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Chapter 1

Introduction

In this thesis we make a study of Hochschild cohomology and Galois exten-
sions, and we get two main results.

The first result is concerned with the Hochschild cohomology of integral
cyclic algebras [14].

Hochschild cohomology was introduced by Hochschild [7]. In particu-
lar, it is known that the Hochschild cohomology ring HH*(I') is a graded
commutative ring, that is if « € HH™(I") and § € HH"(T'), then we have
af = (—=1)""(Ba). Tt is also known that the Hochschild cohomology ring of
an algebra over a commutative ring is an invariant under an equivalence of
bounded derived categories [10].

Let Z be the ring of rational integers, p a prime integer and ( a primitive
p-th root of unity. Let a and b be any nonzero rational integers. We let I" be
the integral cyclic R-algebra

I'= P Ri*' suchthat ¥ =a, j* =b, ji = (ij.

0<k,l<p—1

In particular, in the case p = 2, I' is just the generalized quaternion algebra
over the ring of rational integers Z.

In this paper, we consider the Hochschild cohomology group HH™(T") =
Extie(I',I") and the Hochschild cohomology ring HH*(I') = ,,~, HH™(T')
of I', where I'® denotes the enveloping algebra I' @ g ['? of I'.

The case of p = 2, the Z-module structure of HH™(I") and HH*(I") have
already been studied in [4] and [12]. In this paper, we will generalize these
results to the case of any prime number p.

First, we determine the R-module structure of HH™(I") as follows.

Theorem 1.1. (See Theorem 2.2) We set R = Z[(], and denote 1 — ( by
w. Let a and b be any nonzero rational integers and d the greatest common
divisor of a and b. Then the Hochschild cohomology group HH™ (L) is given

by

R form =0,
(R/dpR)™ Y72 @ (R/dwR)™ /2 @ (R /wR)P*~2)(m+1)/2
HH™T) = for m odd,

(R/dpR)"™ 22 @ (R/dwR)™? ® (R/wR)®~2"/% & (R/apR)
®(R/bpR)  for m(+£0) even.



We prove this theorem by giving a projective bimodule resolution of I,
and applying the functor Homre(—, ") to the resolution.

By calculating the cup product of generators of the Hochschild cohomol-
ogy group HH™(T'), we determine the ring structure of HH*(I") as follows.

Theorem 1.2. (See Theorem 2.3 and Theorem 2.5)

(i) Let p be an odd prime and a, b nonzero integers. Then the Hochschild
cohomology ring HH*(T') is generated by at most p* + 4p — 3 elements
from HHY(T'), HH?*(T') and HH*(T"). In particular, if la] = |b| = 1,
then the Hochschild cohomology ring HH*(T') is generated by p* + 2
elements from HH'(T') and HH?*(T).

(ii) Let p =2 and a,b any nonzero integers. Then the Hochschild cohomol-
ogy ring HH*(T") is generated by at most eight elements. In particular,
if p=2 and |a| = |b| =1, then we get

HH*(T) = Z[x,y, 2]/ (22, 2y, 22, 2° + y* + 2°), x,y,2 € HH'(T).

This theorem generalizes the results in [4], [12] and [16].

The second result is concerned with the ramification in cyclic extensions
of number fields [13].

By classical Kummer theory, if K contains n-th roots of unity, then all
cyclic extensions of degree n over K have the form K ({/a) for some a € K*.
Hecke [1] described the ramification in the extension K(:/a)/K when n is
prime.

On the other hand, the Kummer theory is generalized by Kida [8] using
algebraic tori even when K does not contain roots of unity. This gener-
alization of Kummer theory is described as follows: let T be an algebraic
torus defined over K, if there exists a self-isogeny A on T which satisfies
Ker () C T(K), then any cyclic extensions over K can be written as
K\ Y(P)) with P € T(K), where T(K) is the group of K-rational points
onT.

We describe the ramification in the extension K(A~*(P))/K in our main
result. Since the problem is obviously local, we assume that K is a finite
extension over the p-adic field. If the degree of a self-isogeny A is p, then
the extension K(A™!(P))/K is a cyclic extension of degree p. The following
result gives the conductor of K(A™!(P))/K, which measures the wildness of
the ramification in this extension.

Theorem 1.3. (See Theorem 3.15) Let p be a fized odd prime. Let Q, be
the field of p-adic numbers and k an unramified extension of Q, of degree
n, and k, = k((,) where {, is a primitive p-th root of unity. Let K be an
intermediate field of k,/k and m the degree of the extension K/k, and T the
Weil restriction Ry, /x Gy, of the multiplicative group Gy, to K. We assume
that there exists a self-isogeny X\ on T which satisfies Ker () C T(K). Let
Gk, be a multiplicative group defined over k, and T = Hom(T, G, x.) the
group of characters of T. For each 1 > 1, we define

UD(k) ={u ek, v, (u—1)>i}



and . o
TO(K) = Homgak. /x)(T, UV (K.)).

If P € TVHD(K) and P ¢ TUHD(K) for some 0 < j < m, then the
conductor f of K(A\™Y(P))/K satisfies

m—j+1 0<j<m,

In particular, K(A\™Y(P))/K is an unramified extension if and only if P €
TW(K).

This result generalizes a classical theorem by Hecke describing the ramifi-
cation of Kummer extensions K ({/a)/K. We prove the theorem by studying
the structure of the group of units of local fields as Galois modules in de-
tail. As an application of the theorem, we can calculate the number of cyclic
extensions of degree p over K with given conductor § up to isomorphism as
follows.

Theorem 1.4. (See Theorem 3.16) Let p be an odd prime. Then, for each
0 < j < m, the number of cyclic extensions of K C QTP of degree p whose
conductor | satisfies v (f) = m — 7 + 1 ds ptm=U+Hn+l o (pn 1) /(p — 1) up
to isomorphism.

The outline of this paper is as follows. In Chapter 2, we determine the
ring structure of the Hochschild cohomology HH*(I") of an integral cyclic
algebra I' by giving a projective bimodule resolution of I' and calculating
cup product by means of a diagonal approximation map. In Chapter 3, in
the context of the generalized Kummer theory arising from algebraic tori, we
generalize the classical theorem by Hecke.



Chapter 2

On the Hochschild cohomology
ring of integral cyclic algebras

2.1 Introduction

Let Z be the ring of rational integers, p a prime integer and ( a primitive
p-th root of unity. We set R = Z[(], w, = 1 — (" for any n € Z and we
denote w; = 1 — ¢ by w. We note that pR = wP™ 'R, so R/wR = Z/pZ, and
that wy/w; is a unit in R for any k,[ with k£, Z 0 mod p.

Let a and b be any nonzero rational integers and d the greatest common
divisor of a and b. We let I' be the integral cyclic R-algebra

I'= P Ri*' suchthat ¥ =a, j* =b, ji = (ij.

0<k,I<p—1

In particular, in the case p = 2, I' is just the generalized quaternion algebra
over the ring of rational integers Z.

In this chapter, we consider the Hochschild cohomology group HH™(T") =
Extre(I',I') and the Hochschild cohomology ring HH*(I') = @,,~, HH™(I')
of T, where I'® denotes the enveloping algebra '@ zpI'? of I'. Unless otherwise
stated, ® denotes ®p.

Although there is basically a small number of studies about the Hochschild
cohomology for algebras over a commutative ring, the Hochschild cohomology
of quaternion algebras or cyclic algebras appearing as orders in semisimple
algebras over a field are studied in, for example, Hayami’s works [3], [4], [5],
6] and [12], [15], [16] etc. However, Hochschild cohomology is an important
tool for investigating module categories of algebras. In fact it is known that
the Hochschild cohomology ring of an algebra over a commutative ring is an
invariant under an equivalence of bounded derived categories as triangulated
categories (cf.[10, Chapter 6]).

