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Chapter 1

Introduction

In this thesis we make a study of Hochschild cohomology and Galois exten-
sions, and we get two main results.

The first result is concerned with the Hochschild cohomology of integral
cyclic algebras [14].

Hochschild cohomology was introduced by Hochschild [7]. In particu-
lar, it is known that the Hochschild cohomology ring HH∗(Γ) is a graded
commutative ring, that is if α ∈ HHm(Γ) and β ∈ HHn(Γ), then we have
αβ = (−1)mn(βα). It is also known that the Hochschild cohomology ring of
an algebra over a commutative ring is an invariant under an equivalence of
bounded derived categories [10].

Let Z be the ring of rational integers, p a prime integer and ζ a primitive
p-th root of unity. Let a and b be any nonzero rational integers. We let Γ be
the integral cyclic R-algebra

Γ =
⊕

0≤k,l≤p−1

Rikjl such that ip = a, jp = b, ji = ζij.

In particular, in the case p = 2, Γ is just the generalized quaternion algebra
over the ring of rational integers Z.

In this paper, we consider the Hochschild cohomology group HHm(Γ) =
ExtmΓe(Γ,Γ) and the Hochschild cohomology ring HH∗(Γ) =

⊕
m≥0 HH

m(Γ)
of Γ, where Γe denotes the enveloping algebra Γ⊗R Γop of Γ.

The case of p = 2, the Z-module structure of HHm(Γ) and HH∗(Γ) have
already been studied in [4] and [12]. In this paper, we will generalize these
results to the case of any prime number p.

First, we determine the R-module structure of HHm(Γ) as follows.

Theorem 1.1. (See Theorem 2.2) We set R = Z[ζ], and denote 1 − ζ by
ω. Let a and b be any nonzero rational integers and d the greatest common
divisor of a and b. Then the Hochschild cohomology group HHm(Γ) is given
by

HHm(Γ) ∼=


R for m = 0,

(R/dpR)(m−1)/2 ⊕ (R/dωR)(m+1)/2 ⊕ (R/ωR)(p
2−2)(m+1)/2

for m odd,

(R/dpR)(m−2)/2 ⊕ (R/dωR)m/2 ⊕ (R/ωR)(p
2−2)m/2 ⊕ (R/apR)

⊕(R/bpR) for m(̸= 0) even.
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We prove this theorem by giving a projective bimodule resolution of Γ,
and applying the functor HomΓe(−,Γ) to the resolution.

By calculating the cup product of generators of the Hochschild cohomol-
ogy group HHm(Γ), we determine the ring structure of HH∗(Γ) as follows.

Theorem 1.2. (See Theorem 2.3 and Theorem 2.5)

(i) Let p be an odd prime and a, b nonzero integers. Then the Hochschild
cohomology ring HH∗(Γ) is generated by at most p2 + 4p− 3 elements
from HH1(Γ), HH2(Γ) and HH3(Γ). In particular, if |a| = |b| = 1,
then the Hochschild cohomology ring HH∗(Γ) is generated by p2 + 2
elements from HH1(Γ) and HH2(Γ).

(ii) Let p = 2 and a, b any nonzero integers. Then the Hochschild cohomol-
ogy ring HH∗(Γ) is generated by at most eight elements. In particular,
if p = 2 and |a| = |b| = 1, then we get

HH∗(Γ) ∼= Z[x, y, z]/(2x, 2y, 2z, x2 + y2 + z2), x, y, z ∈ HH1(Γ).

This theorem generalizes the results in [4], [12] and [16].
The second result is concerned with the ramification in cyclic extensions

of number fields [13].
By classical Kummer theory, if K contains n-th roots of unity, then all

cyclic extensions of degree n over K have the form K( n
√
a) for some a ∈ K×.

Hecke [1] described the ramification in the extension K( n
√
a)/K when n is

prime.
On the other hand, the Kummer theory is generalized by Kida [8] using

algebraic tori even when K does not contain roots of unity. This gener-
alization of Kummer theory is described as follows: let T be an algebraic
torus defined over K, if there exists a self-isogeny λ on T which satisfies
Ker (λ) ⊂ T (K), then any cyclic extensions over K can be written as
K(λ−1(P )) with P ∈ T (K), where T (K) is the group of K-rational points
on T .

We describe the ramification in the extension K(λ−1(P ))/K in our main
result. Since the problem is obviously local, we assume that K is a finite
extension over the p-adic field. If the degree of a self-isogeny λ is p, then
the extension K(λ−1(P ))/K is a cyclic extension of degree p. The following
result gives the conductor of K(λ−1(P ))/K, which measures the wildness of
the ramification in this extension.

Theorem 1.3. (See Theorem 3.15) Let p be a fixed odd prime. Let Qp be
the field of p-adic numbers and k an unramified extension of Qp of degree
n, and kz = k(ζp) where ζp is a primitive p-th root of unity. Let K be an
intermediate field of kz/k and m the degree of the extension K/k, and T the
Weil restriction Rkz/KGm of the multiplicative group Gm to K. We assume
that there exists a self-isogeny λ on T which satisfies Ker (λ) ⊂ T (K). Let

Gm,kz be a multiplicative group defined over kz and T̂ = Hom(T,Gm,kz) the
group of characters of T . For each i ≥ 1, we define

U (i)(kz) = {u ∈ kz | vkz(u− 1) ≥ i}

4



and
T (i)(K) = HomGal(kz/K)(T̂ , U

(i)(kz)).

If P ∈ T (jd+1)(K) and P /∈ T (jd+2)(K) for some 0 ≤ j ≤ m, then the
conductor f of K(λ−1(P ))/K satisfies

vK(f) =

{
m− j + 1 0 ≤ j < m,
0 j = m.

In particular, K(λ−1(P ))/K is an unramified extension if and only if P ∈
T (p)(K).

This result generalizes a classical theorem by Hecke describing the ramifi-
cation of Kummer extensions K( n

√
α)/K. We prove the theorem by studying

the structure of the group of units of local fields as Galois modules in de-
tail. As an application of the theorem, we can calculate the number of cyclic
extensions of degree p over K with given conductor f up to isomorphism as
follows.

Theorem 1.4. (See Theorem 3.16) Let p be an odd prime. Then, for each
0 ≤ j < m, the number of cyclic extensions of K ⊂ Qp of degree p whose
conductor f satisfies vK(f) = m− j + 1 is p(m−(j+1))n+1 · (pn − 1)/(p− 1) up
to isomorphism.

The outline of this paper is as follows. In Chapter 2, we determine the
ring structure of the Hochschild cohomology HH∗(Γ) of an integral cyclic
algebra Γ by giving a projective bimodule resolution of Γ and calculating
cup product by means of a diagonal approximation map. In Chapter 3, in
the context of the generalized Kummer theory arising from algebraic tori, we
generalize the classical theorem by Hecke.
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Chapter 2

On the Hochschild cohomology
ring of integral cyclic algebras

2.1 Introduction

Let Z be the ring of rational integers, p a prime integer and ζ a primitive
p-th root of unity. We set R = Z[ζ], ωn = 1 − ζn for any n ∈ Z and we
denote ω1 = 1− ζ by ω. We note that pR = ωp−1R, so R/ωR ∼= Z/pZ, and
that ωk/ωl is a unit in R for any k, l with k, l ̸≡ 0 mod p.

Let a and b be any nonzero rational integers and d the greatest common
divisor of a and b. We let Γ be the integral cyclic R-algebra

Γ =
⊕

0≤k,l≤p−1

Rikjl such that ip = a, jp = b, ji = ζij.

In particular, in the case p = 2, Γ is just the generalized quaternion algebra
over the ring of rational integers Z.

In this chapter, we consider the Hochschild cohomology groupHHm(Γ) =
ExtmΓe(Γ,Γ) and the Hochschild cohomology ring HH∗(Γ) =

⊕
m≥0 HH

m(Γ)
of Γ, where Γe denotes the enveloping algebra Γ⊗RΓ

op of Γ. Unless otherwise
stated, ⊗ denotes ⊗R.

Although there is basically a small number of studies about the Hochschild
cohomology for algebras over a commutative ring, the Hochschild cohomology
of quaternion algebras or cyclic algebras appearing as orders in semisimple
algebras over a field are studied in, for example, Hayami’s works [3], [4], [5],
[6] and [12], [15], [16] etc. However, Hochschild cohomology is an important
tool for investigating module categories of algebras. In fact it is known that
the Hochschild cohomology ring of an algebra over a commutative ring is an
invariant under an equivalence of bounded derived categories as triangulated
categories (cf.[10, Chapter 6])．

Concerning the integral cyclic algebra Γ above, in the case a is any nonzero
integer and b = −1, the module structure of HHm(Γ) was already given in
[12] using spectral sequence. In the case p = 2, a is any nonzero integer
and b = −1, the ring structure of the Hochschild cohomology HH∗(Γ) was
also calculated in [16] using spectral sequence. In the case p = 2, a and b
are any nonzero integers, that is, Γ is a generalized quaternion algebra, the
ring structure of HH∗(Γ) was determined in [4]. In this chapter, we will
generalize these results to the case of any prime number p.
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In Section 2.2, we give a projective bimodule resolution of Γ, and apply-
ing the functor HomΓe(−,Γ) to the resolution, we have a double complex
which gives the Hochschild cohomology group HHm(Γ). In Section 2.3, we
determine the R-module structure of HHm(Γ) (Theorem 2.2):

HHm(Γ) ∼=


R for m = 0,

(R/dpR)(m−1)/2 ⊕ (R/dωR)(m+1)/2 ⊕ (R/ωR)(p
2−2)(m+1)/2

for m odd,

(R/dpR)(m−2)/2 ⊕ (R/dωR)m/2 ⊕ (R/ωR)(p
2−2)m/2 ⊕ (R/apR)

⊕(R/bpR) for m( ̸= 0) even.

