
Optimizing Utilization of Memory Hierarchy

Based on Code Motion

by
Yasunobu Sumikawa

Submitted to the Graduate School of Science and Technology
in partial fulfillment of the requirements for

the degree of Doctor of Science

Tokyo University of Science
2015

Abstract

Access speed to main memory is much slower than processor speed. In order
to reduce the number of accesses to memory, most modern processors have
some registers and cache memories that are much faster than main mem-
ory. To use such registers and cache memories effectively, many researchers
have proposed several code optimization techniques that promote their uti-
lization. However, because the gap between processor and main memory
access speed is growing, and such gap is likely to increase in the future, the
importance of solving this issue is also increasing. That is, we have to de-
velop more sophisticated code optimization techniques for the effective use
of registers and cache memories.

In this thesis, we propose four new techniques for decreasing the number
of references from the processor to the cache memory, and from the cache
memory to the main memory. One of these techniques is an extension of
the traditional partial redundancy elimination (PRE) that removes redun-
dant expressions, and the other techniques are types of optimization tech-
niques based on PRE. A brief description follows. First, we propose effective
demand-driven PRE (EDDPRE) that improves analysis efficiency without
sacrificing the effectiveness of the traditional PRE. Second, we propose PRE-
based scalar replacement (PRESR) that removes array references that are
redundant over loop iterations. As EDDPRE and PRESR remove redun-
dant array references by replacing them with temporary variables, these
techniques increase the number of used registers, rather than cache/main
memory, because the data referred by arrays are stored on the main mem-
ory, whereas the data from temporary variables can be stored in registers.
Finally, we propose global load instruction aggregation (GLIA) that improves
the spatial locality of memory by making accesses to the same array con-
tinuous, so that suppressing cache misses. Furthermore, we extend GLIA
to manage multidimensional arrays that can be regarded as arrays of lower
dimensional arrays, and we call the extended GLIA multidimensional GLIA
(MDGLIA). MDGLIA continuously aggregates the array references with the
most similar indexes in the highest dimensions, even if they are not identical.
GLIA and MDGLIA decrease the number of cache misses, thus preventing
access to the main memory.

We implement our techniques in a COINS compiler and evaluate them

i

with the standard performance evaluation corporation (SPEC) benchmark
programs. The experiment results show that EDDPRE improves analysis
efficiency by about 50% on average. PRESR improves execution efficiency
by about 2% on average. GLIA and MDGLIA decrease cache misses in
many programs.

The effective utilization of registers and cache memories achieved by
these techniques result in the efficient execution of object code.

Keywords: memory hierarchy, compiler, code optimization, data-flow
analysis, code motion, partial redundancy elimination, scalar replacement,
cache optimization

ii

Acknowledgements

To express my gratitude, I write acknowledgements in Japanese.
2 3

5 5

5

1

iii

3
1

3

2015 1

iv

Contents

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Motivation . 1
1.2 Memory Hierarchy . 3
1.3 Removing Redundant Expressions 4
1.4 Contribution . 7
1.5 Thesis Organization . 13

2 Background 14
2.1 Preliminaries . 14

2.1.1 Program Representation 14
2.1.2 Control Flow Graph 14
2.1.3 Data-flow Analysis . 16
2.1.4 Static Single Assignment Form 19

2.2 Fundamental Code Optimization Techniques 20
2.2.1 Global Value Numbering 21
2.2.2 Common Sub-expression Elimination 23
2.2.3 Loop Invariant Code Motion 23
2.2.4 Partial Redundancy Elimination 24

3 Effective Demand-driven PRE 31
3.1 Motivation . 31
3.2 PRE Based on Query Propagation 32
3.3 Effective Demand-driven PRE 37