Concerning the integral cyclic algebra I" above, in the case a is any nonzero
integer and b = —1, the module structure of HH™(I") was already given in
[12] using spectral sequence. In the case p = 2, a is any nonzero integer
and b = —1, the ring structure of the Hochschild cohomology HH*(I") was
also calculated in [16] using spectral sequence. In the case p = 2, a and b
are any nonzero integers, that is, [' is a generalized quaternion algebra, the
ring structure of HH*(I') was determined in [4]. In this chapter, we will
generalize these results to the case of any prime number p.
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In Section 2.2, we give a projective bimodule resolution of I', and apply-
ing the functor Homre(—,I") to the resolution, we have a double complex
which gives the Hochschild cohomology group HH™(I"). In Section 2.3, we
determine the R-module structure of HH™(I") (Theorem 2.2):

R for m =0,
(R/dpR)™ /2 & (R/dwR)™+V/2 @ (R/wR)@* -2 (m+1)/2
HH™(T) = for m odd,

(R/dpR)"™ 272 @ (R/dwR)™? ® (R/wR)®~2"/2 & (R/apR)
@®(R/bpR) for m(# 0) even.

In Section 2.4, we determine the ring structure of HH*(I'). First, in
Subsection 2.4.1, we define a ‘diagonal approximation map’ for the projective
bimodule resolution of ' in order to calculate the cup product on HH*(T).
In Subsection 2.4.2, by calculating the cup products of generators of the
Hochoschild cohomology groups HH™(I') for m > 0, we give a system of
generators of the Hochschild cohomology ring HH*(I') as an R-algebra in
Theorem 2.3. As a result, if p > 3, then the Hochschild cohomology ring
HH*(T') is generated by the elements of HH(T'"), HH?*(') and HH?3(T).
Furthermore, in that section, we present the relations that the generators of
HH*(T") satisfy. In addition, we study the special case |a| = [b] = 1. In
Section 2.5, we consider the ring structure of HH*(I") in the case p = 2.

2.2 Projective resolution of I

First, we will give a I'*~-projective resolution (P, A, €) of I referring to [4]:
P,=TeD)" =TeNeTel)e---o(el),
A, = Z (Ost + ds4) for every integer m > 0, ¢ is the augmentation.

s+t=m

Here, for s,¢ > 0 with m = s + ¢, we define an element c,; € P, by

t
csr = (0,...,0,1®1,0,...,0).

Then P,, = D, rtem s, where we set T := T'cg I'. We define I"*-homomor-
phisms Os; : I'sy — I's_1, and 654 : I's; — I's—1 by

(01t sy ics14 — cs—140 for s odd
e for ¢
1 . or t even
Oyt Csy E Pl kcs_uzk for s even ’
5 g = k=0
S’ Oyt oy > ics_14 — (reso14i for s odd
p—1
Chep—1— . for t odd
0y i Csp > E (R, i for s even ’
( k=0
(01 Cop > jCspo1 — Csp—1g for t odd
vl for s even
0y @ Csp E jp_l_kc&t_ljk for t even ’
5 e k=0 1
s, /. -1 .
O tesy = (1) (¢ ges -1 — ¢s—1]) for t odd
p—1
k) p—l— . for s odd.
0y i csy > (—1) 5 ¢~Prl=R)gp=1=ke 3% for t even
k=0

7



It is easy to see that the following equations hold:
55,1571 o 5s,t = 0; 8sfl,t o 8s,t = 07 as,tfl o 5s,t + 6371,15 o as,t =0.

Hence, setting each I';; on each lattice point on the first quadrant, we have
the following double complex:
T

Lo «—— T'ip Iy
0) al ) 82 ) al
bl L
(Fstaastaés t) .
’ ' ’ FO,l — Fl,l < Fg’l <
2 9% 2
TRt
Too +—— T’ < Ty ¢
00 0 20 <

Then, we show the I'*-projective resolution of I' in the following proposition.

Proposition 2.1. By taking the total complex of the above complex, we have
the I'®-projective resolution of I':

AQ A €

P
where Ay =3 (Ost + 0s¢) and € is the multiplication map.

1>P0 > T 0,

A
—3>P2

Proof. The exactness of the sequence is verified by giving a contracting ho-
motopy. We define the following maps "1 : I' — Fy and T}, : P, — Py
for m > 0 by

T 1(y) = cooy (yel);

for any even m,

T (15 Cmo) =
(0 for u =10 and v =0,
v—1
R for u =0 and v # 0,
k=0
u—1
Z i“_l_kchrLoik for u # 0 and v = 0,
k=0
u—1 v—1
i“_l_kcm+1,0ikj” + ¢ Zj”_l_kcm,lj”C for u # 0 and v # 0,
k=0 k=0
Tm(iujvcs,t> =
(0 for v =0 and ¢ (# 0) even,
v—1
i Zjv_l_kcs,tﬂjk for v # 0 and ¢ (# 0) even,
k=0
0 for v # p — 1 and t odd,
| (N e for v =p—1 and ¢t odd;
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and for any odd m,

Tm Zujvcm,O) =
(0 foru#p—1and v =0,
v—1
- Zj”_l_kcmljk for u #p—1and v # 0,
k=0
Cm+1,0 foru=p—1and v =0,
v—1
Cemsrof’ = ¢ Y T et foru=p—1and v #0,
\ k=0
Tm<iujvcs,t> =
(0 for v =0 and ¢ (£ 0) even,
v—1
- Z ¢kt keg 5% for v # 0 and t (£ 0) even,
k=0
0 for v #p—1 and ¢t odd,
[ 1"Co 41 for v =p—1 and t odd.

Then T,,’s satisfy the equalities

Al OTO —|—T,1 O£ = idpo,
Apy1 0Ty + Ty 0A,, =idp, for m > 0.

That is, {T,} is a contracting homotopy. O

We remark that the exactness above is also verified by using spectral
sequence.

Next, we will define a complex giving the Hochschild cohomology of T.
Applying the functor Homre(—,I") to the double complex above, we have the
following double complex on the third quadrant:

—— 20— 10« 100
a P a

il s

« T2l . pLl . 7ol

9] a5 91
s,t st gs,t) . 1 2 1
(T, 9%, %) : i
[ L
— F2’2 2 — F1’2 . — F0’2
o1 o)) 01

TP
where we set I'* := Homre(I's¢, ') = T' and we identify I'** with I'. So
0% := Hom(Dsy14,¢) : It — T5HE and 6% := Hom(e,dg41) @ T —



s+ are explicitly given by

;

51 cx— ix — xi for s even
~ . for t even
Oy 1 x> Zz’p’l’kxik for s odd ’
as,t — N k=0
O, :x—ir— (lzi for s even
p—1
NQ CT Z Rk for s odd for t odd,
L k=0
( & cx— jor —xj for t even
p—1
Syt x> ij’“kxjk for ¢ odd for s even,
58,t — . k=0
8 cx— (=1)(CYjx — xj) for t even
~ ! for s odd
bix— (—1) Z ¢k p=l=k ik for ¢ odd
\ k=0

for z € I'*". Therefore, putting Q™ = @,,,,, " = ' and A™ =
> sitem (0% +0%"), we have the total complex of the above complex:

A? Al A0
C— Q% ¢ Q' « Q° 0.