In Section 2.4, we determine the ring structure of HH∗(Γ). First, in
Subsection 2.4.1, we define a ‘diagonal approximation map’ for the projective
bimodule resolution of Γ in order to calculate the cup product on HH∗(Γ).
In Subsection 2.4.2, by calculating the cup products of generators of the
Hochoschild cohomology groups HHm(Γ) for m ≥ 0, we give a system of
generators of the Hochschild cohomology ring HH∗(Γ) as an R-algebra in
Theorem 2.3. As a result, if p ≥ 3, then the Hochschild cohomology ring
HH∗(Γ) is generated by the elements of HH1(Γ), HH2(Γ) and HH3(Γ).
Furthermore, in that section, we present the relations that the generators of
HH∗(Γ) satisfy. In addition, we study the special case |a| = |b| = 1. In
Section 2.5, we consider the ring structure of HH∗(Γ) in the case p = 2.

2.2 Projective resolution of Γ

First, we will give a Γe-projective resolution (Pm,∆m, ε) of Γ referring to [4]:

Pm = (Γ⊗ Γ)m+1 := (Γ⊗ Γ)⊕ (Γ⊗ Γ)⊕ · · · ⊕ (Γ⊗ Γ),

∆m =
∑

s+t=m

(∂s,t + δs,t) for every integer m ≥ 0, ε is the augmentation.

Here, for s, t ≥ 0 with m = s+ t, we define an element cs,t ∈ Pm by

cs,t := (0, . . . , 0,
t
ˇ1⊗ 1, 0, . . . , 0).

Then Pm =
⊕

s+t=m Γs,t, where we set Γs,t := Γcs,tΓ. We define Γe-homomor-
phisms ∂s,t : Γs,t −→ Γs−1,t and δs,t : Γs,t −→ Γs,t−1 by

∂s,t =



∂1 : cs,t 7→ ics−1,t − cs−1,ti for s odd

∂2 : cs,t 7→
p−1∑
k=0

ip−1−kcs−1,ti
k for s even

 for t even,

∂′1 : cs,t 7→ ics−1,t − ζ−1cs−1,ti for s odd

∂′2 : cs,t 7→
p−1∑
k=0

ζ−kip−1−kcs−1,ti
k for s even

 for t odd,

δs,t =



δ1 : cs,t 7→ jcs,t−1 − cs,t−1j for t odd

δ2 : cs,t 7→
p−1∑
k=0

jp−1−kcs,t−1j
k for t even

 for s even,

δ′1 : cs,t 7→ (−1)(ζ−1jcs,t−1 − cs,t−1j) for t odd

δ′2 : cs,t 7→ (−1)
p−1∑
k=0

ζ−(p−1−k)jp−1−kcs,t−1j
k for t even

 for s odd.
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It is easy to see that the following equations hold:

δs,t−1 ◦ δs,t = 0, ∂s−1,t ◦ ∂s,t = 0, ∂s,t−1 ◦ δs,t + δs−1,t ◦ ∂s,t = 0.

Hence, setting each Γs,t on each lattice point on the first quadrant, we have
the following double complex:

(Γs,t, ∂s,t, δs,t) :

yδ1

yδ′1

yδ1

Γ0,2 ←−−−
∂1

Γ1,2 ←−−−
∂2

Γ2,2 ←−−−
∂1yδ2

yδ′2

yδ2

Γ0,1 ←−−−
∂′
1

Γ1,1 ←−−−
∂′
2

Γ2,1 ←−−−
∂′
1yδ1

yδ′1

yδ1

Γ0,0 ←−−−
∂1

Γ1,0 ←−−−
∂2

Γ2,0 ←−−−
∂1

.

Then, we show the Γe-projective resolution of Γ in the following proposition.

Proposition 2.1. By taking the total complex of the above complex, we have
the Γe-projective resolution of Γ:

· · · ∆3−−−→ P2
∆2−−−→ P1

∆1−−−→ P0
ε−−−→ Γ −−−→ 0,

where ∆m =
∑

s+t=m(∂s,t + δs,t) and ε is the multiplication map.

Proof. The exactness of the sequence is verified by giving a contracting ho-
motopy. We define the following maps T−1 : Γ −→ P0 and Tm : Pm −→ Pm+1

for m ≥ 0 by

T−1(γ) = c0,0γ (γ ∈ Γ);

for any even m,

Tm(i
ujvcm,0) =

0 for u = 0 and v = 0,
v−1∑
k=0

jv−1−kcm,1j
k for u = 0 and v ̸= 0,

u−1∑
k=0

iu−1−kcm+1,0i
k for u ̸= 0 and v = 0,

u−1∑
k=0

iu−1−kcm+1,0i
kjv + iu

v−1∑
k=0

jv−1−kcm,1j
k for u ̸= 0 and v ̸= 0,

Tm(i
ujvcs,t) =

0 for v = 0 and t ( ̸= 0) even,

iu
v−1∑
k=0

jv−1−kcs,t+1j
k for v ̸= 0 and t ( ̸= 0) even,

0 for v ̸= p− 1 and t odd,
−ζ−1iucs,t+1 for v = p− 1 and t odd;
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and for any odd m,

Tm(i
ujvcm,0) =

0 for u ̸= p− 1 and v = 0,

−ζ iu
v−1∑
k=0

jv−1−kcm,1j
k for u ̸= p− 1 and v ̸= 0,

cm+1,0 for u = p− 1 and v = 0,

ζvcm+1,0j
v − ζ ip−1

v−1∑
k=0

jv−1−kcm,1j
k for u = p− 1 and v ̸= 0,

Tm(i
ujvcs,t) =

0 for v = 0 and t ( ̸= 0) even,

−ζiu
v−1∑
k=0

ζkjv−1−kcs,t+1j
k for v ̸= 0 and t ( ̸= 0) even,

0 for v ̸= p− 1 and t odd,
iucs,t+1 for v = p− 1 and t odd.

Then Tm’s satisfy the equalities

∆1 ◦ T0 + T−1 ◦ ε = idP0 ,

∆m+1 ◦ Tm + Tm−1 ◦∆m = idPm for m ≥ 0.

That is, {Tm} is a contracting homotopy.

We remark that the exactness above is also verified by using spectral
sequence.

Next, we will define a complex giving the Hochschild cohomology of Γ.
Applying the functor HomΓe(−,Γ) to the double complex above, we have the
following double complex on the third quadrant:

(
Γs,t, ∂s,t, δs,t

)
:

←−−−
∂̃1

Γ2,0 ←−−−
∂̃2

Γ1,0 ←−−−
∂̃1

Γ0,0yδ̃1

yδ̃′1

yδ̃1

←−−−
∂̃′
1

Γ2,1 ←−−−
∂̃′
2

Γ1,1 ←−−−
∂̃′
1

Γ0,1yδ̃2

yδ̃′2

yδ̃2

←−−−
∂̃1

Γ2,2 ←−−−
∂̃2

Γ1,2 ←−−−
∂̃1

Γ0,2yδ̃1

yδ̃′1

yδ̃1

where we set Γs,t := HomΓe(Γs,t,Γ) ∼= Γ and we identify Γs,t with Γ. So
∂s,t := Hom(∂s+1,t, ι) : Γs,t −→ Γs+1,t and δs,t := Hom(ι, δs,t+1) : Γs,t −→
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Γs,t+1 are explicitly given by

∂s,t =



∂̃1 : x 7→ ix− xi for s even

∂̃2 : x 7→
p−1∑
k=0

ip−1−kxik for s odd

 for t even,

∂̃′1 : x 7→ ix− ζ−1xi for s even

∂̃′2 : x 7→
p−1∑
k=0

ζ−kip−1−kxik for s odd

 for t odd,

δs,t =



δ̃1 : x 7→ jx− xj for t even

δ̃2 : x 7→
p−1∑
k=0

jp−1−kxjk for t odd

 for s even,

δ̃′1 : x 7→ (−1)(ζ−1jx− xj) for t even

δ̃′2 : x 7→ (−1)
p−1∑
k=0

ζ−(p−1−k)jp−1−kxjk for t odd

 for s odd

for x ∈ Γs,t. Therefore, putting Qm :=
⊕

s+t=m Γs,t ∼= Γm+1 and ∆m :=∑
s+t=m (∂s,t + δs,t), we have the total complex of the above complex:

· · · ∆2

←−−− Q2 ∆1

←−−− Q1 ∆0

←−−− Q0 ←−−− 0.

2.3 Module structure of HHm(Γ)

In this section, we determine the module structure ofHHm(Γ) = ExtmΓe(Γ,Γ).
First, we present any element of Γ by a matrix in Mp(R). If x is any element
in Γs,t, then there uniquely exist xkl ∈ R (k, l = 1, 2, . . . , p) such that

x =
(
1 i · · · ip−1

)

x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...
xp1 xp2 · · · xpp




1
j
...

jp−1

 .

By corresponding x ∈ Γs,t to the matrix X = (xkl) ∈ Mp(R) above, ∂
s,t(X)

and δs,t(X) are given by

∂̃1(X) =


0 aωxp2 · · · aωp−1xpp
0 ωx12 · · · ωp−1x1p
...

...
. . .

...
0 ωxp−12 · · · ωp−1xp−1p

 , ∂̃2(X) =


apx21 0 · · · 0

...
...

