) = 38.89.

CP(χ2
p(αp)) = 1− Pr{T̃ 2

max·p > χ2
p(αp)}.

As Tables 3.9 and 3.10 show, the simulated values for t̃ 2simu·Bon(αp) are larger than the

simulated values for t̃ 2simu·p(α). It may be seen from the tables that the approximate values

of t2YS·Lm(αp) and t2YS·Fm(αp) are closer to the simulated values of t̃ 2simu·p(α) when the
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Table 3.10: Simulated and approximate values and coverage probabilities for pairwise
comparisons when m = 10 and (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 = · · · = n

(�)
5 t̃ 2simu·p t̃ 2simu·Bon t2YS·Lm t2YS·Fm CPYS·Lm CPYS·Fm CPχ2

α = 0.05
25 5 41.42 41.91 42.14 41.66 0.959 0.953 0.865
30 5 40.74 41.44 41.38 41.08 0.958 0.954 0.883
35 5 40.21 40.74 40.84 40.64 0.958 0.955 0.896
40 5 39.78 40.36 40.43 40.29 0.958 0.956 0.905
45 5 39.52 40.26 40.11 40.01 0.958 0.956 0.911
50 5 39.26 39.94 39.85 39.78 0.958 0.957 0.917
100 5 38.14 38.82 38.67 38.66 0.957 0.957 0.938
200 5 37.49 37.94 38.04 38.04 0.958 0.958 0.948
400 5 37.21 37.59 37.72 37.72 0.957 0.957 0.953
800 5 37.06 37.66 37.55 37.55 0.957 0.957 0.955
25 10 40.72 41.30 41.61 40.64 0.960 0.949 0.884
30 10 40.16 40.75 40.94 40.29 0.960 0.952 0.897
35 10 39.73 40.30 40.47 40.01 0.959 0.954 0.907
40 10 39.42 39.97 40.12 39.78 0.959 0.955 0.913
45 10 39.20 39.81 39.84 39.58 0.958 0.955 0.918
50 10 38.98 39.63 39.62 39.42 0.958 0.956 0.922
100 10 38.05 38.43 38.58 38.55 0.957 0.957 0.939
200 10 37.48 38.05 38.02 38.01 0.957 0.957 0.949
400 10 37.18 37.71 37.71 37.71 0.957 0.957 0.953
800 10 37.06 37.63 37.55 37.55 0.957 0.957 0.955

α = 0.01
25 5 47.37 47.72 47.75 47.18 0.991 0.989 0.957
30 5 46.47 46.93 46.83 46.47 0.991 0.990 0.965
35 5 45.87 46.13 46.18 45.94 0.991 0.990 0.970
40 5 45.36 45.40 45.69 45.52 0.991 0.990 0.973
45 5 45.05 45.41 45.30 45.18 0.991 0.990 0.975
50 5 44.75 45.20 44.99 44.90 0.991 0.990 0.977
100 5 43.34 43.74 43.57 43.55 0.991 0.991 0.985
200 5 42.60 42.50 42.82 42.82 0.991 0.991 0.988
400 5 42.18 42.55 42.43 42.43 0.991 0.991 0.989
800 5 42.00 42.48 42.23 42.23 0.991 0.991 0.990
25 10 46.47 46.82 47.12 45.94 0.992 0.988 0.965
30 10 45.77 46.13 46.31 45.52 0.992 0.989 0.970
35 10 45.30 45.62 45.74 45.18 0.991 0.990 0.974
40 10 44.91 45.17 45.31 44.90 0.991 0.990 0.976
45 10 44.61 44.81 44.98 44.67 0.991 0.990 0.978
50 10 44.43 44.87 44.71 44.47 0.991 0.990 0.979
100 10 43.24 43.29 43.46 43.42 0.991 0.991 0.985
200 10 42.59 43.27 42.79 42.78 0.991 0.991 0.988
400 10 42.17 42.29 42.42 42.42 0.991 0.991 0.990
800 10 41.96 42.11 42.23 42.23 0.991 0.991 0.990

Note. CPYS·Lm=CP(t2YS·Lm(αp)), CPYS·Fm=CP(t2YS·Fm(αp)), CPχ2 =CP(χ2
p(αp)), αp = α/45,

χ2
15(0.05/45) = 37.39, χ2

15(0.01/45) = 42.03.

sample size becomes large. The simulation studies show that t2YS·Lm(αp) is close to t̃
2
simu·p(α)

and is a conservative approximation. Tables 3.11 and 3.12 list the results for the case of
comparisons with a control. We provide t̃ 2simu·c(α), t̃

2
simu·Bon(αc), t

2
YS·Lm(αc), and t2YS·Fm(αc)

as well as CP(t2YS·Lm(αc)), CP(t
2
YS·Fm(αc)), and CP(χ2

p(αc)). The accuracy of the approxi-
mations is similar to that in the case of pairwise comparisons.
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Table 3.11: Simulated and approximate values and coverage probabilities for comparisons
with a control when m = 6 and (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 = · · · = n

(�)
5 t̃ 2simu·c t̃ 2simu·Bon t2YS·Lm t2YS·Fm CPYS·Lm CPYS·Fm CPχ2

α = 0.05
25 5 35.54 36.06 35.96 35.38 0.955 0.948 0.857
30 5 34.59 35.15 35.06 34.71 0.955 0.951 0.878
35 5 33.96 34.47 34.43 34.20 0.955 0.953 0.891
40 5 33.54 33.99 33.96 33.80 0.955 0.953 0.900
45 5 33.19 33.66 33.60 33.48 0.955 0.954 0.906
50 5 32.89 33.35 33.31 33.22 0.955 0.954 0.912
100 5 31.60 32.03 31.98 31.97 0.955 0.955 0.935
200 5 30.86 31.29 31.29 31.29 0.955 0.955 0.946
400 5 30.54 30.89 30.94 30.94 0.955 0.955 0.951
800 5 30.34 30.74 30.76 30.76 0.956 0.956 0.953
25 10 34.72 35.20 35.36 34.20 0.957 0.944 0.875
30 10 34.04 34.55 34.57 33.80 0.956 0.947 0.890
35 10 33.52 33.97 34.02 33.48 0.956 0.949 0.900
40 10 33.11 33.62 33.61 33.22 0.956 0.951 0.908
45 10 32.82 33.30 33.30 33.00 0.956 0.952 0.913
50 10 32.62 33.06 33.05 32.82 0.955 0.953 0.917
100 10 31.46 31.85 31.89 31.85 0.955 0.955 0.937
200 10 30.85 31.29 31.26 31.26 0.955 0.955 0.946
400 10 30.53 30.94 30.93 30.93 0.955 0.955 0.951
800 10 30.37 30.75 30.76 30.76 0.955 0.955 0.953

α = 0.01
25 5 42.34 42.64 42.53 41.78 0.990 0.989 0.951
30 5 41.16 41.50 41.37 40.91 0.991 0.989 0.961
35 5 40.31 40.55 40.55 40.25 0.991 0.990 0.967
40 5 39.74 39.96 39.95 39.74 0.991 0.990 0.970
45 5 39.35 39.44 39.48 39.33 0.990 0.990 0.973
50 5 38.91 39.17 39.11 39.00 0.991 0.990 0.976
100 5 37.31 37.42 37.41 37.40 0.990 0.990 0.984
200 5 36.43 36.62 36.54 36.53 0.990 0.990 0.987
400 5 35.93 36.04 36.09 36.09 0.991 0.991 0.989
800 5 35.63 35.84 35.86 35.86 0.991 0.991 0.990
25 10 41.37 41.54 41.76 40.25 0.991 0.987 0.960
30 10 40.45 40.70 40.74 39.74 0.991 0.988 0.966
35 10 39.73 39.82 40.03 39.33 0.991 0.989 0.971
40 10 39.17 39.34 39.50 39.00 0.991 0.989 0.974
45 10 38.84 39.08 39.10 38.72 0.991 0.990 0.976
50 10 38.60 38.79 38.77 38.48 0.991 0.990 0.977
100 10 37.13 37.30 37.29 37.24 0.991 0.990 0.984
200 10 36.34 36.46 36.50 36.49 0.990 0.990 0.987
400 10 35.95 36.13 36.08 36.08 0.990 0.990 0.989
800 10 35.65 35.82 35.86 35.86 0.991 0.991 0.990

Note. CPYS·Lm=CP(t2YS·Lm(αc)), CPYS·Fm=CP(t2YS·Fm(αc)), CPχ2 =CP(χ2
p(αc)), αc = α/5,

χ2
15(0.05/5) = 30.58, χ2

15(0.01/5) = 35.63.