2.3 Module structure of HH™(I)

In this section, we determine the module structure of H H™(T") = Ext{ ([, T).
First, we present any element of I by a matrix in M,(R). If = is any element
in I'**  then there uniquely exist z; € R (k,l =1,2,...,p) such that

T11 L1z - Tip
Xo1 T2 - T2 '
Tr = (1 Z PP Z.p_l) . P j
p—1

By corresponding x € I'* to the matrix X = (z3) € M,(R) above, 9*/(X)
and 0%!(X) are given by

0 awzpy -+ awp—1Tpp aprey 0 -+ 0
~ 0 WT12 s Wp—1T1p ~ : : . .
H(X)=]. : : : , Oa(X) = P
. . . . : apl‘pl 0 DY 0
0 WIp-12 -+ Wp—1Tp—1p P11 O --- 0
awp_1Tpr 0 awTpz -0 aWp—oTyy,
= wp—1ryn 0 wrz - Wp—2T1
(X)) =1 ". R
Wp—1Tp—-11 0 WTp—13 - Wp—2lp—1p
0 aprey O --- O
s |0 ]
2 X) 0 aprpe 0 --- 0 ’
0 P12 O --- 0
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0 0 0

~ —bwx —WT e —WTy_
51 (X) _ 2p . 21 2p—1 7
—bwp 1Ty —Wp1Tpt Wy 1T
bpriz -+ bpri, pri
- 0 e 0 0
LX)={ . . . |
0 - 0 0
bwpflxlp Wp—1T11 - Wp—1T1p-1
0 0 . 0
MX)= bws, WTsp o WT3pq ,
bwp—oZpp Wp—2Tp1 *c Wp—2Tpp-1
0 e 0 0
B —bpryy -+ —bpry —pry
LX) = 0 e 0 0
0 e 0 0

For s+t =m(s,t > 0), we define ¢>" € Q™ by

= (0,...,0,1,0,...,0).

Using above expressions, we obtain the R-module structure of the Hochschild
cohomology group HH™(I'). In fact, we directly calculate Ker A™ and
Im A™~!. We present those R-modules only in the case m is even.

Ker A™ — @ Rcm—t,t @ @ Rikjlcm_t’t

t=0 1<t<m-—1, odd;
2<k,l<p—1
® @ lecm—t,t @ @ Rikcm—t,t
1<t<m—1, odd; 1<t<m-—1, odd;
2<i<p—1 2<k<p—1

b @ R (Li?—l-l—k’cm—t,t + ik’jcm—t—l,t-i-l)

Wp—
0<t<m-—2, even; p—1+k
0<K'(#1)<p-—1

® @ R (ijl’cmt,t + p jp1+l’cmt1,t+1) :

Wy
1<t<m—1, odd: p—1+0
0l (#£1)<p—1

Im A™' =apRc™° @ @ dwRc™ " @ @ dpRc™ b

1<t<m—1, odd 2<t<m—2, even

@ prCO,m D @ WRiklem_t_l’t_l

1<t<m—2, odd;

2<k,l<p—1
e @ ijlCm—t,t @ GB wRikcm—bt
1<t<m—1, odd; 1<t<m-—1, odd;
2<i<p—1 2<k<p—1

11



o @ wR( p Z’p—1+k’cm—tt+l jem= t— 1t+1>

Wy—
0<t<m-—2, even; =1tk
0<K' (#1)<p—1

@ @ wR( L mtit | p jlerl’Cmtl,tJrl).

Wy
1<t<m—1, odd: p—1+l
0<l/(#1)<p—1

In the above calculation, we note that wR = wy_14p R for 0 < k'(# 1) < p—1.

Theorem 2.2. Let Z be the ring of rational integers, a,b any nonzero ratio-
nal integers and d the greatest common divisor of a and b. Let p be a prime
and ¢ a primitive p-th root of unity. We set R = Z[(] and put w = 1 — (.
Then the R-module structure of the Hochschild cohomology group of T is as
follows:

R form =0,
(R/dpR)(m—l)/Q oy (R/dwR)(m+1)/2 D (R/wR>(p2_2)(m+1)/2
HH™(T) = for m odd,
(R/dpR)™=27% @ (R/dwR)™" & (R/wR)w =22
®(R/apR) @ (R/bpR)  for m(s 0) even.
For the later use, we list the system of generators of each HH™(I") as an
R-module represented by elements in Q™ = I'"™*! as follows, where we set

a=a/d b =0b/d:
For m =1,
ijlet? for 1 <1<p—1,
i*5t for 1 <k <p-—1,
FHLjlel0 w’“z’g’“ 01 for 1 < k1 <p—1with (k1) # (p—1,p—1),
o 1o b//Lp 1,01
For m > 2 even,
" for 0 <t < m,
i*jlemtt for 2 < k1 < p—1and t odd,
ket for 2 <k <p—1and ¢ odd,
jlemtt for 2 <1 <p—1andt odd,

Ptk gt 4 i*jem M for 0 < k(#£ 1) < p — 1 and t even,
Wp—1+k
ijle™ Tt 4 L‘j‘f"_”lcm_t_l””rl for 0 <I(#1) <p—1andt odd.
Wp—1+1
For m > 3 odd,

ijlem W for 1 <1< p—1 and t even,
iFjem b for 1 < k < p—1 and t odd,
ALt g Jik il em et Ltk
for 1 <k, <p-—1with (k,l) # (p—1,p—1) and ¢ even,
a P temht P lem Tt LD for ¢ even,

a g bt — Vit for 0 <t < m odd.
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2.4 The ring structure of HH*(I)

In this section, we will determine the ring structure of H H*(T') = 5o HH™ ().

2.4.1 Diagonal approximation and cup product

First, we define a map @9 @ I'syy o1 — I'sy @r 'y p of I'>-modules by
the map sending cs1¢ ¢4 to

( ! — /. . / . . / . . /
§ C(v-&-l)(v +1)+2—uw 5 ey i ®r o i for st st odd,

u+v+w=p—2,
u/ v +w'=p—2

—( Z ("i%es 41’ Qr ey w1 for s odd, t odd, s" odd, ¢’ even,
ut+v+w=p—2
Z Y e 1" @r copj® for s odd,t odd, s” even,t’ odd,
u/+v’+w' =p—2
Z i"cs 41" Qp (T Vey w1 for s odd, t even, s’ odd, " odd,
u+v+w=p—2
—C Z §¥ 17" @r ey pi? for s even,t odd, s odd,t’ odd,
u' 4o’ +w'=p—2
Z i"cs 41" @r ¢y p1¥ for s odd, t even, s’ odd,t’ even,
ut+v+w=p—2
Z j“/cs,tj”/ ®r csf,t/j“/ for s even,t odd, s’ even,t’ odd,
u' 4o’ +w'=p—2
—( ey ®r ey for s even,t odd, s’ odd, ' even,
Cst Qr Cy p otherwise.

\

Then, ® = { P,y v} satisfies the following relations:

(I)s,t;s’,t’ o as—i—s’—l—l,t—&—t’

= 0ot @10 Popypww + (=10 ® g1 0 Dy iy
(I)s,t;s/,t’ o 5s+s’,t+t’+1

= 55,t+1 Lo (I)s,t—l—l;s’,t’ + (_1)8+tL & 65’,t’+1 o (I)S,t;s’,t’+17

EReo @070;070 = E£.

Therefore, ®,,, ,, := ZsH:m,s,H,:n ®, ;.sv is a ‘diagonal approximation’, that
is, this satisfies

(I)m,n o Am+n+1 = (Aerl ® L) o (I)erl,n + (_1)m(b & An+1) o q)m,n+17
(8 ®€) o @0,0 = E.