. . .
...

apxp1 0 · · · 0
px11 0 · · · 0

 ,

∂̃′1(X) =


aωp−1xp1 0 aωxp3 · · · aωp−2xpp
ωp−1x11 0 ωx13 · · · ωp−2x1p

...
...

...
. . .

...
ωp−1xp−11 0 ωxp−13 · · · ωp−2xp−1p

 ,

∂̃′2(X) =


0 apx22 0 · · · 0
...

...
...

. . .
...

0 apxp2 0 · · · 0
0 px12 0 · · · 0

 ;
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δ̃1(X) =


0 0 · · · 0

−bωx2p −ωx21 · · · −ωx2p−1
...

...
. . .

...
−bωp−1xpp −ωp−1xp1 · · · −ωp−1xpp−1

 ,

δ̃2(X) =


bpx12 · · · bpx1p px11
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

 ,

δ̃′1(X) =


bωp−1x1p ωp−1x11 · · · ωp−1x1p−1

0 0 · · · 0
bωx3p ωx31 · · · ωx3p−1

...
...

. . .
...

bωp−2xpp ωp−2xp1 · · · ωp−2xpp−1

 ,

δ̃′2(X) =


0 · · · 0 0

−bpx22 · · · −bpx2p −px21
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

 .

For s+ t = m (s, t ≥ 0), we define cs,t ∈ Qm by

cs,t := (0, . . . , 0,
t

1̌, 0, . . . , 0).

Using above expressions, we obtain the R-module structure of the Hochschild
cohomology group HHm(Γ). In fact, we directly calculate Ker ∆m and
Im ∆m−1. We present those R-modules only in the case m is even.

Ker ∆m =
m⊕
t=0

Rcm−t,t ⊕
⊕

1≤t≤m−1, odd;
2≤k,l≤p−1

Rikjlcm−t,t

⊕
⊕

1≤t≤m−1, odd;
2≤l≤p−1

Rjlcm−t,t ⊕
⊕

1≤t≤m−1, odd;
2≤k≤p−1

Rikcm−t,t

⊕
⊕

0≤t≤m−2, even;
0≤k′ (̸=1)≤p−1

R

(
p

ωp−1+k′
ip−1+k′cm−t,t + ik

′
jcm−t−1,t+1

)

⊕
⊕

1≤t≤m−1, odd;
0≤l′( ̸=1)≤p−1

R

(
ijl

′
cm−t,t +

p

ωp−1+l′
jp−1+l′cm−t−1,t+1

)
,

Im ∆m−1 =apRcm,0 ⊕
⊕

1≤t≤m−1, odd

dωRcm−t,t ⊕
⊕

2≤t≤m−2, even

dpRcm−t,t

⊕ bpRc0,m ⊕
⊕

1≤t≤m−2, odd;
2≤k,l≤p−1

ωRikjlcm−t−1,t−1

⊕
⊕

1≤t≤m−1, odd;
2≤l≤p−1

ωRjlcm−t,t ⊕
⊕

1≤t≤m−1, odd;
2≤k≤p−1

ωRikcm−t,t
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⊕
⊕

0≤t≤m−2, even;
0≤k′ (̸=1)≤p−1

ωR

(
p

ωp−1+k′
ip−1+k′cm−t,t + ik

′
jcm−t−1,t+1

)

⊕
⊕

1≤t≤m−1, odd;
0≤l′( ̸=1)≤p−1

ωR

(
ijl

′
cm−t,t +

p

ωp−1+l′
jp−1+l′cm−t−1,t+1

)
.

In the above calculation, we note that ωR = ωp−1+k′R for 0 ≤ k′(̸= 1) ≤ p−1.

Theorem 2.2. Let Z be the ring of rational integers, a, b any nonzero ratio-
nal integers and d the greatest common divisor of a and b. Let p be a prime
and ζ a primitive p-th root of unity. We set R = Z[ζ] and put ω = 1 − ζ.
Then the R-module structure of the Hochschild cohomology group of Γ is as
follows:

HHm(Γ) ∼=


R for m = 0,

(R/dpR)(m−1)/2 ⊕ (R/dωR)(m+1)/2 ⊕ (R/ωR)(p
2−2)(m+1)/2

for m odd,

(R/dpR)(m−2)/2 ⊕ (R/dωR)m/2 ⊕ (R/ωR)(p
2−2)m/2

⊕(R/apR)⊕ (R/bpR) for m(̸= 0) even.

For the later use, we list the system of generators of each HHm(Γ) as an
R-module represented by elements in Qm = Γm+1 as follows, where we set
a′ = a/d, b′ = b/d:

For m = 1,

ijlc1,0 for 1 ≤ l ≤ p− 1,

ikjc0,1 for 1 ≤ k ≤ p− 1,

ik+1jlc1,0 − ωk

ωl

ikjl+1c0,1 for 1 ≤ k, l ≤ p− 1 with (k, l) ̸= (p− 1, p− 1),

a′jp−1c1,0 − b′ip−1c0,1.

For m ≥ 2 even,

cm−t,t for 0 ≤ t ≤ m,

ikjlcm−t,t for 2 ≤ k, l ≤ p− 1 and t odd,

ikcm−t,t for 2 ≤ k ≤ p− 1 and t odd,

jlcm−t,t for 2 ≤ l ≤ p− 1 and t odd,
p

ωp−1+k

ip−1+kcm−t,t + ikjcm−t−1,t+1 for 0 ≤ k(̸= 1) ≤ p− 1 and t even,

ijlcm−t,t +
p

ωp−1+l

jp−1+lcm−t−1,t+1 for 0 ≤ l(̸= 1) ≤ p− 1 and t odd.

For m ≥ 3 odd,

ijlcm−t,t for 1 ≤ l ≤ p− 1 and t even,

ikjcm−t,t for 1 ≤ k ≤ p− 1 and t odd,

ik+1jlcm−t,t − ωk/ωli
kjl+1cm−t−1,t+1

for 1 ≤ k, l ≤ p− 1 with (k, l) ̸= (p− 1, p− 1) and t even,

a′jp−1cm−t,t − b′ip−1cm−t−1,t+1 for t even,

a′jcm−t,t − b′icm−t−1,t+1 for 0 ≤ t < m odd.

12



2.4 The ring structure of HH∗(Γ)

In this section, we will determine the ring structure ofHH∗(Γ) =
⊕

m≥0HH
m(Γ).

2.4.1 Diagonal approximation and cup product

First, we define a map Φs,t;s′,t′ : Γs+t,s′+t′ −→ Γs,t ⊗Γ Γs′,t′ of Γ
e-modules by

the map sending cs+t,s′+t′ to

∑
u+v+w=p−2,
u′+v′+w′=p−2

ζ(v+1)(v′+1)+2−uw′
iuju

′
cs,ti

vjv
′ ⊗Γ cs′,t′i

wjw
′
for s, t, s′, t′ odd,

−ζ
∑

u+v+w=p−2

ζuiucs,ti
v ⊗Γ cs′,t′i

w for s odd, t odd, s′ odd, t′ even,∑
u′+v′+w′=p−2

ζ−u′
ju

′
cs,tj

v′ ⊗Γ cs′,t′j
w′

for s odd, t odd, s′ even, t′ odd,∑
u+v+w=p−2

iucs,ti
v ⊗Γ ζ

−wcs′,t′i
w for s odd, t even, s′ odd, t′ odd,

−ζ
∑

u′+v′+w′=p−2

ju
′
cs,tj

v′ ⊗Γ ζ
w′
cs′,t′j

w′
for s even, t odd, s′ odd, t′ odd,∑

u+v+w=p−2

iucs,ti
v ⊗Γ cs′,t′i

w for s odd, t even, s′ odd, t′ even,∑
u′+v′+w′=p−2

ju
′
cs,tj

v′ ⊗Γ cs′,t′j
w′

for s even, t odd, s′ even, t′ odd,

−ζ−1cs,t ⊗Γ cs′,t′ for s even, t odd, s′ odd, t′ even,
cs,t ⊗Γ cs′,t′ otherwise.

Then, Φ = {Φs,t;s′,t′} satisfies the following relations:

Φs,t;s′,t′ ◦ ∂s+s′+1,t+t′

= ∂s+1,t ⊗ ι ◦ Φs+1,t;s′,t′ + (−1)s+tι⊗ ∂s′+1,t′ ◦ Φs,t;s′+1,t′ ,

Φs,t;s′,t′ ◦ δs+s′,t+t′+1

= δs,t+1 ⊗ ι ◦ Φs,t+1;s′,t′ + (−1)s+tι⊗ δs′,t′+1 ◦ Φs,t;s′,t′+1,

ε⊗ ε ◦ Φ0,0;0,0 = ε.

Therefore, Φm,n :=
∑

s+t=m,s′+t′=n Φs,t;s′t′ is a ‘diagonal approximation’, that
is, this satisfies

Φm,n ◦∆m+n+1 = (∆m+1 ⊗ ι) ◦ Φm+1,n + (−1)m(ι⊗∆n+1) ◦ Φm,n+1,

(ε⊗ ε) ◦ Φ0,0 = ε.