3.3 Conclusions

In conclusion, we have developed the approximate upper percentiles of the simplified T 2-
type statistic for testing the equaliy of mean vectors with k-step monotone missing data
under the two-sample problem. As the additional results to obtain the simplified T 2-type
statistic, we derived the MLEs of the mean vectors and the covariance matrix for the m-
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Table 3.12: Simulated and approximate values and coverage probabilities for comparisons
with a control when m = 10 and (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n
(�)
1 n

(�)
2 = · · · = n

(�)
5 t̃ 2simu·c t̃ 2simu·Bon t2YS·Lm t2YS·Fm CPYS·Lm CPYS·Fm CPχ2

α = 0.05
25 5 35.64 36.24 36.29 35.91 0.957 0.953 0.894
30 5 35.07 35.71 35.68 35.44 0.957 0.954 0.906
35 5 34.65 35.28 35.25 35.09 0.957 0.955 0.914
40 5 34.33 34.88 34.92 34.81 0.957 0.956 0.920
45 5 34.07 34.66 34.66 34.58 0.957 0.956 0.925
50 5 33.92 34.54 34.46 34.40 0.957 0.956 0.927
100 5 32.96 33.52 33.50 33.49 0.957 0.957 0.943
200 5 32.43 32.98 33.00 33.00 0.958 0.958 0.951
400 5 32.19 32.72 32.74 32.74 0.957 0.957 0.954
800 5 32.10 32.65 32.60 32.60 0.957 0.957 0.955
25 10 35.06 35.63 35.86 35.09 0.959 0.950 0.906
30 10 34.59 35.23 35.33 34.81 0.959 0.953 0.915
35 10 34.32 34.91 34.95 34.58 0.958 0.953 0.920
40 10 34.05 34.67 34.67 34.40 0.957 0.954 0.925
45 10 33.84 34.43 34.45 34.24 0.957 0.955 0.928
50 10 33.67 34.25 34.27 34.11 0.957 0.956 0.931
100 10 32.87 33.40 33.43 33.41 0.957 0.957 0.944
200 10 32.44 32.99 32.98 32.97 0.957 0.957 0.950
400 10 32.23 32.76 32.73 32.73 0.957 0.957 0.953
800 10 32.07 32.64 32.60 32.60 0.957 0.957 0.955

α = 0.01
25 5 41.78 41.96 42.14 41.66 0.991 0.990 0.968
30 5 41.19 41.60 41.38 41.08 0.991 0.990 0.972
35 5 40.57 40.91 40.84 40.64 0.991 0.990 0.976
40 5 40.12 40.33 40.43 40.29 0.991 0.990 0.978
45 5 39.85 39.97 40.11 40.01 0.991 0.990 0.980
50 5 39.60 39.88 39.85 39.78 0.991 0.990 0.981
100 5 38.45 38.67 38.67 38.66 0.991 0.991 0.986
200 5 37.78 38.02 38.04 38.04 0.991 0.991 0.989
400 5 37.45 37.82 37.72 37.72 0.991 0.991 0.990
800 5 37.34 37.44 37.55 37.55 0.991 0.991 0.990
25 10 41.07 41.21 41.61 40.64 0.991 0.989 0.973
30 10 40.48 40.76 40.94 40.29 0.991 0.989 0.976
35 10 40.12 40.32 40.47 40.01 0.991 0.990 0.978
40 10 39.82 39.98 40.12 39.78 0.991 0.990 0.980
45 10 39.52 39.76 39.84 39.58 0.991 0.990 0.981
50 10 39.32 39.43 39.62 39.42 0.991 0.990 0.982
100 10 38.36 38.64 38.58 38.55 0.991 0.991 0.987
200 10 37.79 38.04 38.02 38.01 0.991 0.991 0.989
400 10 37.51 37.69 37.71 37.71 0.991 0.991 0.990
800 10 37.30 37.62 37.55 37.55 0.991 0.991 0.990

Note. CPYS·Lm=CP(t2YS·Lm(αc)), CPYS·Fm=CP(t2YS·Fm(αc)), CPχ2 =CP(χ2
p(αc)), αc = α/9,

χ2
15(0.05/9) = 32.47, χ2

15(0.01/9) = 37.39.

sample problem in the case of k-step monotone missing data. Further, we presented
the approximate simultaneous confidence intervals for pairwise comparisons among mean
vectors and comparisons with a control using Bonferroni’s approximation. The proposed
approximate values can be easily calculated, and the accuracy of the approximations is
considerably higher than that of the χ2 approximations in almost all cases.
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Chapter 4

Likelihood ratio test in one-sample
problem

In this chapter, we consider the LRT for a normal mean vector when the data have a
monotone pattern of missing observations. We derive MT and MLRT statistics by using
decomposition of the LR. Further, we investigate the accuracy of the upper percentiles of
this test statistic by Monte Carlo simulation.

In statistical data analyses, testing hypotheses with missing data is an important
problem. In this chapter, we consider the one-sample test for a normal mean vector with
monotone missing data. The one-sample problem of the test for the mean vector with
monotone missing data has been discussed by many authors. For a discussion of the LRT
statistic, see Krishnamoorthy and Pannala (1998) and Seko et al. (2012). For a general
missing data pattern, Srivastava (1985) discussed the LRT for mean vectors, and Seo
and Srivastava (2000) gave a test of equality of means and the simultaneous confidence
intervals. In addition, for non-missing and multivariate normality, the asymptotic expan-
sion for LR-criterion was discussed by Muirhead (1982), Siotani et al. (1985), Kakizawa
(1996), and Anderson (2003), among others.

In this chapter, for the one-sample test of the mean vector, we give the LRT statistic
for k-step monotone missing data and derive MLRT statistic by using the decomposition
(see Bhargava, 1962 and Krishnamoorthy and Pannala, 1998). In the process deriving the
MLRT statistic, we give asymptotic expansions of the LR of the test for a mean vector
and those of subvector. For the test for a subvector under multivariate normality, see
e.g., Siotani et al. (1985). This chapter is organized in the following way, which is a
summary of Yagi et al. (2017a). In Section 4.1, we present the assumptions and notation.
In Section 4.2, we derive the LRT statistic, MT and MLRT statistics, which converge
to the χ2 distribution faster than the LRT statistic as the sample size tends to infinity.
That is, we derive transformations with Bartlett adjustments. Indeed, it is well known
that Bartlett adjustment yields an improvement on the chi-squared approximation to the
LRT statistic. In Section 4.3, some simulation results for three- and five-step monotone
missing data cases are presented to investigate the accuracy of the upper percentiles of
the null distributions of MT and MLRT statistics. Finally, in Section 4.4, we state our
conclusions.

49



4.1 Assumptions and notation

We consider the one-sample problem of testing for a mean vector with a k-step monotone
missing data pattern. As with the simplified T 2-type test statistic case in Section 2.2, let
xi be a pi × 1 normal random vector with the mean vector μi and covariance matrix Σi,
where μi = (μ)i = (μ1, μ2, . . . , μpi)

′, and Σi is the pi× pi principal submatrix of Σ(= Σ1)
with p = p1 > p2 > · · · > pk > 0. Further, let xi, i = 1, 2, . . . , k be mutually independent.
Suppose that xi1,xi2, . . . ,xini

are independent and identically distributed samples from
xi, i = 1, 2, . . . , k, where n1 > p. As for the partitions of Σ, for 1 ≤ i < j ≤ k, let (Σi)j
be the principal submatrix of Σi of order pj × pj; we define

Σi = (Σ1)i, Σ1 = Σ =

(
Σi Σi2

Σ′
i2 Σi3

)
, Σi−1 =

(
Σi Σ(i−1,2)

Σ′
(i−1,2) Σ(i−1,3)

)
,

and
Σ(i−1,3)·i = Σ(i−1,3) −Σ′

(i−1,2)Σ
−1
i Σ(i−1,2), i = 2, 3, . . . , k.

For example, when k = 3, we can express Σ1 as

Σ1 =

p3
︷ ︸︸ ︷

p2−p3
︷ ︸︸ ︷

p1−p2
︷ ︸︸ ︷⎛⎜⎜⎝

Σ3 Σ(2,2)
Σ(1,2)

Σ′
(2,2) Σ(2,3)

Σ′
(1,2) Σ(1,3)

⎞⎟⎟⎠
}
p3}
p2 − p3}
p1 − p2

.

4.2 LRT, MT and MLRT statistics

Consider the null hypothesis
H0 : μ = μ0

against the alternative H1 : μ �= μ0, where μ0 is known. Without loss of generality, we
can assume that μ0 = 0. Then, the LR is given by

λ =
k∏

i=1

(
|Σ̂i|
|Σ̃i|

) 1
2
ni

,

where Σ̂i is the MLE of Σi under H1, and Σ̃i is the MLE of Σi under H0. Let

Ei =

ni∑
j=1

(xij − xi)(xij − xi)
′, xi =

1

ni

ni∑
j=1

xij, i = 1, 2, . . . , k,

d1 = x1, di =
ni

Ni+1

[
xi − 1

Ni

i−1∑
j=1

nj(xj)i

]
, i = 2, 3, . . . , k,

N1 = 0, Ni+1 = Ni + ni

(
=

i∑
j=1

nj

)
, i = 1, 2, . . . , k.
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Table 4.1: The upper percentiles of Q and the actual type I error

(p1, p2, p3) = (8, 4, 2) (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

n1 q(α) αQ q(α) αQ

α = 0.05

20 20.74 16.71 46.86 47.84
30 18.53 11.24 33.86 23.03
40 17.70 9.25 30.91 16.13
50 17.18 8.17 29.52 13.05
100 16.29 6.42 27.15 8.37
200 15.88 5.65 26.03 6.53
400 15.68 5.31 25.53 5.74
∞ 15.51 5.00 25.00 5.00

Note. n2 = n3 = n4 = n5 = 10, χ2
8(0.05)=15.51, χ2

15(0.05)=25.00.