3.3.1 Algorithm Overview 37
3.3.2 Optimistic Global Value Numbering 38
3.3.3 Query Propagation . 44

3.4 Experimental Results . 48
3.5 Related Work . 51
3.6 Summary . 52

v

4 Demand-driven Scalar Replacement 53
4.1 Motivation . 53
4.2 Related Work . 56

4.2.1 Scalar Replacement 56
4.2.2 Register Promotion . 57

4.3 Array Reference Representation 58
4.4 Demand-driven Scalar Replacement 59

4.4.1 Value Numbering for Array References 60
4.4.2 Redundancy Removal over Iteration 60

4.5 Experimental Results . 64
4.6 Summary . 66

5 Global Load Instruction Aggregation 67
5.1 Motivation . 67
5.2 Related Work . 69

5.2.1 Cache Optimization 69
5.2.2 Removing Redundant Expressions 70

5.3 Background . 71
5.3.1 Program Representation 71
5.3.2 Lazy Code Motion . 71

5.4 Array Reference Aggregation 74
5.4.1 Local Properties . 74
5.4.2 Modified Global Properties 75
5.4.3 Application to the Entire Program 80

5.5 Experimental Results . 81
5.6 Summary . 87

6 Conclusion and Future Direction 88
6.1 Summary of Contributions . 88
6.2 Future Direction . 90

vi

List of Figures

1.1 Memory hierarchy. 3
1.2 Jacobi’s stencil solver. 5
1.3 Example of removing redundant expressions over iteration.

(a) Original code. (b) A result of scalar replacement. 5
1.4 Removing redundant expressions. (a) Original code. (b) Re-

sult of removing redundancy. 6
1.5 Using PRE to remove partially redundant expression. (a)

Original code. (b) Result of PRE. 7
1.6 Propagating a query for a[i] by EDDPRE. (a) Original pro-

gram. (b) Query propagation. 8
1.7 (a) Result of query propagation shown in Fig. 1.6. (b) Trans-

lating the original program. 9
1.8 Query propagation of PRESR. (a) Original program. (b)

Query propagation. (c) Result of query propagation. (d)
Result of translating the original program. 10

1.9 Motivation example of GLIA. This figure represents that ex-
ecution b[i] expels the reference data of a[i] and a[i+1]

from the cache memory because the execution results in cache
miss. 12

1.10 Moving the array reference a[i+1] by GLIA. 12

2.1 (a) Original code. (b) An example CFG of the code. Each
node corresponds to a basic block. 15

2.2 Removing critical edge. (a) Original code. (b) After removing
the critical edge and applying PRE. 16

2.3 An example code for constant propagation. 17
2.4 An example of SSA form. (a) Normal form code. (b) SSA

form code. 20
2.5 Assigning value numbers. (a) Original code. (b) After value

numbering. The numbers with ”[]” represent the value num-
bers of the corresponding expressions. 21

2.6 Effectiveness of GVN. (a) Original code represented in a CFG.
(b) Result of applying GVN on a dominance tree. The labels
of the tree correspond to the CFG. 22

vii

2.7 Effectiveness of CSE. (a) Original code. (b) Result of apply-
ing CSE. 23

2.8 Effectiveness of LICM. (a) Original code. (b) Result of ap-
plying LICM. 24

2.9 Effectiveness of PRE. (a) Original code. (b) Result of apply-
ing PRE. 25

2.10 Motivation example of LCM. (a) Original code. (b) down-
safety of a[i] . 28

2.11 Insertion candidates. (a) Earliest . (b) Latest 29
2.12 Translated program. (a) Isolate. (b) Result of applying LCM. 30

3.1 Effect of PREQP’s removing redundant expression and ap-
plying copy propagation. (a) Original program. (b) After
removing x1+1 at Node 3. 33

3.2 Effect of PREQP’s query propagation. (a) Example of prop-
agating a query. (b) Result program of applying PREQP . . 34

3.3 Proof of equality between traversals of topological sorted dom-
inance tree in depth-first and left-first search and a topologi-
cally sorted CFG. We assume 2 < k < r. 39

3.4 Effect of optimistic value numbering. (a) Original program.
(b) A result of GVN that is carried out on the dominator tree. 40

3.5 Effect of EDDPRE’s query propagation. (a) Original pro-
gram. (b) A result program. 45

4.1 Effect of PRESR. (a) Original program. (b) After applying
PRESR. 54

4.2 An example program after attaching versions for arrays. When
PRESR propagates a query for a3[i1], its attached version
is changed by using arrayVersion, as displayed in Table 4.1. . 59