Using Φ, we define the cup product

HHm(Γ)⊗HHn(Γ)
⌣−→ HHm+n(Γ); α⊗ β 7→ a ⌣ β

by

α ⌣ β = (α⊗Γ β) ◦ Φs,t;s′,t′ : Γs+t,s′+t′ → Γs,t ⊗Γ Γs′,t′ → Γ⊗Γ Γ = Γ.

for α ∈ Γs,t with s+t = m and β ∈ Γs′,t′ with s′+t′ = n. Hence Γs,t⊗Γs′,t′ ⌣−→
Γs+t,s′+t′ is explicitly presented by

α ⌣ β =

13





∑
u+v+w=p−2,
u′+v′+w′=p−2

ζ(v+1)(v′+1)+2−uw′
iuju

′
αivjv

′
βiwjw

′
for s, t, s′, t′ odd,

−ζ
∑

u+v+w=p−2

ζuiuαivβiw for s odd, t odd, s′ odd, t′ even,∑
u′+v′+w′=p−2

ζ−u′
ju

′
αjv

′
βjw

′
for s odd, t odd, s′ even, t′ odd,∑

u+v+w=p−2

iuαivζ−wβiw for s odd, t even, s′ odd, t′ odd,

−ζ
∑

u′+v′+w′=p−2

ju
′
αjv

′
ζw

′
βjw

′
for s even, t odd, s′ odd, t′ odd,∑

u+v+w=p−2

iuαivβiw for s odd, t even, s′ odd, t′ even,∑
u′+v′+w′=p−2

ju
′
αjv

′
βjw

′
for s even, t odd, s′ even, t′ odd,

−ζ−1αβ for s even, t odd, s′ odd, t′ even,
αβ otherwise.

for α ∈ Γs,t and β ∈ Γs′,t′ . In the above, we identify Γs,t with Γ and so on.
As long as there is no confusion, we often denote α ⌣ β by αβ for simplicity.
It is well known that the anti-commutativity αβ = (−1)mnβα holds for
α ∈ HHm(Γ) and β ∈ HHn(Γ). That is, the Hochschild cohomology ring
HH∗(Γ) is a graded commutative ring.

2.4.2 Generators of HH∗(Γ) as an R-algebra and the
relations

In this subsection, we determine the ring structure of the Hochschild coho-
mology ring HH∗(Γ) using cup product on generators of HHm(Γ). By the
way, the ring structure of the Hochschild cohomology ring HH∗(Γ) in the
case p = 2 was already known in [4]. So, we mainly treat the case p ≥ 3.

We denote the representatives of each element of HHm(Γ) by (∗, ∗, . . . , ∗)
∈ Qm = Γm,0⊕Γm−1,1⊕· · ·⊕Γ0,m. Then, referring to Theorem 2.2, generators
of HHm(Γ) for m = 1, 2, 3 as an R-module are as follows including the case
p = 2:
Generators of HH1(Γ):

σl := (ijl, 0) for 1 ≤ l ≤ p− 1,

τk := (0, ikj) for 1 ≤ k ≤ p− 1,

θk,l := (ik+1jl,−ωk

ωl

ikjl+1) for 1 ≤ k, l ≤ p− 1 with (k, l) ̸= (p− 1, p− 1),

π := (a′jp−1,−b′ip−1).

Generators of HH2(Γ):

φ := (1, 0, 0),

ψ := (0, 1, 0),

χ := (0, 0, 1),
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ρk := (
p

ωp−1+k

ip−1+k, ikj, 0) for 0 ≤ k(̸= 1) ≤ p− 1,

ηl := (0, ijl,
p

ωp−1+l

jp−1+l) for 0 ≤ l( ̸= 1) ≤ p− 1,

µk,l := (0, ikjl, 0) for 0 ≤ k, l( ̸= 1) ≤ p− 1 with (k, l) ̸= (0, 0).

Generators of HH3(Γ):

(ijl, 0, 0, 0) for 1 ≤ l ≤ p− 1,

(0, ikj, 0, 0) for 1 ≤ k ≤ p− 1,

(0, 0, ijl, 0) for 1 ≤ l ≤ p− 1,

(0, 0, 0, ikj) for 1 ≤ k ≤ p− 1,

(ik+1jl,−ωk

ωl

ikjl+1, 0, 0) for 1 ≤ k, l ≤ p− 1 with (k, l) ̸= (p− 1, p− 1),

(0, 0, ik+1jl,−ωk

ωl

ikjl+1) for 1 ≤ k, l ≤ p− 1 with (k, l) ̸= (p− 1, p− 1),

(a′jp−1,−b′ip−1, 0, 0),

(0, 0, a′jp−1,−b′ip−1),

κ :=(0, a′j,−b′i, 0).

Let x = (xm,0, . . . , x0,m) ∈ HHm(Γ). Then, it is easy to check that
the elements (xm,0, . . . , x0,m, 0, 0) and (0, 0, xm,0, . . . , x0,m) ∈ HHm+2(Γ) are
given by xφ and xχ respectively. In particular, if x is a generator, then xφ
and xχ are also generators. Therefore, we see that the generators of HHm(Γ)
for any m ≥ 3 except κ are given by the cup products of the generators above
of HH1(Γ) and HH2(Γ) and κ ∈ HH3(Γ). On the other hand, the relation
σlτk = µk+1,l+1 holds for 1 ≤ k, l < p− 1.

Therefore we have the following main theorem.

Theorem 2.3. Let p be an odd prime and a, b nonzero integers, and set
d = gcd (a, b), a′ = a/d, b′ = b/d. Then the Hochschild cohomology ring
HH∗(Γ) is the graded commutative ring generated by at most the following
p2 + 4p− 3 elements:

σl, τk, θk′,l′ , π ∈ HH1(Γ) for 1 ≤ k, k′, l, l′ ≤ p− 1 with (k′, l′) ̸= (p− 1, p− 1),

φ, ψ, χ, µk,0, µ0,l, ρk′ , ηl′ ∈ HH2(Γ) for 2 ≤ k, l ≤ p− 1, 0 ≤ k′, l′(̸= 1) ≤ p− 1,

κ ∈ HH3(Γ).

The list of the relations of the generators above is as follows:
The relations in HH1(Γ) :

ωτk = ωσl = dωπ = ωθk′,l′ = 0.

The relations in HH2(Γ) :

apφ = dωψ = bpχ = ωρk′ = ωηl′ = ωµk,0 = ωµ0,l = ππ = 0.

τk′τk =

{
p
ωk
ζkabχ if k + k′ = p,

0 if k + k′ ̸= p.
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σlσl′ =

{
p
ωl
ζ labφ if l + l′ = p,

0 if l + l′ ̸= p.

τkπ =

{
−ζ−1a′bη0 if k = 1,

−ζ−1a′bµk,0 if 1 < k.

σlπ =

{
−ζ−1b′aρ0 if l = 1,

−ζ−lb′aµ0,l if 1 < l.

σlτk =


bµk+1,0 if k < p− 1 and l = p− 1,

aµ0,l+1 if k = p− 1 and l < p− 1,

abψ if k = p− 1 and l = p− 1.

θk,lθk′,l′ =

(ωk

ωl
ζk

′+l − ωk′
ωl′

)ζk
′lσl+l′τk+k′ if 0 < k + k′ < p− 1

and 0 < l + l′ < p− 1,

(ωk

ωl
ζk

′+l − ωk′
ωl′

)ζk
′lbµk+k′+1,0 if 0 < k + k′ < p− 1

and l + l′ = p− 1,
ωk+k′

ωl
ζ l(k

′+1)bρk+k′+1 if 0 < k + k′ < p− 1 and l + l′ = p,

(ωk

ωl
ζk

′+l − ωk′
ωl′

)ζk
′lbσl+l′−pτk+k′ if 0 < k + k′ < p− 1 and p < l + l′,

(ωk

ωl
ζk

′+l − ωk′
ωl′

)ζk
′laµ0,l+l′+1 if k + k′ = p− 1

and 0 < l + l′ < p− 1,

(ωk

ωl
ζk

′+l − ωk′
ωl′

)ζk
′labψ if k + k′ = p− 1 and l + l′ = p− 1,

ωk+k′

ωl
ζ l(k

′+1)abρ0 if k + k′ = p− 1 and l + l′ = p,

(ωk

ωl
ζk

′+l − ωk′
ωl′

)ζk
′labµ0,l+l′+1−p if k + k′ = p− 1 and p < l + l′,

ωkωl+l′

ωlωl′
ζ−k(l+1)aηl+l′+1 if k + k′ = p and 0 < l + l′ < p,

ωkωl+l′

ωlωl′
ζ−k(l+1)abη0 if k + k′ = p and l + l′ = p− 1,

p
ωlωl′

ζkl
′
ab(ωl′aφ+ ωk′bχ) if k + k′ = p and l + l′ = p,

ωkωl+l′

ωlωl′
ζ−k(l+1)abηl+l′+1−p if k + k′ = p and p < l + l′,

(ωk

ωl
ζk

′+l − ωk′
ωl′

)ζk
′laσl+l′τk+k′−p if p < k + k′ and 0 < l + l′ < p,

(ωk

ωl
ζk

′+l − ωk′
ωl′

)ζk
′labµk+k′+1−p,0 if p < k + k′ and l + l′ = p− 1,

ωk+k′

ωl
ζ l(k

′+1)abρk+k′+1−p if p < k + k′ and l + l′ = p,

(ωk

ωl
ζk

′+l − ωk′
ωl′

)ζk
′labσl+l′−pτk+k′−p if p < k + k′ and p < l + l′.

πθk,l =


p
ω1
ab(−ζ−1a′φ+ b′χ) if k = 1 and l = 1,

ωl−1

ωl
a′bηl if k = 1 and 1 < l,

−ωk−1

ω1
ζ−kb′aρk if 1 < k and l = 1,

(ζ−1 − ωk

ωl
ζ−k)a′b′dσl−1τk−1 if 1 < k and 1 < l.
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τk′θk,l =



−ζkσlτk+k′ if 0 < k + k′ < p and l < p− 1,

−ζkbµk+k′+1,0 if 0 < k + k′ < p and l = p− 1,

−ζkaηl+1 if k + k′ = p and l < p− 1,

−ζkabη0 if k + k′ = p and l = p− 1,

−ζkaσlτk+k′−p if p < k + k′ and l < p− 1,

−ζkabµk+k′+1−p,0 if p < k + k′ and l = p− 1.