Then, we can express Σ̂ concretely (see Theorem 2.2) as

Σ̂ =
1

n1

H1 +
k∑

i=2

1

Ni+1

F i

[
H i − ni

Ni

Li−1,1

]
F ′

i,

where

H1 = E1, H i = Ei +
NiNi+1

ni

did
′
i, i = 2, 3, . . . , k,

L1 = H1, Li = (Li−1)i +H i, i = 2, 3, . . . , k,

Li1 = (Li)i+1, Li =

(
Li1 Li2

L′
i2 Li3

)
, i = 1, 2, . . . , k − 1,

G1 = Ip1 , Gi+1 =

(
Ipi+1

L′
i2L

−1
i1

)
, i = 1, 2, . . . , k − 1,

F 1 = G1, F i = F i−1Gi, i = 2, 3, . . . , k.

By the same derivation in Jinadasa and Tracy (1992), it holds that the MLE of Σ under

H0, Σ̃ is equal to Σ̂ with xi = 0, i = 1, 2, . . . , k. That is, Σ̃ can be obtained as Σ̂ in the
case that

H i =

ni∑
j=1

xijx
′
ij, i = 1, 2, . . . , k.

We note that the null distribution of the LRT statistic Q(= −2 log λ) is asymptotically
a χ2 distribution with p degrees of freedom. However, it may be noted that the upper
percentiles of the χ2 distribution are not a good approximation to those of the LRT
statistic when the sample size is not large. For example, Table 4.1 gives the simulated
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values of the upper 100α percentiles of Q, q(α) and the actual type I error rates, αQ/100 =
Pr{Q > χ2

p(α)} for the three- and five-step monotone missing data cases, where χ2
p(α) is

the upper 100α percentile of the χ2 distribution with p degrees of freedom. It may be seen
that the upper percentiles of the χ2 distribution are useful as an approximation to the
upper percentiles of Q for cases in which the sample size is considerably large. Therefore,
we consider the MLRT statistic whose null distribution is closer to the χ2 distribution
than that of the LRT statistic even when the sample size is small. In particular, we derive
an asymptotic expansion for the distribution function of the LRT statistic in a situation
when n1 → ∞ with qi = ni/n1 → δi ∈ [0,∞), i = 2, 3, . . . , k. Using the notation in
Section 2, we can write λ as

λ =
k∏

i=1

λi,

where

λ1 =

(
|Σ̂k|
|Σ̃k|

)Nk+1
2

, λi =

(
|Σ̂(k−i+1,3)·k−i+2|
|Σ̃(k−i+1,3)·k−i+2|

)Nk−i+2
2

, i = 2, 3, . . . , k,

Nk+1 =
k∑

j=1

nj, Nk−i+2 =
k−i+1∑
j=1

nj,

Σ̂(k−i+1,3)·k−i+2 and Σ̃(k−i+1,3)·k−i+2 are given by

Σ̂(k−i+1,3)·k−i+2 = Σ̂(k−i+1,3) − Σ̂
′
(k−i+1,2)Σ̂

−1

k−i+2Σ̂(k−i+1,2)

and
Σ̃(k−i+1,3)·k−i+2 = Σ̃(k−i+1,3) − Σ̃

′
(k−i+1,2)Σ̃

−1

k−i+2Σ̃(k−i+1,2),

respectively. We note that the values of λi, i = 1, 2, . . . , k are mutually independent.
Further, we consider the following hypotheses:

H01 :μk = 0 vs. H11 : μk �= 0,

H0i :Ak−i+1μk−i+1 = 0 given μk−i+2 = 0

vs. H1i : Ak−i+1μk−i+1 �= 0 given μk−i+2 = 0, i = 2, 3, . . . , k,

where Ak−i+1 =
(
O Ipk−i+1−pk−i+2

)
is a (pk−i+1 − pk−i+2)× pk−i+1 matrix.

Let the parameter spaces of Ω0, Ωi, i = 1, 2, . . . , k − 1 and Ωk be

Ω0 ={(μ,Σ) : −∞ < μj < ∞, j = 1, 2, . . . , p, Σ > O},
Ωi ={(μ,Σ) : μk−i+1 = 0, −∞ < μj < ∞, j = pk−i+1+1, pk−i+1+2, . . . , p,

Σ > O}, i = 1, 2, . . . , k − 1,

Ωk ={(μ,Σ) : μ = 0, Σ > O},
respectively. Then, the LR for the hypothesis H0i is given by

λ0i =

max
(μ,Σ)∈Ωi

L(μ,Σ)

max
(μ,Σ)∈Ωi−1

L(μ,Σ)
, i = 1, 2, . . . , k.
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Therefore, since λi is equal to λ0i, we have

λ =
k∏

i=1

λ0i.

That is, we note −2 log λ1 is the usual LRT statistic of the test for pk dimensional mean
vector, and −2 log λi, i = 2, 3, . . . , k is LRT statistic of the test for a subvector. The above
result is obtained by Krishnamoorthy and Pannala (1998). Then, we have the following
theorem.

Theorem 4.1 (Yagi et al., 2017a) Suppose that xij is distributed as Npi(μi,Σi), i =
1, 2, . . . , k, j = 1, 2, . . . , ni, where p = p1 > p2 > · · · > pk > pk+1 = 0 and n1 > p.
Then, when the null hypothesis H0i is true, the cumulative distribution function of Q∗

i (=
−2ρi log λi) can be expressed for large Nk−i+2 as

Pr(Q∗
i ≤ x) = Gpk−i+1−pk−i+2

(x) +O(N−2
k−i+2), i = 1, 2, . . . , k,

where

ρi = 1− 1

2Nk−i+2

(pk−i+1 + pk−i+2 + 2), i = 1, 2, . . . , k,

Gp(x) is the distribution function of a χ2-variate with p degrees of freedom.

Proof. First we derive an asymptotic expansion of the characteristic function of Q1(=
−2 log λ1). We use the following notation to simplify setting. Let y1, y2, . . . ,yNk+1

be
distributed as pk dimensional multivariate normal distribution. Then λ1 can be written
as

λ1 =

( |U k|
|U k +Nk+1yky

′
k|
)Nk+1

2

,

where

yk =
1

Nk+1

Nk+1∑
j=1

yj, U k =

Nk+1∑
j=1

(yj − yk)(yj − yk)
′.

Therefore, expanding Q1(= −2 log λ1) by the perturbation method and calculating the
characteristic function, we obtain

E[exp(itQ1)] = (1− 2it)−
pk
2

[
1 +

β1

Nk+1

{
1− (1− 2it)−1

} ]
+O(N−2

k+1),

where

β1 = −1

4
pk(pk + 2).

Inverting the characteristic function, we have

Pr(Q1 ≤ x) =Gpk(x) +
β1

Nk+1

[Gpk(x)−Gpk+2(x)] +O(N−2
k+1).
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Therefore, if ρ1 = 1 − (pk + 2)/(2Nk+1), then the cumulative distribution function of
Q∗

1(= −2ρ1 log λ1) is given by

Pr(Q∗
1 ≤ x) = Gpk(x) +O(N−2

k+1).

Similar to the case of Q1, we consider the cumulative distribution function of Qi(=
−2 log λi), i = 2, 3, . . . , k. Let y1, y2, . . . ,yNk−i+2

be distributed as Npk−i+1
(η,Δ), where

η is a pk−i+1×1 mean vector and Δ is a pk−i+1×pk−i+1 covariance matrix. In order to be
the notation shorter, we omit the index i of η and Δ. Further let η and Δ be partitioned
as

η =

(
η1

η2

)}
ri}
si

, Δ =

ri
︷ ︸︸ ︷

si
︷ ︸︸ ︷(

Δ11 Δ12

Δ21 Δ22

)}
ri}
si

,

where ri = pk−i+2, si = pk−i+1 − pk−i+2. Then, since λi is the LR for testing

Hi : η2 = 0 given η1 = 0 vs. Ki : η2 �= 0 given η1 = 0, i = 2, 3, . . . , k,

we can write

λi =

(
1 +Nk−i+2y

′
1U

−1
11 y1

1 +Nk−i+2y
′U−1y

)Nk−i+2
2

,

where

y =
1

Nk−i+2

Nk−i+2∑
j=1

yj, U =

Nk−i+2∑
j=1

(yj − y)(yj − y)′,

and

y =

(
y1

y2

)}
ri}
si

, U =

ri
︷ ︸︸ ︷

si
︷ ︸︸ ︷(

U 11 U 12

U 21 U 22

)}
ri}
si

.

Without loss of generality, we can assume that η = 0, and Δ = I. Let

y =
1√

Nk−i+2

z,
1

Nk−i+2 − 1
U = I +

1√
Nk−i+2

V .

We use partitions of z and V as

z =

(
z1

z2

)}
ri}
si

, V =

ri
︷ ︸︸ ︷

si
︷ ︸︸ ︷(

V 11 V 12

V 21 V 22

)}
ri}
si

.

Then, we can expand Qi as

Qi = z′z−z′
1z1− 1√

Nk−i+2

(z′V z−z′
1V 11z1)

+
1

Nk−i+2

{
z′V 2z−z′

1V
2
11z1− 1

2
(z′z−z′

1z1)(z
′z+z′

1z1−2)
}
+Op(N

− 3
2

k−i+2).
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Hence, for j = 2, 3, . . . , k,

E[exp{it(Qj)}] =E[exp{it(z′
2z2)}]+E[(X+

1

2
X2) exp{it(z′

2z2)}]+O(N
− 3

2
k−j+2),

where i =
√−1 and

X = it
[
− 1√

Nk−j+2

(z′V z − z′
1V 11z1)

+
1

Nk−j+2

{
z′
1V 12V 21z1 + 2z′

1(V 11V 12 + V 12V 22)z2

+ z′
2(V 21V 12 + V 2

22)z2 − 1

2
z′
2z2(2z

′
1z1 + z′

2z2 − 2)
}]

.