Using @, we define the cup product
HH™T)® HH"(I') — HH™™[T'); a® B+ a—f
by
a—B=(a® B)oPsryp: ostorr > Ly @rTyy T @ =T.

for e € 't with s+t = m and 8 € I’ with '+t = n. Hence I**@I** —
[st6s'+ s explicitly presented by

a— =

13



( ’ / ’ / /
Z C(v+1)(v +1)+2—uw Zuju Oéivjv Biij for s,t, S/,t/ Odd,

utv+w=p—2,
u'+v'+w'=p—2

—( Z "o’ Bi"  for s odd,t odd, s’ odd, t" even,
u+v+w=p—2
Z Y agV B5Y for s odd, t odd, s even, t' odd,
u' 4o’ +w'=p—2
» iai’¢TUBi"  for s odd,t even, s’ odd, ¢’ odd,
ut+v+w=p—2
¢ > "¢V for s even,t odd, s’ odd,t odd,
u' v’ +w'=p—2
Z "o’ for s odd,t even, s’ odd,t even,
ut+v+w=p—2
Z ¥ ag? BiY for s even,t odd, s’ even,t’ odd,
u' +v'+w'=p—2
—(tap  for s even,t odd, s’ odd,t' even,
aff  otherwise.

\

for € T* and B € I'*"*. In the above, we identify I'** with T and so on.
As long as there is no confusion, we often denote o — 3 by af for simplicity.
It is well known that the anti-commutativity af = (—1)""Sa holds for
a € HH™(T') and g € HH"(I'). That is, the Hochschild cohomology ring
HH*(I") is a graded commutative ring.

2.4.2 Generators of HH*(I') as an R-algebra and the
relations

In this subsection, we determine the ring structure of the Hochschild coho-
mology ring HH*(T") using cup product on generators of HH™(T'). By the
way, the ring structure of the Hochschild cohomology ring HH*(I') in the
case p = 2 was already known in [4]. So, we mainly treat the case p > 3.
We denote the representatives of each element of HH™ (") by (*, %, ..., %)
cQm =TI blg...oI'%", Then, referring to Theorem 2.2, generators
of HH™(T') for m = 1,2, 3 as an R-module are as follows including the case
p=2
Generators of HH(T):

ij',0) for 1 <1<p—1,
= (0,%j) for 1 <k<p-—-1,

Oy = (5150 — kY for 1 < k1< p—1with (k1) #£ (p— Lp— 1),
Wi

14



Pr = (LP 1tk ij,()) fO]:'OSk(?é 1) Sp_:l?

Py 0 < U(£1) < p- 1L,
Wp—1+1

ey :=(0,i%5',0) for 0 < k,1(# 1) < p— 1 with (k1) # (0,0).

Generators of HH?(T):

(i5',0,0,0) for 1 <1 <p—1,
(0,i%5,0,0) for 1 <k <p—1,
(0,0,i5',0) for 1 <1<p—1,
(0,0,0,3%j) for1 <k <p-—1,
(

AR ——’%”fjl“,o,()) for 1 <k, 1 <p—1with (k,l)# (p—1,p—1),
wi
(0,0, — “h %5 for 1 < k1 <p—1with (k1) # (p—1,p— 1),
Wi
(a'5P7%, =b'iP71,0,0),
(0,0, a]p L—yirt),
:=(0,d"7, — b’z ,0).

Let = (2™ ...,2%") € HH™(T). Then, it is easy to check that
the elements (z™°, ... %™ 0,0) and (0,0,2™°,...,2%™) € HH™(T) are
given by xp and zy respectively. In particular, if x is a generator, then x¢
and xy are also generators. Therefore, we see that the generators of HH™(T")
for any m > 3 except k are given by the cup products of the generators above
of HH'(T') and HH?*(T') and k € HH3(T'). On the other hand, the relation
01Tk = Mkt1441 holds for 1 < k1 <p—1.

Therefore we have the following main theorem.

Theorem 2.3. Let p be an odd prime and a, b nonzero integers, and set
d = ged(a,b), a = a/d, Y = b/d. Then the Hochschild cohomology ring
HH*(T') is the graded commutative ring generated by at most the following
p? +4p — 3 elements:

01, Ty Opr @ € HHY(T) for 1 < kK 11 <p—1 with (K1) # (p—1,p— 1),
0,1, X, Hk0s fog, pre, e € HH?(D) for 2 <kl <p—-1,0 <K, I'(#1)<p-1,
k€ HH*(T).

The list of the relations of the generators above is as follows:
The relations in HH(T) :

WTE = Wo| = dwr = w9k/7l/ =0.
The relations in HH?(T) :

app = dwip = bpx = wpr = Wiy = Wiko = wioy = T = 0.

L ckaby  if k+ K =p,
TTe = q :
0 if k+ kK #p.

15



and | =p— 1.

) Elabe if LT =,
o0y = )
0 if L+ 1" # p.
—(ta'bng if k=1,
TET =
—Clabuy  if 1<k
_Cilb/a’po Zfl = ]-a
om =
—(Wapey  if1 <L
bitkr10 k<p—1landl=p—1,
Tk = Qltog+1  fk=p—1landl <p—1,
abi) ifk=p—1
0101 1 =

( K+l Kl
(%’f( - Z_’;,/)C Ol41 Tk+k!
Wi K+ Wi K
(S = )¢ bhtks w10
bprsk 1

! !
(%;Ck o Z—';,I)Ck lbUl+z'—ka+k'

! !
(84 — ) Flapg

Wrt k! Cl(k’+1
wi

k'+1 k'l
(s — )Ry

Wetk! ~L(K'+1)
wy ¢ abpo

wi AR+ Wi\ AE
(wlfg w’;)C a’b/J’O,l+l’+lfp

WrWy <—k(l+1)

oy AMi+1'+1
WkWitl ~—k(1+1)

wiwy ¢ abo

P kU
o S ab(wyay + wibx)
S R by

wywyr

(U:,—';Ckurl - ‘:_I;,I)Ck/lao-l-‘rl'Tk-‘rk/—p
K4l Wi\ k'
(Z—fC - w—’;’)C ab#kz+k’+1—p,0
etk (UK 4D b og s 1
wy -
K/ 41 k'l
[ (M — )M abor iy —pThrw —p
D _ =1 /
Lab(—("ta'p + V')
wi:ll a,bnl
Wk—1 ~—k/
—W—IC Vapy

(¢t — Z—’;C_k)a’b’dal_ﬁk_l

71'9]%1 =

16

fO<k+kK <p-—1

and 0 <Il+10'<p—1,
fO<k+K <p-—1

andl+1'=p—1,
if0<k+KkE <p—1andl+1 =p,
fO<k+K <p—T1landp<lIl+T,
ifk+k =p—1

and 0 <Il+10'<p—1,
ifk+kK=p—1andl+1=p—1,
ifk+ kK =p—1andl+1 =p,
ifk+kK=p—1landp<l+1T,
ifk+kE =pand 0 <1+ <p,
ifk+K =pandl+1'=p-—1,
ifk+kE =pandl+1' =p,
ifk+kE =pandp<l+1,
ifp<k+k and0<Il+1 <np,
ifp<k+K andl+1=p-—1,
ifp<k+k andl+1 =p,
ifp<k+k andp<l+1.

ifk=1andl =1,
ifk=1and1 <,
ifl<kandl=1,
ifl<kandl<l.