σl′θk,l =



−ωk

ωl
ζkl

′
σl+l′τk if 0 < l + l′ < p and k < p− 1,

−ωp−1

ωl
ζ−l′aµ0,l+l′+1 if 0 < l + l′ < p and k = p− 1,

ωk

ωl′
ζ l

′(k+1)bρk+1 if l + l′ = p and k < p− 1,
ωp−1

ωl′
abρ0 if l + l′ = p and k = p− 1,

−ωk

ωl
ζkl

′
bσl+l′−pτk if p < l + l′ and k < p− 1,

−ωp−1

ωl
ζ−l′abµ0,l+l′+1−p if p < l + l′ and k = p− 1.

The relations in HH3(Γ) :

dpκ = πψ = 0.

τkψ =

{
p
ω1
σp−1χ if k = 1,

0 if 1 < k.

σlψ =

{
p
ω1
τp−1φ if l = 1,

0 if 1 < l.

τkρk′ =


− p

ω1
dκ if k + k′ − 1 = 0 (i.e. k = 1, k′ = 0),

p
ωp−1+k′

ζk
′−1aτk+k′−1φ if 0 < k + k′ − 1 < p,

− p
ωk
adκ if k + k′ − 1 = p,

p
ωk′−1

ζk
′−1a2τk+k′−1−pφ if p < k + k′ − 1.

σlηl′ =


p
ω1
ζdκ if l + l′ − 1 = 0 (i.e. l = 1, l′ = 0),
p

ωp−1+l′
bσl+l′−1χ if 0 < l + l′ − 1 < p,

p
ωl
ζ lbdκ if l + l′ − 1 = p,
p

ωp−1+l′
b2σl+l′−1−pχ if p < l + l′ − 1.

σlρk =

{
p

ωp−1
ζ−lθp−1,lφ if k = 0,

p
ωk−1

ζ l(k−1)aθk−1,lφ if 0 < k.

τkηl =

{
− p

ωk
θk,p−1χ if l = 0,

− p
ωk
bθk,l−1χ if 0 < l.

τkµk′,0 =

{
p
ωk
aσp−1χ if k + k′ − 1 = p (i.e. k = 1, k′ = 0),

0 if k + k′ − 1 ̸= p.

σlµ0,l′ =

{
p
ωl
bτp−1φ if l + l′ − 1 = p (i.e. l = 1, l′ = 0),

0 if l + l′ − 1 ̸= p.

τkµ0,l =

{
p
ω1
bσl−1χ if k = 1,

0 if 1 < k.
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σlµk,0 =

{
p
ω1
ζkaτk−1φ if l = 1,

0 if 1 < l.

πµk,0 =

{
p
ω1
ζ−1a′bσp−2χ if k = 2,

0 if 2 < k.

πµ0,l =

{
− p

ω1
ζab′τp−2φ if k = 2,

0 if 2 < l.

πρk =


p

ωp−1
ζa′θp−2,p−1φ if k = 0,

p
ω1
ζ−1a′(aσp−1φ+ bσp−1χ) if k = 2,
p

ωk−1
ζ1−kaa′θk−2,p−1φ if 2 < k.

πηl =


p

ωp−1

ωp−2

ωp−1
b′θp−1,p−2χ if l = 0,

− p
ω1
b′(aζτp−1φ+ bτp−1χ) if l = 2,

p
ωp−1

ωl−2

ωp−1
bb′θp−1,l−2χ if 2 < l.

θk,lµk′,0 =



p
ω1
ζk

′
aτk+k′−1φ if 1 < k + k′ − 1 < p and l = 1,

0 if 1 < k + k′ − 1 < p and 1 < l,
p
ω1
ζ−(k−1)adκ if k + k′ − 1 = p and l = 1,

− p
ωl
ζ−l(k−1)abσl−1χ if k + k′ − 1 = p and 1 < l,

p
ω1
ζk

′
a2τk+k′−1−pφ if p < k + k′ − 1 and l = 1,

0 if p < k + k′ − 1 and 1 < l.

θk,lµ0,l′ =



− p
ωl
bσl+l′−1χ if 1 < l + l′ − 1 < p and k = 1,

0 if 1 < l + l′ − 1 < p and 1 < k,
p
ωl
bdκ if l + l′ − 1 = p and k = 1,

p
ωl
abτk−1φ if l + l′ − 1 = p and 1 < k,

− p
ωl
b2σl+l′−1−pχ if p < l + l′ − 1 and k = 1,

0 if p < l + l′ − 1 and 1 < k.

θk,lρk′ =



p
ωp−1

ζ−laσlφ− p
ωl
bσlχ if k + k′ − 1 = 0

(i.e. k = 1, k′ = 0),
p

ωk′−1
ζ l(k

′−1)aθk+k′−1,lφ if 0 < k + k′ − 1 < p,
p

ωk′−1
ζ l(k

′−1)a2σlφ− p
ωl
ζk

′labσlχ if k + k′ − 1 = p,
p

ωk′−1
ζ l(k

′−1)a2θk+k′−1−p,lφ if p < k + k′ − 1.

θk,lηl′ =


p
ω1
ζd(a′τkφ+ ωk

ω1
b′τkχ) if l + l′ − 1 = 0 (i.e. l = 1, l′ = 0),

p
ωp−1+l′

ωl+l′−1

ωl
bθk,l+l′−1χ if 0 < l + l′ − 1 < p,

p
ωl
ζ lbd(a′τkφ+ ωk

ωl
b′τkχ) if l + l′ − 1 = p,

p
ωp−1+l′

ωl+l′−1

ωl
b2θk,l+l′−1−pχ if p < l + l′ − 1.

θk,lψ =


p
ω1
dκ if k = 1 and l = 1,

− p
ωl
bσl−1χ if k = 1 and 1 < l,

p
ω1
aτk−1φ if 1 < k and l = 1,

0 if 1 < k and 1 < l.
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The relations in HH4(Γ) :

ψψ = ψµk,0 = ψµ0,l = µk,0µk′,0 = µ0,lµ0,l′ = 0.

πκ = a′b′(aψφ− ζ−1bψχ).

τkκ =

{
b′ρk+1χ if k < p− 1,

b′aρ0χ if k = p− 1.

σlκ =

{
a′ηl+1φ if l < p− 1,

a′bη0φ if l = p− 1.

θk,lκ =


a′σlτkφ− ωk

ωl
ζ lb′σlτkχ if k < p− 1 and l < p− 1,

a′bµk+1,0φ− ωk

ωp−1
ζp−1b′bµk+1,0χ if k < p− 1 and l = p− 1,

aa′µ0,l+1φ− ωp−1

ωl
ζ lab′µ0,l+1χ if k = p− 1 and l < p− 1.

ψρk =


p

ωp−1
µp−1,0φ if k = 0,

p
ω1
aη0φ if k = 2,
p

ωk−1
aµk−1,0φ if 2 < k.

ψηl =


p

ωp−1
µ0,p−1χ if l = 0,

p
ω1
bρ0χ if l = 2,
p

ωl−1
bµ0,l−1χ if 2 < l.

ρkµk′,0 =


p

ωp−1
aη0φ if k + k′ − 2 = 0 (i.e. k = 0, k′ = 2),

p
ωp−1

aµk+k′−1,0φ if 0 < k + k′ − 2 < p,
p

ωk−1
a2η0φ if k + k′ − 2 = p,

p
ωp−1

a2µk+k′−1−p,0φ if p < k + k′ − 2.

ηlµ0,l′ =


− p

ωp−1
bρ0χ if l + l′ − 2 = 0 (i.e. l = 0, l′ = 2),

− p
ωp−1

bµ0,l+l′−1φ if 0 < l + l′ − 2 < p,

− p
ωl−1

b2ρ0χ if l + l′ − 2 = p,

− p
ωp−1

b2µ0,l+l′−1−pφ if p < l + l′ − 2.

ρkµ0,l =


p

ωp−1
σl−1τp−2φ if k = 0,

p
ω1
aηlφ if k = 2,
p

ωk−1
aσl−1τk−2φ if 2 < k.

ηlµk,0 =


p

ωp−1
ζ−kσp−2τk−1χ if l = 0,

p
ω1
ζkbρkχ if l = 2,
p

ωl−1
ζk(l−1)bσl−2τk−1χ if 2 < l.

ρkρk′ =



p
ωp−1

ωp−2

ωp−1
ρp−1φ if k = k′ = 0,

−( p
ωk−1

a)2ζk−1φφ+ p(p−1)
2

p
ωk−1

abφχ if k + k′ − 2 = 0,
p

ωp−1+k

ωp−2+k+k′

ωp−1+k′
aρk+k′−1φ if 0 < k + k′ − 2 < p− 1,

p
ωp−1+k

ωp−1

ωp−k
a2ρ0φ if k + k′ − 2 = p− 1,

−( p
ωk−1

a)2ζk−1aφφ+ p(p−1)
2

p
ωk−1

a2bφχ if k + k′ − 2 = p,
p

ωp−1+k

ωp−2+k+k′

ωp−1+k′
a2ρk+k′−1−pφ if p < k + k′ − 2.
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ρkηl =


p

ωp−1
aψφ+ p

ωp−1
bψχ if k = 0 and l = 0,

p
ωp−1

aµ0,lφ+ p
ωl−1

bµ0,lχ if k = 0 and 0 < l,
p

ωk−1
aµk,0φ+ p

ωp−1
bµk,0χ if 0 < k and l = 0,

p
ωk−1

aσl−1τk−1φ+ p
ωl−1

bσl−1τk−1χ if 0 < k and 0 < l.