Therefore, after calculating the expectation, we obtain

E[exp(itQj)] = (1− 2it)−
sj
2

[
1 +

βj

Nk−j+2

{
1− (1− 2it)−1

} ]
+O(N−2

k−j+2),

where

βj = −1

4
sj(2rj + sj + 2),

and hence

Pr(Qj ≤ x) = Gsj(x) +
βj

Nk−j+2

[
Gsj(x)−Gsj+2(x)

]
+O(N−2

k−j+2).

Therefore, if ρi = 1−(2ri+si+2)/(2Nk−i+2), then the cumulative distribution function
of Q∗

i (= −2ρi log λi) is given by

Pr(Q∗
i ≤ x) = Gsi(x) +O(N−2

k−i+2),

and the proof is complete.

Using Theorem 4.1, we can give the MT statistic

Q∗ =
k∑

i=1

Q∗
i

with an improved chi-squared approximation. However, this transformation statistic Q∗

is not always monotone. For the monotone transformation, see Fujikoshi (2000). On the
other hand, by gathering up the expanded results for the characteristic functions of Qi,
i = 1, 2, . . . , k, we obtain the following theorem.

Theorem 4.2 (Yagi et al., 2017a)
Under H0, the cumulative distribution function of Q†(= −2ρ log λ) can be expressed for
large n1 as

Pr(Q† ≤ x) = Gp(x) +O(n−2
1 ),
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where

ρ = 1− 1

2n1p

k∑
i=1

1

mk−i+1

(pk−i+1 − pk−i+2)(pk−i+1 + pk−i+2 + 2),

mk−i+1 = 1 +
∑k−i+1

j=2 qj, qj = nj/n1, and pk+1 = 0.

We note that the value of ρ coincides with that of Krishnamoorthy and Pannala (1998)
when k = 2.

4.3 Simulation studies

In this section, we study the numerical accuracy of the upper percentiles of the MT and
MLRT statistics using the actual type I error rates. In order to investigate the accuracy
of the approximation, we compute the upper percentiles of Q, Q∗ and Q† with monotone
missing data by Monte Carlo simulation. For each parameter, the simulation was executed
106 times using normal random vectors generated from Npi(0, Ipi), i = 1, 2, . . . , k.

In Tables 4.2–4.5, we provide the simulated upper 100α percentiles of Q, Q∗ and Q†

for the three-step and five-step cases. Further, we provide the actual type I error rates,
αQ, αQ∗ and αQ† given by

αQ

100
= Pr{Q > χ2

p(α)},
αQ∗

100
= Pr{Q∗ > χ2

p(α)},

and
αQ†

100
= Pr{Q† > χ2

p(α)},
respectively, where χ2

p(α) is the upper 100α percentile of the χ2 distribution with p degrees
of freedom.

It may be noted from Tables 4.2–4.5 that each value of q(α), q∗(α) and q†(α) is closer
to the upper percentiles of the χ2 distribution with p degrees of freedom, χ2

p(α), when
n1 becomes large. It is seen from Tables 4.2–4.4 that q∗(α) for (p1, p2, p3) = (8, 4, 2)
and (15, 12, 9) is a considerably good approximate value when n1 is greater than 20.
Similarly, it is seen from Table 4.5 that q∗(α) for (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3) is a
considerably good approximate value when n1 is greater than 20 without regard to the
sample size of ni, i ≥ 2. As for q†(α), it is seen from Tables 4.2 and 4.3 that q†(α) for
(p1, p2, p3) = (8, 4, 2) is a good approximate value when n1 is greater than 30. Similarly, it
is seen from Table 4.4 that q†(α) for (p1, p2, p3) = (15, 12, 9) is a good approximate value
when n1 is greater than 50. For the case of five-step monotone missing data in Table 4.5,
q†(α) for (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3) is a good approximation to χ2

p(α) when n1 is
greater than 50. It may be noted from the simulation results that the MT statistic Q∗

converges to the χ2 distribution faster than the MLRT statistic Q† in almost all cases,
including the case of unbalanced sample sizes.
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Table 4.2: The upper percentiles of Q, Q∗, Q† and the actual type I error rates

when (p1, p2, p3) = (8, 4, 2) and α = 0.05

n1 n2 n3 q(α) q∗(α) q†(α) αQ αQ∗ αQ†

10 10 10 41.98 16.77 24.49 56.66 7.20 22.06
20 10 10 20.74 15.58 16.16 16.71 5.12 6.15
30 10 10 18.53 15.52 15.72 11.24 5.02 5.37
40 10 10 17.70 15.55 15.65 9.25 5.07 5.24
50 10 10 17.18 15.52 15.57 8.17 5.02 5.11
100 10 10 16.29 15.50 15.51 6.42 4.98 5.00
200 10 10 15.88 15.48 15.49 5.65 4.96 4.97
400 10 10 15.68 15.49 15.49 5.31 4.97 4.97

10 20 20 41.70 16.77 25.30 55.54 7.21 23.63
20 20 20 20.55 15.57 16.27 16.00 5.11 6.29
30 20 20 18.43 15.55 15.78 10.88 5.07 5.45
40 20 20 17.54 15.50 15.60 8.97 4.99 5.16
50 20 20 17.12 15.52 15.58 8.03 5.01 5.12
100 20 20 16.29 15.52 15.53 6.37 5.01 5.03
200 20 20 15.89 15.51 15.51 5.67 5.00 5.00
400 20 20 15.69 15.49 15.50 5.30 4.97 4.98

10 50 50 41.40 16.77 26.03 54.61 7.19 25.01
20 50 50 20.29 15.56 16.36 15.40 5.09 6.46
30 50 50 18.21 15.51 15.79 10.45 5.00 5.47
40 50 50 17.44 15.53 15.66 8.74 5.04 5.26
50 50 50 17.01 15.52 15.60 7.83 5.02 5.15
100 50 50 16.24 15.51 15.53 6.30 5.01 5.03
200 50 50 15.91 15.53 15.54 5.68 5.04 5.05
400 50 50 15.69 15.50 15.50 5.30 4.99 4.99

30 30 30 18.30 15.52 15.76 10.65 5.01 5.43
40 40 40 17.47 15.53 15.65 8.78 5.03 5.24
100 100 100 16.18 15.49 15.51 6.22 4.98 5.00
200 200 200 15.83 15.50 15.50 5.57 4.98 4.99
400 400 400 15.68 15.51 15.51 5.28 5.01 5.01

Note. χ2
8(0.05) = 15.51. The closest to α(= 0.05) in the values αQ, αQ∗ and αQ†

of each row is boldface.
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Table 4.3: The upper percentiles of Q, Q∗, Q† and the actual type I error rates

when (p1, p2, p3) = (8, 4, 2), α = 0.05, and n2 �= n3

n1 n2 n3 q(α) q∗(α) q†(α) αQ αQ∗ αQ†

10 10 20 42.00 16.77 24.67 56.44 7.22 22.36
20 10 20 20.69 15.56 16.18 16.50 5.08 6.15
30 10 20 18.52 15.53 15.75 11.17 5.05 5.39
40 10 20 17.64 15.51 15.62 9.17 5.01 5.17
50 10 20 17.18 15.53 15.59 8.18 5.03 5.14

10 10 50 41.84 16.77 24.80 56.29 7.21 22.73
20 10 50 20.65 15.58 16.22 16.46 5.12 6.22
30 10 50 18.46 15.52 15.75 11.06 5.02 5.41
40 10 50 17.57 15.49 15.60 9.04 4.98 5.15
50 10 50 17.17 15.54 15.60 8.13 5.05 5.15

10 20 10 41.74 16.77 25.22 55.65 7.22 23.39
20 20 10 20.55 15.57 16.24 16.14 5.10 6.25
30 20 10 18.42 15.53 15.75 10.94 5.03 5.41
40 20 10 17.62 15.55 15.66 9.07 5.08 5.25
50 20 10 17.13 15.52 15.58 8.06 5.02 5.13

10 20 50 41.63 16.78 25.41 55.36 7.25 23.83
20 20 50 20.44 15.53 16.24 15.89 5.05 6.27
30 20 50 18.35 15.51 15.75 10.75 5.00 5.41
40 20 50 17.50 15.48 15.59 8.89 4.95 5.14
50 20 50 17.09 15.52 15.58 8.01 5.01 5.13

10 50 10 41.45 16.76 25.95 54.71 7.19 24.80
20 50 10 20.30 15.56 16.33 15.48 5.09 6.43
30 50 10 18.21 15.49 15.76 10.50 4.97 5.42
40 50 10 17.48 15.55 15.67 8.79 5.06 5.28
50 50 10 16.98 15.47 15.55 7.79 4.94 5.06