4.3 Resulting program after applying PRESR to Fig. 4.2. 59
4.4 Effect of PRESR. (a) Original program. (b) After applying

PRESR. 62
4.5 Ratio of analyzing costs, compared with exhaustive style of

PRE. 66

5.1 An example of a cache miss that is a target of MDGLIA. . . 68
5.2 Effectiveness of MDGLIA. (a) Original code. (b) Result of

applying MDGLIA. 69
5.3 Code motions of LCM. (a) Hoisting expressions. (b) Delaying. 72
5.4 Result of applying LCM to Fig. 5.3(a). 72
5.5 Speculative code motion. (a) Original code. (b) Moving array

reference, not satisfying down-safety. 76

viii

5.6 Effectiveness of extending UpSafe. (a) Result of computing
data-flow equations to move a[k][l] at Node 5. (b) Result
of moving the array reference. 77

5.7 Computing closeness of each addresses of a[i][l] at Node 4
and Delayed . 79

5.8 Preserving unnecessary code motion. (a) Original code. (b)
Result of applying exhausive analysis version of MDGLIA to
a[i+1]. (c) Result of applying demand-driven style MDGLIA
to a[i+1]. 81

5.9 Decrease rate of cache misses. 82
5.10 Difference of an insertion point for a[i][j+1]. (a) Original

code. (b) Result of applying LCM-MEM. (c) Result of ap-
plying GLIA. (d) Result of applying MDGLIA. 84

5.11 The decrease ratio of L2 cache miss for GLIA, MDGLIA,
USGLIA, and USMDGLIA to the cache miss for LCM-MEM. 85

ix

List of Tables

3.1 Execution time of objective code 49
3.2 Analysis time . 49
3.3 The time of query propagation 50
3.4 The number of nodes which query propagated 50

4.1 arrayVersions from Fig. 4.2 59
4.2 Results of execution time . 65
4.3 Results of the dynamic number of load statement 65

5.1 System parameters of cache memories 82
5.2 The number of DCache Repl 83
5.3 The number of L2 Lines Out 83
5.4 The number of register spills 84
5.5 The number of L2 cache miss of USGLIA and USMDGLIA,

and the cache miss ratio of them to the cache miss for GLIA
and MDGLIA . 86

5.6 The number of aggregated array references under keepOrder
and keepDimension in speculative/not speculative code motion 86

x

Chapter 1

Introduction

1.1 Motivation

When we execute a program described in a high-level programming lan-
guage, the program has to be processed by the own processor of the lan-
guage, such as an interpreter or a compiler. If programmers’ main concern
is execution efficiency, for example, the program is expected for product use,
the compiler should be used for applying code optimizations to the program
partially or totally to transform it into efficient one. In particular, because
optimizing compilers apply several code optimizations to a program, they
generate extremely efficient code for the machine where the program is ex-
ecuted.

Initial compilers could only apply limited code optimizations to a pro-
gram; therefore, in many cases, the code directly described in the machine
code by expert programmers was more efficient than generated by compilers.
However, as the size of each program increases, it has been difficult for pro-
grammers to manually create machine code considering the entire program,
whereas improving a lot of code optimization techniques based on global
information has made compilers requisite items for programmers.

Since the 1960s, many researchers have proposed several optimization
techniques for optimizing compilers. These researchers’ efforts primarily
focused on solving the issue of the main memory’s access speed functioning
much slower than the processor’s speed. In order to reduce the number of
accesses to the main memory, modern processors have a set of registers that
work as fast as processors. Modern processors also have cache memories
that are much faster than the main memory though they are slower than
the registers.