ηlηl′ =



p
ωp−1

ωp−2

ωp−1
ηp−1χ if l = l′ = 0,

−p(p−1)
2

p
ωl−1

ζ l−1abφχ+ ( p
ωl−1

b)2ζ l−lχχ if l + l′ − 2 = 0,
p

ωp−1+l

ωp−2+l+l′

ωp−1+l′
bηl+l′−1χ if 0 < l + l′ − 2 < p− 1,

p
ωp−1+l

ωp−1

ωp−l
b2η0χ if l + l′ − 2 = p− 1,

−p(p−1)
2

p
ωl−1

ζ l−1ab2φχ+ ( p
ωl−1

b)2ζ l−1bχχ if l + l′ − 2 = p,
p

ωp−1+l

ωp−2+l+l′

ωp−1+l′
b2ηl+l′−1−pχ if p < l + l′ − 2.

µk,0µ0,l =

{
p2

ω2
1
ζabφχ if k = 2 and l = 2,

0 if 2 < k or 2 < l.

The relations in HH5(Γ) :

ψκ = − p

ω1

ζφχπ.

ρkκ =

{
p

ωp−1
a′τp−1φφ+ p(p−1)

2
b′τp−1φχ if k = 0,

p
ωk−1

aa′τk−1φφ+ p(p−1)
2

ab′τk−1φχ if 0 < k.

ηlκ =

{
p(p−1)

2
a′σp−1φχ+ p

ω1
b′σp−1χχ if l = 0,

p(p−1)
2

ba′σl−1φχ+ p
ω1−l

bb′σl−1χχ if 0 < l.

µk,0κ =
p

ωk−1

a′θk−1,p−1φχ.

µ0,lκ =
p

ωp−1

b′θp−1,l−1φχ.

The relation in HH6(Γ) :

κκ =
p(p− 1)

2
a′b′φχ(aφ+ bχ).

Last, we consider the Hochschild cohomology ring HH∗(Γ) in the special
case |a| = |b| = 1.

For example, if p ≥ 3 and a = b = 1, then we have the following relations
from Theorem 2.3:

σp−1τk = µk+1,0 for 1 ≤ k < p− 1,

σlτp−1 = µ0,l+1 for 1 ≤ l < p− 1,

σp−1τp−1 = ψ,

σkθk,p−k = ζk(k+1)ρk+1 for 1 ≤ k < p− 1,

σp−1θp−1,1 = ρ0,

τp−1θ1,l = −ζηl+1 for 1 ≤ l < p− 1,

τp−1θ1,p−1 = −ζη0.

Hence, we have the following corollary:
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Corollary 2.4. Let p ≥ 3 be a prime number and |a| = |b| = 1. Then the
Hochschild cohomology ring HH∗(Γ) is the graded commutative ring gener-
ated by the following p2 + 2 elements:

σl, τk, θk′,l′ , π ∈ HH1(Γ) for 1 ≤ k, k′, l, l′ ≤ p− 1 with (k′, l′) ̸= (p− 1, p− 1),

φ, χ ∈ HH2(Γ), κ ∈ HH3(Γ).

2.5 The ring structure of HH∗(Γ) in the case

p = 2

In the last section, we deal with the case p = 2. Then Γ is a generalized
quaternion algebra over Z:

Γ = Z1⊕ Zi⊕ Zj ⊕ Zij, i2 = a, j2 = b, ji = −ij (a, b ∈ Z, ̸= 0).

In that case, ζ = −1 and R = Z and the diagonal approximation map Φ is

Φs,t;s′,t′(cs+t,s′+t′) = cs,t ⊗Γ cs′,t′ ,

hence, the cup product ⌣ is

α ⌣ β = αβ

for α ∈ Γs,t and β ∈ Γs′,t′ . Furthermore, we note that the following relations
hold:

ππ = (a′b′a, 0, a′b′b) = a′b′aφ+ a′b′bχ,

πψ = (0, a′j,−b′i, 0) = κ,

ψψ = (0, 0, 1, 0, 0),

where d is the greatest common divisor of a and b, and set a′ = a/d, b′ = b/d.
Hence we have the following theorem. This result was already known in

[4], and also [16] for a special case.

Theorem 2.5 ([4, Theorem 3.8]). Let p = 2 and a, b any nonzero integers.
Then the Hochschild cohomology ring HH∗(Γ) is the graded commutative ring
generated by at most the eight elements

σ1, τ1, π ∈ HH1(Γ), φ, ψ, χ, η0, ρ0 ∈ HH2(Γ)

with the following relations.
The relations in HH1(Γ) :

2σ1 = 2τ1 = 2dπ = 0.

The relations in HH2(Γ) :

2aφ = 2dψ = 2bχ = 2ρ0 = 2η0 = 0,

σ1σ1 = abφ, σ1τ1 = abψ, σ1π = b′aρ0,

τ1τ1 = abχ, τ1π = a′bη0, ππ = a′b′(aφ+ bχ).
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The relations in HH3(Γ) :

τ1φ = σ1ψ, τ1ψ = σ1χ, τ1η0 = dπχ,

τ1ρ0 = σ1η0 = dπψ, σ1ρ0 = dπφ, πρ0 = a′σ1φ+ b′σ1χ,

πη0 = a′τ1φ+ b′τ1χ.

The relations in HH4(Γ) :

φχ = ψψ, φη0 = ψρ0, ψη0 = χρ0,

ρ0ρ0 = aφφ+ bψψ, ρ0η0 = aφψ + bψχ, η0η0 = aψψ + bχχ.

In particular, if |a| = |b| = 1, then we have the following result of [12]
from Theorem 2.5:

Corollary 2.6 ([12]). If p = 2 and |a| = |b| = 1, then we have the ring
isomorphism

HH∗(Γ) ∼= Z[x, y, z]/(2x, 2y, 2z, x2 + y2 + z2).
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Chapter 3

Ramification in Kummer
extensions arising from
algebraic tori

3.1 Some definitions

In this section, we give some definitions we will use in the later sections.

Definition 3.1. ([11]) Let G be a commutative algebraic group. We put

Ĝ = Hom(G,Gm),

the set of all rational homomorphisms of G in Gm. We call Ĝ the character
group of G.

Definition 3.2. Let k be an algebraic number field, K a finite Galois ex-
tension over k of degree d . Let Gm be a multiplicative group defined over
K and (αi) be a basis of K as a vector space over k. The Weil restriction
RK/k(Gm) is defined to be

RK/k(Gm) =

{
A ∈ GLd(k) | ax = xA , a =

d∑
i=1

aiαi ̸= 0 , ai ∈ k , x = (α1 α2 . . . αd)

}
,

where k is an algebraic closure of k.

Definition 3.3. Let T be an algebraic torus. We say a homomorphism
λ : T → T is a self-isogeny if λ is surjective with finite kernel.

3.2 Introduction

Let p be a fixed odd prime. Let Qp be the field of p-adic numbers and Qp

an algebraic closure of Qp. We assume that any algebraic extensions of Qp

are contained in Qp. Let l be an odd prime and denote by ζl a primitive
l-th root of unity in Qp. Let k be an unramified extension of Qp of degree
n, and kz = k(ζl). Let K be an intermediate field of kz/k, and T the Weil
restriction Rkz/KGm of multiplicative group Gm to K. We assume that there
exists a self-isogeny λ on T of degree l whose kernel Kerλ is contained in the
group T (K) of K-rational points of T . Several conditions for the existence
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of such λ are given in [8]. Also some examples of λ are found in [8]. Under
this assumption, we have a following isomorphism

κK : T (K)/λT (K)
∼−−→ Homcont(Gal(K/K),Kerλ(K))

proved by M. Kida in [8]. Here K is an algebraic closure of K in Qp and
the right hand side is the group of continuous homomorphisms. In this
theorem, if K = kz, then we get the classical Kummer theory. Hence this
is a generalization of the Kummer theory for fields without roots of unity.
In particular, any cyclic extensions of degree l over K can be written as
K(λ−1(P )) with P ∈ T (K). In this chapter, we determine the ramification
in L = K(λ−1(P )) over K.

In the case where K is a finite extension of k = Q(ζl + ζ−1
l ), the rami-

fication in the cyclic extension L/K is studied by T. Komatsu in [9] using
an algebraic torus of dimension 1 which consists of kernel of norm map in a
quadratic extension. We shall generalize his result to the case ζl + ζ−1

l /∈ K.
Since the problem is obviously local, we assume that base field K is a local
field.

The following notations will be used throughout this chapter. Let vkz
(resp. vK) be the discrete valuation of kz (resp. K), normalized by vkz(k

×
z ) =

Z (resp. vK(K
×) = Z). Let U(kz) be the group of units in kz defined by

U(kz) = {u ∈ kz | vkz(u) = 0} , (3.1)

and U (i)(kz) the groups of higher principal units defined by

U (i)(kz) = {u ∈ kz | vkz(u− 1) ≥ i} i ∈ N . (3.2)

Our main theorem is stated as follows.

Theorem 3.4 (See Theorem 3.15). Let p = l be an odd prime. Let m be

the degree of the extension K/k. Let T̂ = Hom(T,Gm,kz) be the group of

characters of T . For each i ≥ 1 we set T (i)(K) = HomGal(kz/K)(T̂ , U
(i)(kz)).