( _CkalTk-Hc’
_Ckbﬂk+k/+1,0
—C’“amﬂ
—Ckabﬂo
—Craoy Tk —p

k
( —C abpigtkr+1-p,0

T Opy =

Wk ~kU
wlC O1+1' Tk
wp—1 ~—]'
—==C aplo 441
wg AU (k+1
S (ke )bkarl

wyr

01'9k,z = wp 1

abp

kal bUl+z' pTh
wp 1

\

The relations in HH3(T) :

C abﬂo I+U'+1—p

ifO<k+K <pandl<p-1,
ifO<k+K <pandl=p—1,
ifk+ kK =pandl <p-—1,
ifk+kK =pandl=p-—1,
ifp<k+k andl <p-—1,
ifp<k+K andl=p—1.
ifo<l+l'<pandk<p-—1,
ifO<l+0U<pandk=p—1,
ifl+l' =pandk <p—1,
ifl+l'=pand k=p—1,
ifp<l+1l and k <p—1,
ifp<l+10 and k=p—1.

dpk = ) = 0.
th = Lopax ifk=1,
" 0 if1< k.
o 51 o ifl=1,

if 1 <.

pdli ifk+k —1=0(re. k=1,kK =0),
Ck ATy k' —1P ZfO <k+k-1< D,
ThP =4 7 i . )
—w—kadﬁ ifk+ k' —1=np,

p k'—1,2
wk,_lc Q" T k!'—1—p®P

ifp<k+k —1

ﬂCdm ifl+l'—=1=0(ie I =1,1I'=0),
bUH_l/ 1X if0<l—|—l/—1<p,
oy =4 o
5 ¢bdr ifl+1'—1=p,
o 1+l/b O+ —1—pX pr<l+l/—1
S0y if k=0,
o1pr = 1’ !
1Pk = 1Cl(k Dab),_ e if0 <k
—w—0k7p,1x Zfl = 0,
Tk = y .
—ibek,l_lx ZfO <.
—aap WX ifk+E —1=p (ie. k=1,k =0),
T ’
o k4K —140p.
wﬂ ifl+1U'—1=p(ie I=1,I'=0),
o
1Mo, = 0 I+l —14p.
pbal X ifk=1,
-
ko if 1 < k.
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ol = %CkaTk_lQp Zfl - 1;
S if1<l.

wﬂ (la'bo, ox  if k=2,
THE,0 :
0 if 2 < k.
—= gab/Tp—%O if k=2,
o, = )
if 2 < 1.
wp— 1Ca6p 2,p—1¥ ka:(),
mpop = { Z(ta (a0 19 +boyax)  ifk =2,
¢ rad Oy o if2 < k.
o VO 152X if1=0,
=< —£ b’(aCTp 1o +b7,1x) il =2,
w,,ls; leblgp 1,1-2X if 2 < 1.
(W%Ckaﬁﬁk’a@ ifl<k+k —1<pandl=1,
0 ifl<k+kE —1<pandl <l
0 _ W%C_(k_l)ad/f ifk+k —1=pandl=1,
wifleo = —2( Vabo o x  ifk+E —1=pand1 <],
2P ifp<k+k —1andl=1,
L0 ifp<k+k —1and1l<I.
(—Zborr-1x ifl<l+l—1<pandk=1,
0 ifl<l+0U'—1<pandl <k,
Lbdk ifl+l'—1=pand k=1,
Okatior = § 9 ) /
w—laka—nO ifl+0'—1=pand 1<k,
—w%bQO'H_l/_l_pX ifp<l+l'—1and k=1,
L0 ifp<l+1U—1and1<k.
= boux ifk+k—-1=0
(i.e. k =1k =0),
Oripr = _w;_lCl(k/_l)aemk/q,zs@ if0<k+K—-1<p,
#Cl(k/_l)a20l90 _ wﬂlck/labo—lx ka 4 k/ 1= P,
\ w;j) gl (W'-1) 20k+k"—1—p7l§0 ifp<k+k —1.
i Cd(a' T + et mix) ifl+l—1=0 (ie. 1 =1,0=0),
%wlﬂ = b0k 11X fO<l+1'—1<p,
Ok = & 2o :
’ w%( bd(a' i + w—’l“b TEX) ifl+1 —1=np,
— P P10, g x ifp<I+l -1
wp_1+l/ wi )
Ldr ifk=1andl=1,
“Pho iy ifk=1and1<l,
O = w P01-1X if an

w%aTk:—HO if1<kandl =1,
0 if 1 <kandl<I.
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The relations in HH*(T) :

V) = Yo = Yoy = propro = Hogpoy = 0.
Th = a't (app — (Tbx).

ifk<p—1landl<p-—1,

ifk<p—1landl=p—1,

ifk=p—1andl <p-—1.

ifh+k —2=0 (ie. k=0k =2),

ifl+1—2=0 (ie 1=0,I=2),

ifk=k =0,

ifhk+k —2=0,
fO<k+kK—-2<p-—1,
ifk+k —2=p—1,
ifk+k —2=np,
ifp<k+Ek —2.

S VUpeax  ifk<p-—1,
Tk = .
bapox  ifk=p—1.
Jdmpe ifl<p—1,
Ok = .
abnop  ifl=p—1.
(o — W oy
Ok = § a'bpigy1.00 — wjfleflb'kaH,oX
L aa’ 11419 — “f;l ¢Ctab' o1 x
( siHp-109 i k=0,
Vpr = § Zanop if k=2,
\w:’ﬂauk_mgo if 2 < k.
wf_lﬂ0,p—1X Zfl == O,
Ym =9 Zbpox ifl=2,
obpoax if2 <L
UG
Drpl wpp,laluk'f'k'—l,oso Zfo <k + F—2< b,
kMK 0 = _
w5_1a277090 Zf k+k —2= b,
wpp71a2,uk+k’flfp,090 ifp<k+k —2.
)
wpileOX
— = bpor—1p if0<l+1"—2<p,
Moy =94 5 , ,
_wl_lbIOOX Zfl+l _2:p7
| Puosimie p<ltl -2
( wf—lgl*lTP*QSO ka = 07
Prios = § Z-amp if k=2,
\ wkpilaal_lﬂc_ggp if 2 < k.
( wpp_1 C_kO'p,QTk,1X ’lfl = O,
Mpk,o = W%Ckbpkx if | = 2,
\ﬁ{k(l*nbal_ﬂk_lx if 2 < 1.
( Wp—
o P19
—(ﬁa)%k*lgmp + p(p;”ﬁabsox
D Yp—2+tk4k!
PrPr = Wp—1+k Z’pfuk’ APktk!—19
P wp1 2
Wp—1+k wgi—ka po®
—(ﬁa)zgk_lagogo + p(p;)ﬁa%gox
P Yp—2+k+k 2
m f,p_Hk, A~ Pk4k'—1—pP
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ifk=0andl =0,
b,uO,lX if k=0 and 0 <,
P = o .
b,ukox if 0 <k andl =0,
\wk ~Q011Th— 1g0+ bol 1Te—1X f0 <k and 0 <.
( Wy .
s y1=r=o
) (laboy + (0 i LT —2=0,
ﬁf)z—jbm_;_l/ 1X if0<l+l/—2<p—1,
5= P p
mm wp wp 1b2nX Zfl+l/—2:p—1,
p—1+1 Wp—1
—H (P labtpy + (02N if L+ =2 =p,
_Pp poaiigl : ,
\ “p—1+1 "‘I:p—l+l’ b* Mt —1-pX ifp<l+1 2.
oo — %Cabapx ifk=2andl =2,
k,0M0,1 = _
o 0 if2<kor2<l.
The relations in HH?(T) :
p
Yk = ——(pxT.
w1
Prk o @ TP+ T, 1px if k=0,
kK = .
wp c,og0+p( D! abm_1px  if 0 < k.
k= (zl)aap 1<px+pbap 1XX if 1 =0,
2D o-1X + 5 bb o_1xx if0<lL.
Hi ok = a 9k71,p71%0X-
Wk—1
Mok = VOp_1,-10X-
p—1
The relation in HHS(T) :
-1
KK = 2%a’b’gpx(aw + by).