Most compilers apply two optimization techniques for the effective use of
registers, register promotion and register allocation. Register promotion re-
places variables declared by users with virtual registers. On the other hand,
register allocation tries to allocate the virtual registers to as many physi-

1

Chapter 1. Introduction

cal registers as possible. Notice here that virtual registers have the same
properties as physical registers except that the number of virtual registers is
infinite, corresponding to temporary variables generated inside a compiler.
In general, unlike virtual registers, user-declared variables may be modified
through side effects; therefore, they should be allocated in the main mem-
ory. A simple way to replace variables with virtual registers is to pick up
variables with no side effects, and then to replace them. This way enables
totally replacing the variables with the virtual register, but the number of
them is restricted. In order to handle variables with side effects, there is
the way to replace redundant load instructions with temporary variables
holding a result of preceding load instructions that access the same memory
locations and load the same value.

For the effective use of cache memory, it is important to continuously
access memory locations whose copies exist in cache memory simultaneously.
Therefore, to continuously access contiguous memory locations, it is popular
to transform index of array references inside a loop.

Although many researchers have tried to solve the issue, the gap between
processor and main memory access speed is, unfortunately, growing. That
is, the percentage of the time required to access the main memory in the
execution time of program become increasing year by year; therefore, solving
the issue is becoming more important.

This thesis presents new techniques that utilize code motion to more
effectively handle the use of the registers and cache memory. Code motion
is a technique for program transformation that moves expressions or state-
ments to suitable points in a program. Techniques based on code motion can
be categorized into heuristic approaches and data-flow analysis approaches.
Heuristic approaches are used in cases where code motion simply leads to
the improvement of the performance of a program (for example, paralleliz-
ing instructions), whereas data-flow analysis approaches are used in cases
in which code motion is utilized depending on the global conditions of a
program such as removing redundant expressions. To remove partially re-
dundant expressions that are redundant on some execution paths, many
code motion techniques based on the data-flow analysis have been proposed
since 1980s. Our approach also uses a data-flow analysis-based code motion
in order to remove redundant load instructions or aggregate array refer-
ences to the same array or the same higher-dimensions of the same array.
These techniques contribute to promoting user declared variables to virtual
registers and decreasing cache misses.

In the remainder of this chapter, we summarize the memory hierarchy of
which we improve utilization and the approach adopted for the improvement.

2

Chapter 1. Introduction

Smaller

Bigger

Faster

Slower

Level 1 cache

Level 2 cache

Register

Level 3 cache

Main memory

Figure 1.1: Memory hierarchy.

1.2 Memory Hierarchy

A computer needs memory to retain a program and the data for the exe-
cution of the program. In general, a computer uses three kinds of memory:
register, cache memory, and main memory. These three kinds of memories
are used hierarchically to make the memory system fast and scalable. This
structure of several memories is called the memory hierarchy. As shown in
Fig. 1.1, there is a trade-off between speed and size in the memory hierarchy.
The feature of each type of memory is summarized as follows:

Register is the fastest type of memory, but the bigger it is, the more ex-
pensive its production costs. Therefore, most CPUs have just a small
set of register.

Cache memory is used to store copies of data that are frequently accessed
from the main memory. It works as fast as the register if accessed data
is included in it; otherwise, it is necessary to access main memory to
copy the data. In terms of efficiency and size, it is medium. The
middle layer for cache memory can consist of several caches as sub-
layers. The lower level caches are relatively slower, although they are
allowed to be larger in size.

Main memory is the slowest kind of memory in the memory hierarchy
although it is the biggest. Once the memory is accesses, the CPU
stalls; therefore, memory access remarkably decreases the execution
efficiency of a program.

3

Chapter 1. Introduction

The memory hierarchy enhances the efficient utilization of different types
of memory based on the principle of locality [44]. Locality is categorized into
two basic varieties: temporal locality and spatial locality.

Temporal locality. If a memory location is accessed, it tends to be ac-
cessed again in the near future.

Spatial locality. If a memory location is accessed, other data around it
tends to be used in several parts of the program.

Whenever the processor needs data at a location x in the main memory,
the cache memory is checked first to determine whether it stores a copy
of the data. If the data is found in the cache memory, it can be obtained
without any main memory access; otherwise, the processor fetches the data
around x from the main memory and places them in the cache memory so
that it can be available for subsequent accesses. The former case is called
a cache hit; and in contrast, the latter case is called cache miss. If a cache
miss occurs, the access to x not only causes a significant delay to fetch the
data around x in the main memory, but also to remove the old data from
the cache memory. Thus, the key points for improving execution efficiency
are to 1) increase the use of registers, and 2) decrease the number of cache
misses.