10 50 20 41.47 16.77 26.00 54.77 7.21 24.94
20 50 20 20.34 15.60 16.38 15.49 5.15 6.49
30 50 20 18.23 15.52 15.79 10.48 5.02 5.46
40 50 20 17.44 15.52 15.64 8.73 5.01 5.23
50 50 20 17.01 15.51 15.58 7.84 5.00 5.11

Note. χ2
8(0.05) = 15.51. The closest to α(= 0.05) in the values αQ, αQ∗ and αQ†

of each row is boldface.
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Table 4.4: The upper percentiles of Q, Q∗, Q† and the actual type I error rates

when (p1, p2, p3) = (15, 12, 9) and α = 0.05

n1 n2 n3 q(α) q∗(α) q†(α) αQ αQ∗ αQ†

20 10 10 47.04 25.17 32.73 48.54 5.23 17.38
30 10 10 34.05 25.08 26.56 23.47 5.11 7.23
40 10 10 31.07 25.06 25.68 16.51 5.09 5.97
50 10 10 29.58 25.00 25.34 13.31 5.01 5.46
100 10 10 27.17 25.00 25.06 8.43 5.00 5.09
200 10 10 26.09 25.02 25.03 6.60 5.03 5.05
400 10 10 25.51 24.98 24.98 5.74 4.98 4.98

20 20 20 45.50 25.14 33.78 43.71 5.20 18.81
30 20 20 32.98 25.02 26.72 20.62 5.04 7.48
40 20 20 30.36 25.04 25.74 14.79 5.05 6.04
50 20 20 29.10 25.01 25.39 12.16 5.02 5.54
100 20 20 26.99 24.99 25.06 8.08 4.99 5.08
200 20 20 26.02 25.00 25.01 6.50 5.00 5.02
400 20 20 25.50 24.98 24.99 5.71 4.98 4.99

20 50 50 43.91 25.09 34.89 39.21 5.13 20.48
30 50 50 31.77 25.03 26.98 17.59 5.04 7.88
40 50 50 29.40 25.00 25.82 12.70 5.00 6.15
50 50 50 28.38 25.01 25.46 10.63 5.02 5.64
100 50 50 26.68 24.98 25.06 7.58 4.98 5.09
200 50 50 25.91 24.99 25.01 6.34 4.99 5.02
400 50 50 25.47 24.98 24.98 5.66 4.98 4.98

30 30 30 32.40 25.02 26.84 19.12 5.04 7.67
40 40 40 29.60 24.99 25.79 13.17 4.99 6.11
100 100 100 26.43 24.97 25.06 7.13 4.97 5.09
200 200 200 25.71 25.03 25.05 6.01 5.04 5.07
400 400 400 25.34 25.00 25.01 5.46 5.01 5.02

Note. χ2
15(0.05) = 25.00. The closest to α(= 0.05) in the values αQ, αQ∗ and αQ†

of each row is boldface.

4.4 Conclusions

We have developed the MLRT statistic Q† and the MT statistic Q∗ with general monotone
missing data in one-sample problem, where Q∗ is not always monotone. Further, we
presented that the LR for the one-sample test of the mean vector with monotone missing
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Table 4.5: The upper percentiles of Q, Q∗, Q† and the actual type I error rates

when (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3) and α = 0.05

n1 n2 = · · · = n5 q(α) q∗(α) q†(α) αQ αQ∗ αQ†

20 10 46.86 25.08 33.06 47.84 5.13 17.89
30 10 33.86 24.99 26.63 23.03 4.99 7.40
40 10 30.91 24.98 25.69 16.13 4.98 5.97
50 10 29.52 24.99 25.39 13.05 4.99 5.53

100 10 27.15 25.02 25.08 8.37 5.03 5.11
200 10 26.03 24.98 24.99 6.53 4.98 4.99
400 10 25.53 25.00 25.01 5.74 5.01 5.01

20 20 45.27 25.11 33.97 43.11 5.16 19.09
30 20 32.82 25.01 26.79 20.24 5.01 7.60
40 20 30.21 24.99 25.76 14.49 4.99 6.07
50 20 29.01 25.00 25.43 11.96 5.00 5.58

100 20 26.96 24.99 25.07 8.03 4.99 5.10
200 20 25.98 24.97 24.99 6.44 4.97 4.99
400 20 25.53 25.01 25.01 5.75 5.02 5.03

20 50 43.83 25.07 35.03 38.92 5.10 20.66
30 50 31.68 25.03 27.03 17.32 5.05 7.94
40 50 29.34 25.01 25.87 12.51 5.02 6.23
50 50 28.31 25.01 25.48 10.47 5.02 5.67

100 50 26.65 25.00 25.08 7.50 5.00 5.11
200 50 25.83 24.94 24.95 6.20 4.92 4.94
400 50 25.49 25.01 25.02 5.67 5.02 5.03

30 30 32.24 25.00 26.88 18.84 5.01 7.75
40 40 29.52 25.00 25.84 12.93 5.00 6.18

100 100 26.41 25.01 25.10 7.15 5.02 5.14
200 200 25.65 24.98 25.01 5.91 4.97 5.01
400 400 25.32 25.00 25.01 5.44 5.01 5.02

Note. χ2
15(0.05) = 25.00. The closest to α(= 0.05) in the values αQ, αQ∗ and αQ†

of each row is boldface.

data can be expressed as the products of the LR of the test for a mean vector and those of
subvector, and derived the asymptotic expansion by the perturbation method. The null
distribution of MLRT or MT statistic is considerably closer to the χ2 distribution than
that of the LRT statistic, even for small samples.
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Chapter 5

Likelihood ratio test in a one-way
MANOVA

In this chapter, testing the equality of mean vectors in a one-way MANOVA is considered
when each dataset has a monotone pattern of missing observations. The LRT statistic
in a one-way MANOVA with monotone missing data is given. Furthermore, the MT
statistic based on LR and the MLRT statistic with monotone missing data are proposed
using the decomposition of the LR and an asymptotic expansion for each decomposed LR.
The accuracy of the approximation for the chi-square distribution is investigated using a
Monte Carlo simulation. Finally, an example is given to illustrate the methods.

For the one-sample problem, as for the LRT, Krishnamoorthy and Pannala (1998)
gave the decomposition of LR and provided comparisons with several approximation pro-
cedures. Then, Seko et al. (2012) discussed the LRT statistic and the linear interpolation
approximation to the null distribution in the two-step monotone missing case. Recently,
the MT and MLRT statistics of the one-sample test for a normal mean vector with mono-
tone missing data are obtained by Yagi et al. (2017a). For two-sample problem, Seko et
al. (2011) gave the LRT statistic with two-step monotone missing data, and the approx-
imate upper percentiles for the null distribution. Recently, Seko (2012) gave the LRT
statistic with two-step monotone missing data for the m-sample problem.

In this chapter, we consider the LRT, MT and MLRT statistics in a one-way MANOVA
with monotone missing data. In the case of a one-way MANOVA with non-missing data,
it is well known that Wilks’ Λ statistic is the LRT statistic, and its MLRT statistic is given
(see, e.g., Srivastava, 2002; Fujikoshi, Ulyanov and Shimizu, 2010). The main purpose of
this chapter is to propose the LRT, MT and MLRT statistics with monotone missing data.
We first give the LRT statistic for general monotone missing data. In order to establish
the purpose, we decompose the LRT statistic and derive an asymptotic expansion of the
characteristic function of each decomposed LRT statistic. In particular, we consider the
decomposition of the LR as the products of independent LRs for a one-way MANOVA
of the reduced dimension and those of the remaining subvectors with complete data. For
the non-normal case with complete data, Gupta et al. (2006) derived the asymptotic
expansion of the distribution of generalized U -statistic in the m-sample problem.

This chapter is summarized based on Yagi et al. (2017b) and organized as follows. In
Section 5.1, we give the LR for a one-way MANOVA, using the MLEs of the covariance
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matrix. In Section 5.2, the MT and MLRT statistics are derived. In Section 5.3, simulation
results are presented to investigate the accuracy of the approximation to the chi-square
distribution for the null distribution of the test statistics. The methods are illustrated
using an example in Section 5.4. Finally, some concluding remarks are given in Section
5.5.

5.1 LRT statistic

Suppose that x
(�)
ij , i = 1, 2, . . . , k, j = 1, 2, . . . , n

(�)
i , � = 1, 2, . . . ,m are independent and

identically distributed as Npi(μ
(�)
i , Σi), where μ

(�)
i = (μ(�))i = (μ

(�)
1 , μ

(�)
2 , . . . , μ

(�)
pi )

′, and
Σi is the pi × pi principal submatrix of Σ(= Σ1), with

∑m
�=1 n

(�)
1 −m > p(= p1) > p2 >

· · · > pk. Note that k denotes the number of steps. Then, the data from the samples x
(�)
ij

are referred to as k-step monotone missing data. For this notation and assumption, see
Section 3.2.1. With regard to the partitions of Σ, for 1 ≤ i < j ≤ k, let (Σi)j be the
principal submatrix of Σi of order pj × pj; then, we define

Σi = (Σ1)i, Σ1 = Σ =

(
Σi Σi2

Σ′
i2 Σi3

)
, Σi−1 =

(
Σi Σ(i−1,2)

Σ′
(i−1,2) Σ(i−1,3)

)
,

and Σ(i−1,3)·i = Σ(i−1,3) −Σ′
(i−1,2)Σ

−1
i Σ(i−1,2), i = 2, 3, . . . , k. Then, the LR for

H0 : μ
(1) = μ(2) = · · · = μ(m) vs. H1 : not H0

can be obtained as

λ =
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i=1

(
|Σ̂i|
|Σ̃i|

) νi
2

,

where νi =
∑m

�=1 n
(�)
i , i = 1, 2, . . . , k, Σ̂i is the MLE of Σi under H1, and Σ̃i is the MLE

of Σi under H0. Note that Σ̂ is obtained by Theorem 3.3. That is, setting
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]
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(�)
i+1 = N
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(�)
i

(
=

i∑
j=1

n
(�)
j

)
, i = 1, 2, . . . , k,

Mi =
m∑
�=1

N
(�)
i , i = 1, 2, . . . , k + 1,

the MLE of Σ under H1 is given by
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where

H
(�)
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(�)
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(�)
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On the other hand, we define
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1
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�=1

n
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Mi+1

[
xi − 1

Mi

i−1∑
j=1

νj(xj)i

]
, i = 2, 3, . . . , k.