Last, we consider the Hochschild cohomology ring H H*(I") in the special

b = 1.

case |a| =

For example, if p > 3 and a = b = 1, then we have the following relations

from Theorem 2.3:

Op—1Tk = Hk+1,0
O1Tp—1 = Ho,1+1
Op—1Tp—1 = iﬂ,
O-kek,pfk — Ck(kJrl)
Op—lep—l,l = Po,
Tp—191,l = —(M41

Tp—161 p—1 = —(No.

Pk+1

Hence, we have the following corollary:

20

for 1 <k<p-—1,
for1 <l<p-—1,

for1<k<p-1,

for1 <l <p-—1,



Corollary 2.4. Let p > 3 be a prime number and |a| = |b| = 1. Then the
Hochschild cohomology ring HH*(T') is the graded commutative ring gener-
ated by the following p* + 2 elements:

O'l,Tk,ek/J/,ﬂ' € HHI(F> fOT 1 S /{Z,k/,l,ll S P — 1 U)’Lth (k/,l/) # (p — 1,p — 1),
o, x € HH*(T), re HH*T).

2.5 The ring structure of HH*(I') in the case
p=2

In the last section, we deal with the case p = 2. Then I" is a generalized
quaternion algebra over Z:

I =Z10Zi®Zji®Zij, i>=a,j?=>07ji=—ij (a,b&Z,#0).
In that case, ( = —1 and R = Z and the diagonal approximation map & is
(bs,t;s’,t’ (Cs+t,s/+t’> = Cspt Rr Cs! 1/,

hence, the cup product — is
a— f=apf

for o € I'*t and B € I'*"*. Furthermore, we note that the following relations
hold:

7 = (a'Va,0,d'b'd) = a'Vap + a'b'by,
mp = (0,d’5, —0'i,0) = &,
Yy = (0,0,1,0,0),

where d is the greatest common divisor of a and b, and set ' = a/d, V' = b/d.
Hence we have the following theorem. This result was already known in
[4], and also [16] for a special case.

Theorem 2.5 ([4, Theorem 3.8]). Let p =2 and a,b any nonzero integers.
Then the Hochschild cohomology ring HH*(T") is the graded commutative ring
generated by at most the eight elements

on,m,m€ HH'(T), 0,9, X,n0,p0o € HH*(T)

with the following relations.
The relations in HHY(T) :

201 =21 = 2dm = 0.
The relations in HH?(T') :

2ap = 2dyp = 2bx = 2pg = 21y = 0,
o101 = abp, o1 =aby, oy =bapo,

nm = aby, miw=adbn, 71 =dV(ap+bx).
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The relations in HH3(T) :

TIp =01, Ty =o1x, T = dmy,
Tipo = oo = dmip,  o1pg = dmp, Twpy = d'orp + boyy,
™ = a'To + b1y

The relations in HH*(T) :

X = VY, ono =Ypo, Yo = Xpo,
Popo = ape +bb,  pono = apy + by,  nono = ah + bxx.

In particular, if |a| = |b] = 1, then we have the following result of [12]
from Theorem 2.5:

Corollary 2.6 ([12]). If p = 2 and |a| = |b| = 1, then we have the ring
1somorphism

HH*(T) = Zw,y, 2]/ (22, 2y, 22, 2* + 3* + 22).
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Chapter 3

Ramification in Kummer
extensions arising from
algebraic tori

3.1 Some definitions

In this section, we give some definitions we will use in the later sections.

Definition 3.1. ([11]) Let G be a commutative algebraic group. We put
G = Hom(G, Gy,),

the set of all rational homomorphisms of G in G,,. We call G the character
group of G.

Definition 3.2. Let £ be an algebraic number field, K a finite Galois ex-
tension over k of degree d . Let G,, be a multiplicative group defined over
K and (o;) be a basis of K as a vector space over k. The Weil restriction

R /k(Gy) is defined to be

d
RK/k(Gm): {AeGLd(kHaw:a:A, a:Zaiai 750, a; EE, 132(()41a2 Ozd)},

i=1
where k is an algebraic closure of k.

Definition 3.3. Let T be an algebraic torus. We say a homomorphism
AT — T is a self-isogeny if A is surjective with finite kernel.

3.2 Introduction

Let p be a fixed odd prime. Let Q, be the field of p-adic numbers and @
an algebraic closure of Q,. We assume that any algebraic extensions of @,
are contained in @Q,. Let [ be an odd prime and denote by (; a primitive
I-th root of unity in @,. Let k be an unramified extension of Q, of degree
n, and k, = k(). Let K be an intermediate field of k,/k, and T the Weil
restriction Ry kG, of multiplicative group G, to K. We assume that there
exists a self-isogeny A\ on T of degree [ whose kernel Ker) is contained in the
group T'(K') of K-rational points of 7. Several conditions for the existence
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of such A are given in [8]. Also some examples of A are found in [8]. Under
this assumption, we have a following isomorphism

kit T(K) /AT (K) — Homeon (Gal(K /K), KerA\(K))

proved by M. Kida in [8]. Here K is an algebraic closure of K in Q, and
the right hand side is the group of continuous homomorphisms. In this
theorem, if K = k,, then we get the classical Kummer theory. Hence this
is a generalization of the Kummer theory for fields without roots of unity.
In particular, any cyclic extensions of degree [ over K can be written as
K(\7Y(P)) with P € T(K). In this chapter, we determine the ramification
in L =K\ Y(P)) over K.

In the case where K is a finite extension of k = Q(¢; + ¢; '), the rami-
fication in the cyclic extension L/K is studied by T. Komatsu in [9] using
an algebraic torus of dimension 1 which consists of kernel of norm map in a
quadratic extension. We shall generalize his result to the case ¢ + (' ¢ K.
Since the problem is obviously local, we assume that base field K is a local
field.

The following notations will be used throughout this chapter. Let vy,
(resp. vg) be the discrete valuation of k, (resp. K), normalized by vy, (k) =
Z (resp. vg(K*) =17). Let U(k,) be the group of units in k, defined by

U(k,) ={u € k.| vk (u) =0}, (3.1)
and U (k,) the groups of higher principal units defined by
UD(k)={ueck,|v.(u—1)>i} ieN. (3.2)

Our main theorem is stated as follows.

Theorem 3.4 (See Theorem 3.15). Let p = [ be an odd prime. Let m be
the degree of the extension K/k. Let T = Hom(T', G, x,) be the group of
characters of T. For each i > 1 we set TV (K) = HomGal(kz/K)(f, U9 (k.)).

If P € TVHO)(K) and P ¢ TUH2(K) for some 0 < j < m, then the
conductor f of K(A\™Y(P))/K satisfies

m—j+1 0<j5<m,
UK(f):{O g j:‘:n.

In particular, K(A\"'(P))/K is an unramified extension if and only if P €
TO(K).

Using this theorem, we can calculate the number of cyclic extensions of
degree [ over K with given conductor § up to isomorphism in @p (see Theorem
3.16).

The outline of the chapter is as follows. In Section 3.3, we discuss the
Gal(k./K)-module structure of S;(kX) = kX/(kX)!, and determine the struc-
ture of S which is a certain eigenspace of S;(kX). In Section 3.4, we prove
the main theorem using Hecke’s theorem[1], which describes the ramification
in a cyclic extensions of k,.