If P ∈ T (jd+1)(K) and P /∈ T (jd+2)(K) for some 0 ≤ j ≤ m, then the
conductor f of K(λ−1(P ))/K satisfies

vK(f) =

{
m− j + 1 0 ≤ j < m,
0 j = m.

In particular, K(λ−1(P ))/K is an unramified extension if and only if P ∈
T (l)(K).

Using this theorem, we can calculate the number of cyclic extensions of
degree l overK with given conductor f up to isomorphism in Qp (see Theorem
3.16).

The outline of the chapter is as follows. In Section 3.3, we discuss the
Gal(kz/K)-module structure of Sl(k

×
z ) = k×z /(k

×
z )

l, and determine the struc-
ture of SK

1 which is a certain eigenspace of Sl(k
×
z ). In Section 3.4, we prove

the main theorem using Hecke’s theorem[1], which describes the ramification
in a cyclic extensions of kz.

Remark 3.5. In the case of l | pn−1, we can use the classical Kummer theory
since K = kz. Therefore we may assume the condition l ∤ pn − 1. Theorem
3.4 deals with the difficult case p = l. For the easier case with p ̸= l, see
Proposition 3.19.
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3.3 Galois module structure of Sl(k
×
z )

Let p = l be an odd prime and k an unramified extension of Ql of degree n.
We denote by kz the field k(ζl) as above. Let K be an intermediate field of
kz/k of degreem over k. Set d = (l−1)/m. The Galois groups Gal(kz/k) and
Gal(kz/K) act naturally on the group Sl(k

×
z ) = k×z /(k

×
z )

l. In this section,
we consider the structure of Sl(k

×
z ) as Galois modules.

Let τ be a fixed generator of Gal(kz/k). Then we have Gal(kz/k) = ⟨τ⟩
and Gal(kz/K) = ⟨τm⟩. Let g be a primitive root modulo l such that τ(ζl) =
ζgl . For 1 ≤ i ≤ l − 1, set

ei(kz/k) :=
1

l − 1

∑
1≤j≤l−1

(gm)−ijτ j,

and for 1 ≤ i ≤ d, set

ei(kz/K) :=
1

d

∑
1≤j≤d

(gm)−ij(τm)j.

It is known that ei(kz/k)’s (resp. ei(kz/K)’s) are orthogonal idempotents in
the group ring Fl[Gal(kz/k)] (resp. Fl[Gal(kz/K)]) over the finite field Fl of
l elements. Therefore we can write

Sl(k
×
z ) =

⊕
1≤i≤l−1

ei(kz/k)Sl(k
×
z ).

We set Sk
i as the eigenspace corresponding to ei(kz/k), that is,

Sk
i := ei(kz/k)Sl(k

×
z ) =

{
ei(kz/k)(x) |x ∈ Sl(k

×
z )

}
. (3.3)

Similarly, we define SK
i by the following formula

SK
i := ei(kz/K)Sl(k

×
z ) =

{
ei(kz/K)(x) | x ∈ Sl(k

×
z )

}
. (3.4)

If λ is the self-isogeny on T of degree l inducing the Kummer duality κK ,
then SK

1 and T (K)/λT (K) are closely related to each other as follows.

Proposition 3.6. Subgroups in SK
1 are in one-to-one correspondence to

those in T (K)/λT (K).

Proof. Since T is an algebraic torus over K, we have an isomorphism ψ :

T (K) ∼= (K
×
)d. If we set P ∈ T (K), then ψ(P ) = (α1, . . . , αd) for some

αi ∈ k×z . First we define a map φK from T (K)/λT (K) to SK
1 . We note

that if P ∈ λT (K), then K(λ−1(P )) = K. So we assume that P ∈ T (K)
does not belong to λT (K), then K(λ−1(P )) is a cyclic extension of K of
degree l [8, Theorem 1.1], and K(λ−1(P ))(ζl) = kz(

l
√
αe1
1 ) [8, Proposition

6.3], which αe1
1 is e1(kz/k)(α1). Also we know that if u = 1 in SK

1 , then
kz( l
√
u) = kz, so assume that u ∈ SK

1 is not the identity, then kz( l
√
u) is a

cyclic extension of kz of degree l, and there exists a cyclic extension L of K
of degree l such that L(ζl) = kz( l

√
u) [1, Theorem 5.3.5]．On the other hand,

it is known that the fields kz(
l
√
ui) (1 ≤ i ≤ l − 1) are mutually equal by
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Kummer theory, for 1 ≤ i ≤ l− 1. Hence we define φK(P ) = ⟨αe1
1 ⟩ such that

K(λ−1(P ))(ζl) = kz(
l
√
αe1
1 ). It is easy to check that φK is a surjective map.

Next, we assume that φK(P ) = ⟨α⟩, φK(Q) = ⟨β⟩ and kz( l
√
α) = kz(

l
√
β)

for P,Q ∈ T (K)\λT (K). Let L1 (resp. L2) be a cyclic extension of degree
l over K which satisfies L1(ζl) = kz( l

√
α) (resp. L2(ζl) = kz(

l
√
β)). Since

kz( l
√
α) = kz(

l
√
β), we have L1 = L2. Therefore, we show ⟨P ⟩ = ⟨Q⟩ in

T (K)/λT (K), that is, φK is bijective map.

For simplicity, we shall identify an element of SK
1 with a coset of Sl(k

×
z )

which contains the element in the following discussion.
By Proposition 3.6, we may study the structure of SK

1 instead of that
of T (K)/λT (K). Thus we consider the Galois module structures of Sl(k

×
z ),

Sk
i and SK

i . A basis of U (1)(kz) as a Zl-module is given in [2]. Let ξ be a
primitive (ln − 1)-th root of unity in k.

Proposition 3.7 ([2, I (6.4)]). The (l − 1)n+ 1 elements

ul := 1 + ηπl,

ui,j := 1 + ξiπj

constitute a Zl-basis of U (1)(kz), where i and j run over 0 ≤ i ≤ n − 1 and
1 ≤ j ≤ l − 1. Here π is a prime element of kz, and η is ξi for some i ≥ 0
such that 1 + ξiπl is not an l-th power in U (1)(kz).

The structure of the multiplicative group k×z is given by k×z
∼= ⟨π⟩× ⟨ξ⟩×

U (1)(kz). Noting that we have ⟨ξ⟩/(⟨ξ⟩)l = 1 since ( ln− 1, l ) = 1, we readily
get the following proposition.

Proposition 3.8. If l = p, then (l−1)n+2 elements π，ul, and ui,j constitute
an Fl-basis of Sl(k

×
z ), where i and j run over 0 ≤ i ≤ n−1 and 1 ≤ j ≤ l−1.

In the following, we fix a prime element π = ζl − 1, and we consider the
action of τ ∈ Gal(kz/K) on Sl(k

×
z ).

Lemma 3.9. The matrix X of τ with respect to the basis

(π, ul, un−1,l−1, un−2,l−1, . . . , u0,1)

is given by the following formula:

X =


1 0 0 · · · 0
∗ gl ∗ · · · ∗
∗ 0 Al−1

. . .
...

...
...

. . . . . . ∗
∗ 0 · · · 0 A1

 .

Here for 1 ≤ j ≤ l − 1, Aj are n× n matrices written by

Aj =


gj 0 0 0 0
0 gj 0 0 0
...

. . . . . . . . .
...

0 0 0 gj 0
0 0 0 0 gj

 .
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Proof. To avoid heavy notation, we rename the basis (v1, . . . , vn(l−1)+2) =
(π, ul, un−1,l−1, . . . , u0,1) in this proof. Then we have ui,j = v(l−j)n+2−i. We
set X = (xst). First we show that the first columm is 0 except x1 1. Recall
that g is the chosen primitive root satisfying τ(ζl) = ζgl . We define

ω :=
ζgl − 1

ζl − 1
= ζg−1

l + · · ·+ ζl + 1,

then we can write τ(π) = ωπ. Since ω is a unit element, we have vkz(τ(π)) =
1. Moreover we get vkz(τ(vi)) = 0 for all i ≥ 2 because

τ(v2) = τ(1 + ηπl) = 1 + η(ωπ)l

and

τ(vi) = τ(ua,b) = τ(1 + ξaπb) = 1 + ξa(ωπ)b

for all i ≥ 3 and some a and b. Hence the first columm of X satisfies x1 1 = 1
and x1 t = 0 for all t ≥ 2.

Next we show that any Aj are diagonal matrices whose diagonal entries
are integer powers of g. Since ω ≡ g (mod π) and τ(ξ) = ξ, we have

τ(ui,j) ≡ 1 + ξiωjπj ≡ 1 + gjξiπj ≡ (1 + ξiπj)g
j

(mod πj+1)

for each j. Hence we get τ(ui,j) ≡ ui,j
gj (mod πj+1). Since ξi’s are inde-

pendent, any Aj are diagonal matrices. In a similar way, we can prove the
assertion for τ(ul).

Finally we show that xst equals 0 for any s > 2 and s > t. To do this,
pick up a j-th columm of X as (x1, . . . , x(l−1)n+2), and consider the action of
τ on the j-th base vj for j > 1. Then we may prove xj′ = 0 for all j′ > j.
We set vj = ua,b and write τ(vj) as follows:

τ(vj) =
∏

2≤i≤(l−1)n+2

vxi
i in Sl(k

×
z ). (3.5)

Let i′ be the maximal number i such that xi ̸= 0. Then the right hand
side of (3.5) satisfies ∏

2≤i≤(l−1)n+2

vxi
i =

∏
2≤i≤i′

vxi
i .