Then, in the derivation analogous to the MLE under H1, the MLE of Σ under H0 can be
obtained as

Σ̃ =
1

M2

H1 +
k∑

i=2

1

Mi+1

F i

[
H i − νi

Mi

Li−1,1

]
F ′

i,

where

H1 = E1, H i = Ei +
MiMi+1

νi
did

′
i, i = 2, 3, . . . , k,

L1 = H1, Li = (Li−1)i +H i, i = 2, 3, . . . , k,

Li1 = (Li)i+1, Li =

(
Li1 Li2

L′
i2 Li3

)
, i = 1, 2, . . . , k − 1,

F 1 = G1, F i = F i−1Gi, i = 2, 3, . . . , k,

G1 = Ip1 , Gi+1 =

(
Ipi+1

L′
i2L

−1
i1

)
, i = 1, 2, . . . , k − 1.

In addition, the MLE of μ(�), μ̂(�) (� = 1, 2, . . .m) is also given in Theorem 3.3, and the
MLE of μ under H0 can be obtained as

μ̃ =
k∑

i=1

f̃ i,
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where

f̃ 1 = d1, f̃ i = Ũ idi, i = 2, 3, . . . , k,

Ũ 1 = T 1, Ũ i = Ũ i−1T̃ i, i = 2, 3, . . . , k,

T 1 = Ip1 , T̃ i+1 =

(
Ipi+1

Σ̃
′
(i,2)Σ̃

−1

i+1

)
, i = 1, 2, . . . , k − 1.

Note that the above results of Σ̃ and μ̃ essentially coincide with the one-sample case
of Jinadasa and Tracy (1992).

Using the above results, we can obtain the LRT statistic Q(= −2 log λ), the null
distribution of which is asymptotically distributed as a χ2 distribution with (m − 1)p
degrees of freedom when the sample size is large.

5.2 MT and MLRT statistics and their null distribu-

tions

In this section, we derive the MT statistic and the MLRT statistic using a decomposition
of the LR and an asymptotic expansion procedure. Let

λ1 =

(
|Σ̂k|
|Σ̃k|

)Mk+1
2

, λi =

(
|Σ̂(k−i+1,3)·k−i+2|
|Σ̃(k−i+1,3)·k−i+2|

)Mk−i+2
2

, i = 2, 3, . . . , k.

Then, λ in Section 5.1 can be expressed as

λ =
k∏

i=1

λi,

where λi, i = 1, 2, . . . , k are mutually independent. Furthermore, let Q∗
i = −2ρi log λi,

where

ρi = 1− 1

2Mk−i+2

(pk−i+1 + pk−i+2 +m+ 2), i = 1, 2, . . . , k, pk+1 = 0.

Then, we obtain

Pr(Q∗
i ≤ x) = G(m−1)(pk−i+1−pk−i+2)(x) +O(M−2

k−i+2), i = 1, 2, . . . , k,

where Gf (x) is the distribution function of a χ2-variate with f degrees of freedom.
The derivation of the above result of the Bartlett correction factor ρi (i = 1, 2, . . . , k)

is as follows. For simplicity, we consider the case of k = 2. That is, we derive ρ1 and ρ2.
Here, we consider the following hypotheses:

H01 : μ
(1)
2 = μ

(2)
2 = · · · = μ

(m)
2 vs. H11 : not H01,
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and

H02 : Aμ
(1)
1 = Aμ

(2)
1 = · · · = Aμ

(m)
1 given μ

(1)
2 = μ

(2)
2 = · · · = μ

(m)
2

vs. H12 : Aμ
(i)
1 �= Aμ

(j)
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2 = μ

(2)
2 = · · · = μ

(m)
2 ,

where

μ
(�)
1 =

(
μ

(�)
2

Aμ
(�)
1

)}
p2}
p1 − p2

,

and A =
(
O Ip1−p2

)
is a (p1−p2)×p1 matrix. Then, λ1 and λ2 are equal to the LRs for

H01 and H02, respectively (see Figure 5.1). That is, Q1(= −2 log λ1) and Q2(= −2 log λ2)
are the LRT statistics of the tests for a p2-dimensional mean vector and a (p1 − p2)-
dimensional subvector, respectively. The one-sample case is discussed by Krishnamoorthy
and Pannala (1998) and Yagi et al. (2017a) (see Chapter 4).

We first consider the null distribution of Q1. Then, Q1 is the LRT statistic for the
test of the mean vector in a one-way MANOVA, where the data consist of complete data
sets (N

(�)
3 × p2, � = 1, 2, . . . ,m). The Wilks’ Λ statistic is given by

Λ =
|Sw|

|Sw + Sb| ,

where Sb and Sw are matrices of the sums of squares and the products (SSP matrices)
from treatments (between groups) and errors (within groups), respectively (see Fujikoshi
et al., 2010). Therefore, the MLRT statistic Q∗

1 is given by

Q∗
1 = −2ρ1 log Λ

M3
2 ,

where

ρ1 = 1− 1

2M3

(p2 +m+ 2).

Furthermore, we have

Pr(Q∗
1 ≤ x) = G(m−1)p2(x) +O(M−2

3 ).
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1
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n
(�)
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3

λ1

p1−p2

λ2

Figure 5.1: The LRs λ1 and λ2 in the case of two-step monotone missing data
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Second, we derive an asymptotic expansion of the null distribution of Q2. For conve-

nience, let y
(�)
1 , y

(�)
2 , . . . ,y
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Without loss of generality, we may assume that Δ = I. Therefore, under H02, let η
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Furthermore, using the partitions of z(�) and V (�) as

z(�) =

(
z
(�)
1

z
(�)
2

)}
r}
s
, V (�) =

r
︷ ︸︸ ︷

s
︷ ︸︸ ︷⎛⎝ V

(�)
11 V

(�)
12

V
(�)
21 V

(�)
22

⎞⎠}r}
s

, � = 1, 2, . . . ,m,

we can expand Q2 as

Q2 = trB22 +
1√
n
(1)
1

C1 +
1

n
(1)
1

C2 +Op((n
(1)
1 )−

3
2 ),
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where

C1 = −1

q
tr
( m∑

�=1

√
q�V

(�)
)
B +

1

q
tr
( m∑

�=1

√
q�V

(�)
11

)
B11,

C2 =
m

q
trB22 +

1

q2

{
tr
( m∑

�=1

√
q�V

(�)
)2
B − tr

( m∑
�=1

√
q�V

(�)
11

)2
B11

}
− 1

2q
(trB2 − trB2

11),

B =
m∑
�=1

(
1− q�

q

)
z(�)z(�)′ − 1

q

m∑
i=1

m∑
j=1

i �=j

√
qiqjz

(i)z(j)′ ,

q =
m∑
�=1

q�, q� =
n
(�)
1

n
(1)
1

, � = 1, 2, . . . ,m.

Hence

E[exp(itQ2)] =E[exp(it trB22)]+E

[(
D +

1

2
D2

)
exp(it trB22)

]
+O((n

(1)
1 )−

3
2 ),

where

D = it

(
1√
n
(1)
1

C1 +
1

n
(1)
1

C2

)
.

After calculating the expectation and inverting the characteristic function, we obtain the
following result:

Pr(Q2 ≤ x) =G(m−1)s(x) +
β2

M2

[
G(m−1)s(x)−G(m−1)s+2(x)

]
+O(M−2

2 ),

where β2 = −(m− 1)s(2r + s+m+ 2)/4. In addition, letting

ρ2 = 1− 1

2M2

(p1 + p2 +m+ 2),

the distribution function of Q∗
2(= −2ρ2 log λ2) is given by

Pr(Q∗
2 ≤ x) = G(m−1)(p1−p2)(x) +O(M−2

2 ).

Therefore, we can give the MT statistic

Q∗ =
k∑

i=1

Q∗
i

such that Pr(Q∗ ≤ x) = G(m−1)p(x) + O(M−2
2 ). Note that Q∗ converges to the χ2 distri-

bution much faster than the LRT statistic does. On the other hand, since an asymptotic
expansion of the characteristic function of Q1 is given by

E[exp(itQ1)] =(1− 2it)−
1
2
(m−1)r +

β1

M3

(1− 2it)−
1
2
(m−1)r

[
1− (1− 2it)−1

]
+O(M−2

3 ),
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where β1 = −(m−1)r(r+m+2)/4, gathering up the expanded results for the characteristic
function of Qi, we can propose

Q† = −2ρ log λ

as an MLRT statistic, where

ρ = 1− 1

2ν1p

k∑
i=1

1

wk−i+1

(pk−i+1 − pk−i+2)(pk−i+1 + pk−i+2 +m+ 2),

wk−i+1 =
∑k−i+1

j=1 uj, uj = νj/ν1, and pk+1 = 0. Note that the null distribution of Q† can
be expressed as

Pr(Q† ≤ x) = G(m−1)p(x) +O(ν−2
1 ).