Remark 3.5. In the case of [ | p" — 1, we can use the classical Kummer theory
since K = k,. Therefore we may assume the condition [ { p™ — 1. Theorem
3.4 deals with the difficult case p = [. For the easier case with p # [, see
Proposition 3.19.
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3.3 Galois module structure of S;(k))

Let p = [ be an odd prime and £ an unramified extension of Q; of degree n.
We denote by k, the field k((;) as above. Let K be an intermediate field of
k./k of degree m over k. Set d = (I—1)/m. The Galois groups Gal(k./k) and
Gal(k,/K) act naturally on the group Si(kX) = kX/(kX)!. In this section,
we consider the structure of S;(k)) as Galois modules.

Let 7 be a fixed generator of Gal(k,/k). Then we have Gal(k,/k) = (1)
and Gal(k,/K) = (7). Let g be a primitive root modulo [ such that 7(¢(;) =
¢f. For 1 <i<l—1,set

1
. — _ - E m\—ij, _J
6Z(kz/k) . l _ 1 lgjgll(g ) T,

and for 1 <1 < d, set

ei(k-/K) := (g™) (™).

1<j<d

Ul

It is known that e;(k./k)’s (resp. e;(k./K)’s) are orthogonal idempotents in
the group ring IF;[Gal(k,/k)| (resp. F;[Gal(k,/K)]) over the finite field F; of

[ elements. Therefore we can write

SikX) = € eilk:/k)Si(k).

1<i<l—1
We set SF as the eigenspace corresponding to e;(k./k), that is,
SF 1= el /WSS = {ei(bo/B)@) [0 € SIE) ). (33)
Similarly, we define SX by the following formula

Sit =ik /K)Si(k2) = {ei(k-/ K)(z) |z € Si(k)} - (3.4)

If X is the self-isogeny on T of degree [ inducing the Kummer duality s,
then SX and T(K)/A\T(K) are closely related to each other as follows.

Proposition 3.6. Subgroups in SE are in one-to-one correspondence to

those in T(K)/\T(K).

Proof. Since T is an algebraic torus over K, we have an isomorphism % :
T(K) = (K*)%. If we set P € T(K), then ¢)(P) = (ay,...,aq) for some
a; € kX. First we define a map px from T(K)/AT(K) to SE. We note
that if P € A\T(K), then K(A\"'(P)) = K. So we assume that P € T(K)
does not belong to \T'(K), then K()\_ (P)) is a cyclic extension of K of
degree [ [8, Theorem 1.1], and K(A"Y(P))(() = k.(y/a$) [8, Proposition
6.3], which af' is e;(k./k)(ay). Also we know that if u = 1 in SK, then
k.(\/u) = k., so assume that u € SF is not the identity, then k,(\/u) is a
cyclic extension of k, of degree [, and there exists a cyclic extension L of K
of degree [ such that L((;) = k.(\/u) [1, Theorem 5.3.5]. On the other hand,
it is known that the fields kZ(W) (1 < i <1—1) are mutually equal by
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Kummer theory, for 1 <1i <[— 1. Hence we define px(P) = (af') such that
KA YP))(¢) = k.(3/a$h). Tt is easy to check that ¢k is a surjective map.

Next, we assume that o (P) = (a), o (Q) = (B) and k,(VVa) = k.(V/B)
for P,Q € T(K)\AT(K). Let Ly (resp. Ly) be a cyclic extension of degree
[ over K which satisfies Li((;) = k.(\/a) (resp. Lo((;) = k.(v/B)). Since
k.(Wa) = k.(v/B), we have L; = Ly. Therefore, we show (P) = (Q) in
T(K)/AT(K), that is, ¢k is bijective map. O

For simplicity, we shall identify an element of S with a coset of S;(k)
which contains the element in the following discussion.

By Proposition 3.6, we may study the structure of S instead of that
of T(K)/AT(K). Thus we consider the Galois module structures of S;(k)),
Sk and SX. A basis of UY(k,) as a Zi-module is given in [2]. Let & be a
primitive ({" — 1)-th root of unity in k.

Proposition 3.7 ([2, 1 (6.4)]). The (I —1)n+ 1 elements
u =14+ 777Tl,
U 5 = 1+ giﬂ'j

constitute a Zy-basis of UY(k,), where i and j run over 0 <i <n —1 and
1<j<1l—1. Herew is a prime element of k., and n is £ for some i > 0
such that 1+ &7 is not an I-th power in UM (k,).

The structure of the multiplicative group k) is given by k = () x (£) X
UM (k). Noting that we have (€)/({¢))! = 1 since (I" —1,1) = 1, we readily
get the following proposition.

Proposition 3.8. Ifl = p, then (I—1)n+2 elements w, w;, and u; ; constitute
an Fy-basis of S;(k)), where i and j run over 0 <i<n—1and1 <j<I[-—1.

In the following, we fix a prime element 7 = (; — 1, and we consider the

action of 7 € Gal(k,/K) on S;(k)).

Lemma 3.9. The matrix X of 7 with respect to the basis
(7T, Uy, Up—1,1-1, Up—2,1—1, - - - ,Uo,1)

s given by the following formula:

1
*
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Proof. To avoid heavy notation, we rename the basis (v1,...,Vp0-1)12) =
(7, U, Up—14-1, - - -, Up,1) in this proof. Then we have u;; = vi—jjnio—i. We
set X = (xs). First we show that the first columm is 0 except x1;. Recall
that ¢ is the chosen primitive root satisfying 7((;) = (/. We define

.:Clg_lz g—1
-1 !

then we can write 7(7) = wm. Since w is a unit element, we have vy, (7(7)) =
1. Moreover we get vy, (7(v;)) = 0 for all i > 2 because

+o G,

7(vg) = 7(1 +n7') = 1 + n(wr)’
and
T(v;) = 7(Uap) = T(1 + o) = 14 £%(wm)®

for all # > 3 and some a and b. Hence the first columm of X satisfies z;; =1
and z;, = 0 for all ¢t > 2.

Next we show that any A; are diagonal matrices whose diagonal entries
are integer powers of g. Since w = ¢ (mod 7) and 7(£) = £, we have

T(ui;) =1+ gwnl =1+ ¢g¢r = (1+ fiwj)gj (mod 7/ +1)

for each j. Hence we get 7(u;;) = u;; (mod 77*1). Since £’s are inde-
pendent, any A; are diagonal matrices. In a similar way, we can prove the
assertion for 7(u;).

Finally we show that x4 equals 0 for any s > 2 and s > t. To do this,
pick up a j-th columm of X as (z1,...,2(-1)n+2), and consider the action of
7 on the j-th base v; for j > 1. Then we may prove z; = 0 for all 5/ > j.
We set v; = u,;, and write 7(v;) as follows:

)= J[ o inSik). (3.5)
2<i<(I-1)n+2

Let 7' be the maximal number ¢ such that z; # 0. Then the right hand
side of (3.5) satisfies

H vt = H vyt
2<i<(l-1)n+2 2<4<4!
Hence if v;y = uy p, then we get
v ([ o -1 =0,
2<i<i!
and the left hand side of (3.5) satisfies
vk (T(v5) = 1) = v (1(¢7"))

=a- U, (C) +b- vk (w) + b vy, (7)
=b.

Thus we get ¥ = b. Moreover, since 7(v;) = v;9" (mod 7™*!) for some

m > 0, we have a’ = a. Hence we prove ' = j and zj =0 for all j' > j. O
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By Lemma 3.9, we get a formula for the dimension of SF for 1 <i <[—1.
Proposition 3.10. For each 1 <i <[ —1 we see

n+1 1=1orl—1,

. ko
dlmFlSi_{n l<i<l—1

Proof. Let X be the matrix defined in Lemma 3.9. We calculate the charac-
teristic polynomial of X as follows:

(z—Dz—g)oe—g )" (z—g)"
= (@ -1z —g)" Nz —g?)" - (x— g

and the minimal polynomial of X is given by

(z—1(@—g)(x—g7?.