Hence if vi′ = ua′,b′ , then we get

vkz(
∏

2≤i≤i′

vxi
i − 1) = b′,

and the left hand side of (3.5) satisfies

vkz(τ(vj)− 1) = vkz(τ(ζ
aπb))

= a · vkz(ζ) + b · vkz(ω) + b · vkz(π)
= b.

Thus we get b′ = b. Moreover, since τ(vj) ≡ vj
gm (mod πm+1) for some

m ≥ 0, we have a′ = a. Hence we prove i′ = j and xj′ = 0 for all j′ > j.
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By Lemma 3.9, we get a formula for the dimension of Sk
i for 1 ≤ i ≤ l−1.

Proposition 3.10. For each 1 ≤ i ≤ l − 1 we see

dimFl
Sk
i =

{
n+ 1 i = 1 or l − 1,
n 1 < i < l − 1.

Proof. Let X be the matrix defined in Lemma 3.9. We calculate the charac-
teristic polynomial of X as follows:

(x− 1)(x− gl)(x− gl−1)n · · · (x− g)n

= (x− 1)n+1(x− g)n+1(x− g2)n · · · (x− gl−2)n;

and the minimal polynomial of X is given by

(x− 1)(x− g) · · · (x− gl−2).

Hence this polynomial doesn’t have multiple roots. Thus the matrix X is
diagonalizable, and the dimension of each eigenspace Sk

i coincides with the
multiplicity of each eigenvalue gi.

Moreover, there is a following relationship between Sk
i and SK

i .

Lemma 3.11. For 1 ≤ i ≤ d, we have

SK
i =

⊕
1≤j<l−1

j≡i (modd)

Sk
j .

Proof. For u ∈ Sk
j , we see τm(u) = gmju since τ(u) = gju. Furthermore,

any element u′ ∈ Sk
j+d satisfies

τm(u′) = gm(j+d)u′

≡ gmju′ (mod l).

Thus we have SK
i ⊃ Sk

j′ for any j
′ ≡ i (mod d). Therefore we get

SK
i ⊃

⊕
1≤j<l−1

j≡i (mod d)

Sk
j . (3.6)

However, we know ⊕
1≤i≤d

SK
i = Sl(k

×
z )

and ⊕
1≤i≤d

 ⊕
1≤j≤l−1

j≡i (mod d)

Sk
j

 =
⊕

1≤j≤l−1

Sk
j = Sl(k

×
z ),

thus the assertion follows.

Hence we get a dimension of SK
i for 1 ≤ i ≤ l − 1.
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Proposition 3.12. For each 1 ≤ i ≤ d we get

dimFl
SK
i =

{
mn+ 1 i = 1 or d,
mn 1 < i < d.

Finally, we determine the basis of SK
1 using Proposition 3.8 and Lemma

3.11.

Theorem 3.13. Keep the above notations. Then mn + 1 elements ui,j and
ul constitute an Fl-basis of SK

1 , where i and j run over 0 ≤ i ≤ n − 1 and
1 ≤ j ≤ l − 1 and j ≡ 1 (mod d).

3.4 Proof of the Main Theorem

Let us recall the setting in Section 3.2. We have assumed that there exists
a self-isogeny λ on T = Rkz/KGm of degree l whose kernel is contained in
the group T (K) of K-rational points. Let P be a K-rational point on the
torus T . Then we have a cyclic extension L = K(λ−1(P )) over K. In this
section, we determine the ramification in L/K using the structure of SK

1 . To
do this, first we describe the ramification in the Kummer extension Lz/kz
using Hecke’s theorem which we recall now.

Proposition 3.14 ([1, Theorem10.2.9]). Let π be a prime element in kz,
and Lz = kz( l

√
α) with α ∈ SK

1 − {1}. Let d(Lz/kz) be the discriminant of
Lz/kz. Let a be the largest exponent w such that the congruence

xl ≡ α (mod πw+vkz (α))

has a solution. Then we have:

(i) l is unramified in Lz/kz if and only if a = l;

(ii) l is totally ramified in Lz/kz if and only if a ≤ l − 1; in that case we
have vkz(d(Lz/kz)) = (l − 1)(l + 1− a).

Let T̂ = Hom(T,Gm,kz) be the group of characters of T , and set T (i)(K) =

HomGal(kz/K)(T̂ , U
(i)(kz)) for i ≥ 1 (see [11, Section 2]), where U (i)(kz) are

the groups of higher principal units defined by (3.2). We note that T (i)(K)’s

are subgroups of HomGal(kz/K)(T̂ , U(kz)), which is the maximal compact sub-
group of T (K).

Now we shall prove the main theorem.

Theorem 3.15. Let p = l be an odd prime. Let K be a finite extension of k
of degree m and set d = (l−1)/m. If P ∈ T (jd+1)(K) and P /∈ T (jd+2)(K) for
some 0 ≤ j ≤ m, then the conductor f of the cyclic extension K(λ−1(P ))/K
satisfies

vK(f) =

{
m− j + 1 0 ≤ j < m,
0 j = m.

In particular, K(λ−1(P ))/K is an unramified extension if and only if P ∈
T (l)(K).
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Proof. We denote d(L/K) by the discriminant of L/K. Since kz and L are
intermediate fields of Lz/K, we have

NLz/K = Nkz/K ◦ NLz/kz = NL/K ◦ NLz/L,

using chain rule of norm map. Using this equation, we have

Nkz/K(d(Lz/kz)) · d(kz/K)l = NL/K(d(Lz/L)) · d(L/K)d.

If P ∈ T (jd+1)(K) and P /∈ T (jd+2)(K) for some 0 ≤ j < m, then
vkz(d(Lz/kz)) = (l−1)(l−jd) by Proposition 3.14(ii). Now vK(Nkz/K(d(Lz/kz)))
equals (l− 1)(l− jd) since kz/K is a totally ramified extension. Since kz/K
is a tamely extension and Lz/L is a tamely and totally extension, we have
vK(d(kz/K)l) = l(d − 1) and vK(NL/K(d(Lz/L))) = d − 1. Noting that
d(L/K) = f l−1, we get

(l − 1)(l − jd) + l(d− 1) = (d− 1) + (l − 1)dvK(f).

Therefore, we show vK(f) = m− j + 1.
For the case of j = m, we have vK(f) = 0 since L/K is an unramified

extension by Proposition 3.14(i).

In Theorem 3.15, we calculated the conductor of K(λ−1(P ))/K for some
0 ≤ j ≤ m such that P ∈ T (jd+1)(K) and P /∈ T (jd+2)(K). Therefore, count-
ing the number of such points P , we can essentially calculate the number of
cyclic extensions of K of degree l with a fixed conductor.

Theorem 3.16. Let p = l be an odd prime. Then, for each 0 ≤ j < m, the
number of cyclic extensions of K ⊂ Ql of degree l whose conductor f satisfies
vK(f) = m− j + 1 is l(m−(j+1))n+1 · (ln − 1)/(l− 1) up to isomorphism in Ql.

Proof. Let rj be the number of u ∈ SK
1 such that u ∈ U (jd+1)(kz) and u /∈

U (jd+2)(kz). We write

u = uall
∏

0≤i≤n−1
1≤j≤l−1

j≡1 (mod d)

u
ai,j
i,j

with 0 ≤ ai,j, al ≤ l − 1. If 0 ≤ j < m, then ai,j′ = 0 for any 0 ≤ j′ < j
since vkz(u−1) = jd+1. And at least one of a0,jd+1, . . . , an−1,jd+1 is nonzero.
Thus we can calculate rj as follows:

rj = l(mn+1)−n−jn · (ln − 1) = l(m−(j+1))n+1 · (ln − 1).

On the other hand, it is known that the fields kz(
l
√
ui) (1 ≤ i ≤ l− 1) are

mutually isomorphic by Kummer theory, for 1 ≤ i ≤ l − 1. By Proposition
3.6, a cyclic extension of kz of degree l is corresponding to a cyclic extension
of K of degree l. So we can calculate the number of cyclic extensions L/K
by dividing rj by l − 1.

Remark 3.17. In the Theorem 3.16, assuming that there exists an isogeny λ
on T of degree l whose kernel is contained in T (K), we calculated the number
of cyclic extensions of K ⊂ Ql of degree l with a fixed conductor. If there
exists no such λ, then there seems to be no known method of counting it.
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Theorem 3.15 and 3.16 deal only with the case of p = l. Finally, we briefly
mention to the case l ∤ pn − 1 and p ̸= l. Let k be an unramified extension
of Qp of degree n, q = pn and keep the above notation.

Since (l, q−1) = 1, we see that kz/k is an unramified extension. And then
u 7→ ul is an isomorphism map since vkz(l) = 0, thus we get (U (1)(kz))

l =
U (1)(kz). Hence we have proved the following result.

Proposition 3.18. If l ∤ q − 1 and l ̸= p, then 2 elements p, ζq−1 constitute
an Fl-basis of S

K
1 .

Let τ be a generator of Gal(kz/k). Then τ acts trivially on both p and
ζq−1. Thus we have SK

1 = Sl(k
×
z ) for any intermediate field K of kz/k.

Consequently we obtain the following proposition.

Proposition 3.19. Let p be an odd prime and l a prime satisfying l ∤ q − 1

and p ̸= l. We set T (U(kz)) = HomGal(kz/K)(T̂ , U(kz)). Then, for P ∈ T (K)
with P /∈ λT (K), K(λ−1(P ))/K is a tamely ramified extension if and only
if P /∈ T (U(kz)); in that case the conductor f satisfies vK(f) = 1.
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