This means that the error from using the χ2
(m−1)p distribution is of order ν−2

1 . We note

that Q† is a monotone transformation, but Q∗ is not always monotone.

5.3 Simulation studies

In this section, we investigate the numerical accuracy and the asymptotic behavior of
the upper percentiles of the test statistics, Q, Q∗, and Q†, using the actual type I error
rates. We compute the upper percentiles of the null distribution of the test statistics in a
one-way MANOVA using a Monte Carlo simulation (106 runs). That is, the LRT statistic
Q, the MT statistic Q∗, and the MLRT statistic Q† are computed 106 times, based on
the normal random vectors generated from Npi(0, Ipi) i = 1, 2, . . . , k. In Table 5.1, we
provide the simulated upper 100α percentiles of Q, Q∗ and Q†, and their actual type I
error rates for the two-step case. Note that the actual type I error rates are defined as

αq

100
= Pr{Q > χ2

(m−1)p(α)},
αq∗

100
= Pr{Q∗ > χ2

(m−1)p(α)},

and αq†

100
= Pr{Q† > χ2

(m−1)p(α)},
where χ2

(m−1)p(α) is the upper 100α percentile of the χ2 distribution with (m−1)p degrees
of freedom. Computations are carried out for the following parameter sets for m = 3,
where n

(1)
i = n

(2)
i = n

(3)
i = ni, i = 1, 2, . . . , k:

(I) k = 2; (p1, p2) = (15, 3), (15, 8), (15, 12);

n1 = 20, 50, 100, 200; n2 = 5, 10, 50; α = 0.05.

We note from Table 5.1 that the value of q(α) converges very slowly to that of χ2
2p(α).

However, the values of q∗(α) and q†(α) are close to that of χ2
2p(α) even when the sample

size n1 is not large. In addition, from Table 5.1, the value of q∗(α) may be closer to χ2
2p(α)

when the value of p2 is large. For example, comparing the cases of (p1, p2) = (15, 3)
and (p1, p2) = (15, 12), the simulated values of (p1, p2) = (15, 12) converge to the χ2

distribution much faster than those of (p1, p2) = (15, 3) do. Tables 5.2 and 5.3 give the
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Table 5.1: The upper percentiles of Q, Q∗, Q† and the actual type I error rates
(two-step case)

n1 n2 q(α) q∗(α) q†(α) αq αq∗ αq†

(p1, p2) = (15, 3)

20 5 52.88 43.99 44.21 19.88 5.23 5.46
50 5 46.95 43.81 43.84 9.00 5.04 5.07

100 5 45.30 43.79 43.80 6.78 5.02 5.03
200 5 44.51 43.77 43.77 5.80 5.00 5.00

20 10 52.78 43.97 44.22 19.78 5.20 5.46
50 10 46.92 43.81 43.83 8.96 5.04 5.07

100 10 45.29 43.78 43.79 6.71 5.00 5.02
200 10 44.51 43.77 43.77 5.81 5.00 5.00

20 50 52.61 44.03 44.34 19.30 5.27 5.60
50 50 46.78 43.75 43.78 8.80 4.97 5.01

100 50 45.27 43.80 43.80 6.69 5.03 5.03
200 50 44.50 43.77 43.77 5.78 4.99 5.00

(p1, p2) = (15, 8)

20 5 52.38 43.87 44.26 18.91 5.10 5.53
50 5 46.88 43.81 43.85 8.92 5.04 5.08

100 5 45.26 43.77 43.78 6.72 4.99 5.00
200 5 44.53 43.80 43.80 5.81 5.02 5.02

20 10 51.99 43.86 44.32 17.98 5.08 5.59
50 10 46.74 43.75 43.81 8.73 4.98 5.04

100 10 45.25 43.79 43.79 6.70 5.01 5.01
200 10 44.50 43.78 43.77 5.81 5.00 5.00

20 50 50.94 43.82 44.55 15.79 5.05 5.84
50 50 46.39 43.77 43.84 8.16 5.00 5.07

100 50 45.10 43.76 43.77 6.49 4.98 5.00
200 50 44.45 43.76 43.76 5.75 4.98 4.99

(p1, p2) = (15, 12)

20 5 51.63 43.90 44.19 17.29 5.13 5.44
50 5 46.73 43.78 43.81 8.70 5.00 5.04

100 5 45.25 43.79 43.79 6.69 5.02 5.03
200 5 44.51 43.78 43.78 5.83 5.01 5.01

20 10 50.79 43.87 44.25 15.55 5.09 5.50
50 10 46.61 43.81 43.85 8.49 5.04 5.08

100 10 45.22 43.79 43.80 6.65 5.02 5.03
200 10 44.48 43.77 43.77 5.76 5.00 4.99

20 50 48.54 43.78 44.38 11.48 5.00 5.65
50 50 45.84 43.77 43.82 7.47 4.99 5.05

100 50 44.93 43.76 43.77 6.28 4.99 4.99
200 50 44.39 43.76 43.75 5.68 4.98 4.98

Note. χ2
30(0.05) = 43.77.
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Table 5.2: The upper percentiles of Q, Q∗, Q† and the actual type I error rates
(three-step case)

n1 n2 = n3 q(α) q∗(α) q†(α) αq αq∗ αq†

(p1, p2, p3) = (15, 10, 5)

20 5 51.83 43.77 44.25 17.75 5.00 5.51
50 5 46.80 43.81 43.86 8.74 5.04 5.09

100 5 45.27 43.79 43.81 6.71 5.02 5.03
200 5 44.48 43.75 43.75 5.78 4.98 4.98

20 10 51.26 43.82 44.37 16.46 5.04 5.65
50 10 46.62 43.78 43.84 8.51 5.01 5.07

100 10 45.20 43.77 43.78 6.62 5.00 5.01
200 10 44.51 43.78 43.79 5.80 5.01 5.01

20 50 49.78 43.83 44.61 13.61 5.06 5.91
50 50 46.05 43.75 43.83 7.73 4.98 5.06

100 50 45.00 43.77 43.79 6.37 5.00 5.02
200 50 44.42 43.77 43.77 5.70 5.00 5.00

(p1, p2, p3) = (15, 12, 9)

20 5 51.12 43.80 44.23 16.24 5.03 5.50
50 5 46.63 43.77 43.81 8.52 4.99 5.04

100 5 45.21 43.77 43.78 6.65 5.00 5.01
200 5 44.49 43.77 43.77 5.79 4.99 5.00

20 10 50.19 43.82 44.31 14.41 5.05 5.57
50 10 46.41 43.77 43.82 8.22 5.00 5.05

100 10 45.14 43.77 43.77 6.54 5.00 5.00
200 10 44.48 43.77 43.77 5.76 5.00 5.00

20 50 48.19 43.77 44.46 10.87 5.00 5.74
50 50 45.67 43.80 43.87 7.21 5.02 5.10

100 50 44.88 43.81 43.83 6.22 5.04 5.05
200 50 44.39 43.79 43.79 5.66 5.02 5.02

Note. χ2
30(0.05) = 43.77.

simulated results for the three-step case (II) and the five-step case (III), respectively:

(II) k = 3; (p1, p2, p3) = (15, 10, 5), (15, 12, 9);

n1 = 20, 50, 100, 200; n2 = n3 = 5, 10, 50; α = 0.05.

(III) k = 5; (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3);

n1 = 20, 50, 100, 200, n2 = n3 = · · · = n5 = 5, 10, 50; α = 0.05.

From Tables 5.2 and 5.3, the asymptotic behavior of the approximations of the χ2 dis-
tribution in the case of three-step or five-step monotone missing data show the same
tendencies as in the two-step case.
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Table 5.3: The upper percentiles of Q, Q∗, Q† and the actual type I error rates
when (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

n1 n2 = · · · = n5 q(α) q∗(α) q†(α) αq αq∗ αq†

20 5 50.91 43.76 44.28 15.87 4.99 5.55
50 5 46.60 43.78 43.84 8.50 5.01 5.07

100 5 45.22 43.79 43.80 6.61 5.02 5.03
200 5 44.50 43.78 43.78 5.77 5.01 5.01

20 10 49.93 43.76 44.30 13.94 4.99 5.57
50 10 46.31 43.74 43.81 8.11 4.97 5.04

100 10 45.12 43.77 43.79 6.52 5.00 5.01
200 10 44.47 43.77 43.78 5.77 5.00 5.00

20 50 48.10 43.79 44.49 10.70 5.02 5.77
50 50 45.61 43.81 43.89 7.13 5.04 5.12

100 50 44.78 43.76 43.77 6.12 4.99 5.00
200 50 44.36 43.78 43.78 5.63 5.00 5.01

Note. χ2
30(0.05) = 43.77.