Hence this polynomial doesn’t have multiple roots. Thus the matrix X is
diagonalizable, and the dimension of each eigenspace S¥ coincides with the
multiplicity of each eigenvalue g°. O

Moreover, there is a following relationship between SF and S/

Lemma 3.11. For 1 <1i <d, we have

sk= € sk

1<5<i-1
j=i (modd)

Proof. For u € S§, we see 7™ (u) = g™ u since 7(u) = g’u. Furthermore,
any element v’ € S}, satisfies

Tm(u,) _ gm(j+d)u/
= g™/ (mod [).

Thus we have SX > S]’i for any 7/ =i (mod d). Therefore we get

sko @ s (3.6)
1<j<i-1
j=i (mod d)

However, we know

D s =sik)

1<i<d
and
D| D si|= D s=5uk),
1<i<d | 1<j<i—1 1<j<i—1
j=i (modd)
thus the assertion follows. O

Hence we get a dimension of SZ»K forl1<i<l-—1.
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Proposition 3.12. For each 1 <1 < d we get

. Kk ) mn+1 1=1ord,
dimg, 5; _{mn 1<i<d.

Finally, we determine the basis of S using Proposition 3.8 and Lemma
3.11.

Theorem 3.13. Keep the above notations. Then mn + 1 elements w;; and
w; constitute an F;-basis of SK, where i and j run over 0 < i <n —1 and
1<j<l—1andj=1 (modd).

3.4 Proof of the Main Theorem

Let us recall the setting in Section 3.2. We have assumed that there exists
a self-isogeny A on T' = Ry kG, of degree | whose kernel is contained in
the group T(K) of K-rational points. Let P be a K-rational point on the
torus 7. Then we have a cyclic extension L = K(A™!'(P)) over K. In this
section, we determine the ramification in L/K using the structure of S¥. To
do this, first we describe the ramification in the Kummer extension L,/k,
using Hecke’s theorem which we recall now.

Proposition 3.14 ([1, Theorem10.2.9]). Let m be a prime element in k.,
and L, = k,(\/a) with o € SE — {1}. Let d(L./k.) be the discriminant of

L./k,. Let a be the largest exponent w such that the congruence

l

z'=a (mod g Fv())

has a solution. Then we have:
(i) 1 is unramified in L, /k, if and only if a = I;

(i1) 1 is totally ramified in L, /k, if and only if a < 1 — 1; in that case we
have v, (d(L,/k,)) = (1 —1)(I+1—a).

Let T = Hom(T, G, 1.) be the group of characters of T', and set T (K) =
Hom(;al(kz/K)(f, U (k,)) for i > 1 (see [11, Section 2]), where U%(k,) are
the groups of higher principal units defined by (3.2). We note that 7™ (K)’s
are subgroups of Homgai. /x) (f U(k.)), which is the maximal compact sub-
group of T'(K).

Now we shall prove the main theorem.

Theorem 3.15. Let p =1 be an odd prime. Let K be a finite extension of k
of degree m and setd = (I—1)/m. If P € TUHY(K) and P ¢ TUH?(K) for
some 0 < j < m, then the conductor § of the cyclic extension K(A\'(P))/K
satisfies
[m-j+1 0<j<m,
vk (f) = { 0 J=m.

In particular, K(A\"Y(P))/K is an unramified extension if and only if P €
TYO(K).
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Proof. We denote d(L/K) by the discriminant of L/K. Since k, and L are
intermediate fields of L,/K, we have

NLZ/K = Nkz/K ONLz/kz = NL/K ONLZ/La

using chain rule of norm map. Using this equation, we have

Nieyx(d(L:/k)) - d(k./K)" = Npjx(d(L./L)) - d(L/ K)".

If P e TUHY(K) and P ¢ TUH2(K) for some 0 < j < m, then
vk, (d(L:/k-)) = (I=1)(I—jd) by Proposition 3.14(ii). Now vx (N, /x (d(L:/k.)))
equals (I —1)(I — jd) since k,/K is a totally ramified extension. Since k./K
is a tamely extension and L,/L is a tamely and totally extension, we have
v (d(k./K)") = I(d — 1) and vg(Ng/k(d(L./L))) = d — 1. Noting that
d(L/K) = f'"1, we get

(-1 —=jd)+1U(d—1)=(d—1)+ (I = 1)dvg(f).

Therefore, we show vk (f) =m —j + 1.
For the case of j = m, we have vg(f) = 0 since L/K is an unramified
extension by Proposition 3.14(i). ]

In Theorem 3.15, we calculated the conductor of K(A™'(P))/K for some
0 < j < m such that P € TUHY(K) and P ¢ TUH2)(K). Therefore, count-
ing the number of such points P, we can essentially calculate the number of
cyclic extensions of K of degree [ with a fixed conductor.

Theorem 3.16. Let p =1 be an odd prime. Then, for each 0 < j <m, the

number of cyclic extensions of K C Q; of degree | whose conductor § satisfies
vg(f) =m —j+ 1 ds [v=GFDInFL (17 1) /(1 — 1) up to isomorphism in Q.

Proof. Let r; be the number of u € SK such that v € UVHD(k,) and u ¢
UG (E,). We write
wmu I

0<i<n—1

1<5<i-1

j=1 (mod d)
with 0 < a5, <1 —1. If 0 < j < m, then q;y =0 for any 0 < 5/ < j
since vy, (u—1) = jd+1. And at least one of ag jg11, - - -, Gn—1,ja+1 1S nONZETO.

Thus we can calculate r; as follows:

;= l(mn—l—l)—n—jn . (ln . 1) l —(j+1))n+1 (ln . )

On the other hand, it is known that the fields k,(Vui) (1 <i <1—1) are
mutually isomorphic by Kummer theory, for 1 < ¢ <[ — 1. By Proposition
3.6, a cyclic extension of k. of degree [ is corresponding to a cyclic extension

of K of degree [. So we can calculate the number of cyclic extensions L/K
by dividing r; by [ — 1. O

Remark 3.17. In the Theorem 3.16, assuming that there exists an isogeny A
on T of degree [ whose kernel is contained in T'(K), we calculated the number
of cyclic extensions of K C Q; of degree [ with a fixed conductor. If there
exists no such A, then there seems to be no known method of counting it.

30



Theorem 3.15 and 3.16 deal only with the case of p = [. Finally, we briefly
mention to the case [t p" — 1 and p # . Let k be an unramified extension
of Q, of degree n, ¢ = p™ and keep the above notation.

Since (I,gq—1) = 1, we see that k. /k is an unramified extension. And then
u + u! is an isomorphism map since v, (1) = 0, thus we get (UM (k,)) =
UM (k,). Hence we have proved the following result.

Proposition 3.18. Ifl{q—1 and | # p, then 2 elements p, (,—1 constitute
an F;-basis of SK.

Let 7 be a generator of Gal(k,/k). Then 7 acts trivially on both p and
Co1- Thus we have SF = Sj(k)) for any intermediate field K of k,/k.
Consequently we obtain the following proposition.

Proposition 3.19. Let p be an odd prime and | a prime satisfying [ tq— 1
andp #1. We set T(U(k,)) = HomGal(kz/K)(T\, U(k.)). Then, for P € T(K)
with P ¢ XT(K), K(A™Y(P))/K is a tamely ramified extension if and only
if P ¢ T(U(k.)); in that case the conductor § satisfies v (f) = 1.
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