5.4 A numerical illustration

In this section, we illustrate the results of this paper using an example given in well known
“Fisher’s Iris Data” which presents measurements of the sepal length and width, and pedal
length and width in centimeters of 50 plants for Iris virginica. For illustration purpose
and reproduction of the Iris Data with the equality of covariance matrices, three datasets
with three-step monotone missing pattern ((p1, p2, p3) = (4, 3, 2), n

(�)
1 = 10, n

(�)
2 = n

(�)
3 = 5,

� = 1, 2, 3) were generated from the dataset of Iris virginica by Bootstrap method, where
each value of the sepal length in the first group is added to the value of 0.5. These data
are presented in Table 5.4, where the entries in parentheses were discarded to make a
monotone pattern. According to the standard procedure of the MLRT (e.g. Srivastava
2002, p.490) to check the equality of covariance matrices, we obtain the value of the
test statistic as 23.17 with p value 0.28, and so the assumption of equality of covariance
matrices is actually tenable. Then, we want to test H0 : μ(1) = μ(2) = μ(3) vs. H1 :
not H0. Under the three-step monotone missing data in Table 5.4, we computed the
MLEs of μ(�) and Σ as

μ̂(1) =

⎛⎜⎜⎝
7.02
2.95
5.50
2.03

⎞⎟⎟⎠ , μ̂(2) =

⎛⎜⎜⎝
6.40
3.06
5.43
2.07

⎞⎟⎟⎠ , μ̂(3) =

⎛⎜⎜⎝
6.76
2.98
5.69
1.98

⎞⎟⎟⎠ ,

Σ̂ =

⎛⎜⎜⎝
0.2997 0.0687 0.2273 0.0691
0.0687 0.0870 0.0463 0.0427
0.2273 0.0463 0.2819 0.0529
0.0691 0.0427 0.0529 0.0752

⎞⎟⎟⎠ ,
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Table 5.4: Artificial bootstrap dataset from Fisher’s Iris data

Group 1 Group 2 Group 3

Sepal Petal Sepal Petal Sepal Petal
Length Width Length Width Length Width Length Width Length Width Length Width

7.8 2.9 6.3 1.8 6.8 3.0 5.5 2.1 6.3 2.8 5.1 1.5
7.4 3.1 5.1 2.3 6.3 2.8 5.1 1.5 6.3 2.5 5.0 1.9
8.2 2.6 6.9 2.3 6.9 3.1 5.1 2.3 6.9 3.1 5.1 2.3
7.2 3.1 5.6 2.4 6.2 3.4 5.4 2.3 6.3 2.9 5.6 1.8
5.4 2.5 4.5 1.7 6.4 2.7 5.3 1.9 7.7 2.6 6.9 2.3
6.3 2.7 5.1 1.9 6.7 3.3 5.7 2.1 6.9 3.2 5.7 2.3
7.8 2.9 6.3 1.8 6.3 3.4 5.6 2.4 6.8 3.0 5.5 2.1
6.7 2.8 4.8 1.8 6.4 3.1 5.5 1.8 7.7 3.8 6.7 2.2
6.7 3.4 5.4 2.3 6.2 3.4 5.4 2.3 6.3 2.8 5.1 1.5
6.6 3.0 4.9 1.8 5.7 2.5 5.0 2.0 7.7 2.8 6.7 2.0
7.3 3.2 5.9 (2.3) 6.3 3.3 6.0 (2.5) 6.1 3.0 4.9 (1.8)
7.7 3.2 6.0 (1.8) 7.2 3.2 6.0 (1.8) 6.3 2.9 5.6 (1.8)
6.3 2.7 5.1 (1.9) 6.5 3.0 5.5 (1.8) 6.5 3.0 5.8 (2.2)
6.6 2.6 5.6 (1.4) 6.1 3.0 4.9 (1.8) 7.9 3.8 6.4 (2.0)
7.4 3.1 5.1 (2.3) 6.3 3.4 5.6 (2.4) 6.1 2.6 5.6 (1.4)
6.8 3.4 (5.6) (2.4) 6.5 3.0 (5.8) (2.2) 7.1 3.0 (5.9) (2.1)
6.4 3.0 (5.1) (1.8) 6.2 2.8 (4.8) (1.8) 6.4 3.2 (5.3) (2.3)
7.6 3.0 (5.9) (2.1) 5.7 2.5 (5.0) (2.0) 6.4 2.8 (5.6) (2.1)
7.4 3.1 (5.1) (2.3) 6.8 3.2 (5.9) (2.3) 6.3 2.5 (5.0) (1.9)
6.8 2.7 (4.9) (1.8) 6.5 3.0 (5.2) (2.0) 7.2 3.2 (6.0) (1.8)

Note. The entries in parentheses were discarded to make a monotone pattern.

respectively. Further, under the null hypothesis H0, we computed

μ̃ =

⎛⎜⎜⎝
6.73
2.99
5.54
2.03

⎞⎟⎟⎠ , Σ̃ =

⎛⎜⎜⎝
0.3643 0.0575 0.2446 0.0650
0.0575 0.0890 0.0474 0.0436
0.2446 0.0474 0.3042 0.0524
0.0650 0.0436 0.0524 0.0764

⎞⎟⎟⎠ ,

respectively. These MLEs are obtained by using the results of Section 5.1 when k = 3 and
m = 3. Therefore, the observed values of the LRT, MT and MLRT statistics are given by
Q = 30.56 with p-value 1.68× 10−4, Q∗ = 28.06 with p value 4.63× 10−4 and Q† = 27.29
with p value 6.30 × 10−4, respectively. Using only the first 10 complete observations of
each group (partially complete), we computed

μ̂(1)
pc =

⎛⎜⎜⎝
7.01
2.90
5.49
2.01

⎞⎟⎟⎠ , μ̂(2)
pc =

⎛⎜⎜⎝
6.39
3.07
5.36
2.07

⎞⎟⎟⎠ , μ̂(3)
pc =

⎛⎜⎜⎝
6.89
2.95
5.74
1.99

⎞⎟⎟⎠ ,

Σ̂pc =

⎛⎜⎜⎝
0.3589 0.0484 0.3077 0.0708
0.0484 0.0922 0.0369 0.0419
0.3077 0.0369 0.3652 0.0614
0.0708 0.0419 0.0614 0.0753

⎞⎟⎟⎠ ,
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and

μ̃pc =

⎛⎜⎜⎝
6.76
2.97
5.53
2.02

⎞⎟⎟⎠ , Σ̃pc =

⎛⎜⎜⎝
0.4310 0.0294 0.3344 0.0625
0.0294 0.0973 0.0308 0.0440
0.3344 0.0308 0.3901 0.0566
0.0625 0.0440 0.0566 0.0765

⎞⎟⎟⎠ ,

which give Q†
pc = 14.57 with p value 0.0680, where Q†

pc is the value of the usual MLRT
statistic under the partially complete data. If we test the hypothesis at the level of
α = 0.05, the null hypothesis is rejected using the three-step monotone missing data. On
the other hand, the null hypothesis is not rejected using the partially complete data. In
the case of this example, since we have the whole sample of Table 5.4, we obtained the
MLEs and the value of MLRT statistic under the complete data given by

μ̂(1)
c =

⎛⎜⎜⎝
7.02
2.95
5.46
2.01

⎞⎟⎟⎠ , μ̂(2)
c =

⎛⎜⎜⎝
6.40
3.06
5.42
2.07

⎞⎟⎟⎠ , μ̂(3)
c =

⎛⎜⎜⎝
6.76
2.98
5.68
1.97

⎞⎟⎟⎠ ,

Σ̂c =

⎛⎜⎜⎝
0.2997 0.0687 0.2261 0.0521
0.0687 0.0870 0.0527 0.0412
0.2261 0.0527 0.2745 0.0445
0.0521 0.0412 0.0445 0.0745

⎞⎟⎟⎠ ,

and

μ̃c =

⎛⎜⎜⎝
6.73
2.99
5.52
2.01

⎞⎟⎟⎠ , Σ̃c =

⎛⎜⎜⎝
0.3643 0.0575 0.2334 0.0456
0.0575 0.0890 0.0504 0.0426
0.2334 0.0504 0.2874 0.0403
0.0456 0.0426 0.0403 0.0762

⎞⎟⎟⎠ ,

and Q†
c = 33.39 with p value 5.24 × 10−5, where Q†

c is the value of the usual MLRT
statistic under the complete data. We note that this p value is closer to the respective
values 1.68× 10−4, 4.63× 10−4 and 6.30× 10−4 of the tests proposed in this paper, than
the similar one obtained by using partially complete data. In this way, we can test the
equality of mean vectors in a one-way MANOVA under the monotone missing data.

5.5 Conclusions

We have developed the LRT, MT and MLRT statistics with general monotone missing
data in a one-way MANOVA. Furthermore, we showed that the LR for this test can
be decomposed into the LR for the test for a one-way MANOVA of reduced dimension
and those of the remaining subvectors with complete data. We note that these LRs are
mutually independent. We also derived an asymptotic expansion for the distribution
function of each LR using the perturbation procedure. Indeed, the results include the
two-sample problem. From the simulation results, the null distribution of MT statistic as
well as MLRT statistic is considerably closer to the χ2 distribution than that of the LRT
statistic even if the sample size is moderately small. We recommend the use of MT or
MLRT statistic proposed in this paper if the missing data are of monotone pattern in a
one-way MANOVA.
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