1.3 Removing Redundant Expressions

Redundant expressions are executed in various kinds of practical programs,
such as computations of the offsets of array references, calculating Fibonacci
numbers, multiplying matrices, and using the stencil solver. Further, about
half of the load instructions in SPEC’s Benchmark, which is one of the
most popular benchmarks to confirm improvement of techniques in the code
motion research field, can be removed as they are redundant [7].

Example.
Figure 1.2 shows the pseudo code for Jacobi’s stencil solver. Consider

the two array references a[i][j-1] and a[i][j]. For the first iteration of
the inner-loop (j=1), these array references execute a[i][0] and a[i][1],
respectively. For the second iteration (j=2), they execute a[i][1] and
a[i][2], respectively. That is, a[i][j-1] references the data that is re-
ferred to by a[i][j] in the previous iteration; therefore, a[i][j-1] is re-
dundant. In addition, a[i][j] and a[i-1][j] are redundant because these
referenced data are already referred in the previous iteration of the outer
loop by a[i+1][j] and a[i][j], respectively.

End of Example.

4

Chapter 1. Introduction

for(i=1;i<N;i++){
 for(j=1;j<N;j++){
 T[i][j] = 0.2*(a[i][j]+a[i-1][j]+
 a[i+1][j]+a[i][j-1]+a[i][j+1]);
 }
}

Figure 1.2: Jacobi’s stencil solver.

while(i<N){
 sum+=a[i]+a[i-1];
 i++;
}

(a)

t’=a[0];

while(i<N){
 t=a[i];
 sum+=t+t’;

 i++;
 t’=t;

}

(b)

Figure 1.3: Example of removing redundant expressions over iteration. (a)
Original code. (b) A result of scalar replacement.

Removing array references that are redundant over iterations is called
scalar replacement. We show how traditional scalar replacement removes
the redundant array reference with a simple program shown in Fig. 1.3.

Example.
The array reference, a[i-1] in Fig. 1.3 (a), is redundant because the

reference data is referred by a[i] in the previous iteration. To remove the
redundant array reference, traditional scalar replacement introduces a new
temporary variable t for holding the value of a[i], and inserts t’=a[0]

before the loop and t’=t at the exit of the loop body. Finally, a[i-1] can
be replaced with t’ because t’ has an initial value of a[i-1], otherwise, the
temporary variable holds the value of t for the next iteration. The result of
this translation is shown in Fig. 1.3 (b).

End of Example.

5

Chapter 1. Introduction

x=a[i];
y=a[i];

(a)

x=a[i];
y=x;

(b)

Figure 1.4: Removing redundant expressions. (a) Original code. (b) Result
of removing redundancy.

Removing redundant expressions is an important technique for improv-
ing execution efficiency because it can shorten the critical path or reduce
the necessity of using hardware. Furthermore, removing redundant memory
references is a critical technique because it reduces the number of refer-
ences for cache and main memory. This thesis presents a demand-driven
scalar replacement based on partial redundancy elimination (PRE) that is
one technique for removing redundancy. In addition, we extend PRE to
decrease the number of cache misses. In the remainder of this section, we
show how redundant expressions are removed by PRE.

Example.
Consider the two statements that contain a[i] in Fig. 1.4 (a). The

values of the operand variable i and a[i] are the same because there is no
variable definition or store statement between the statements; therefore, the
right-hand side of the statement y=a[i] is redundant. This expression can
be removed by substituting the value referred to by the preceding expression;
that is, the redundant expression can be removed by substituting x in the
left-hand side of the preceding statement as shown in Fig. 1.4 (b).

End of Example.

If a program contains some branch instructions, the preceding instruc-
tions are not always executed. In this case, even if some expressions are
redundant on specific execution paths, they may not be removed as in the
case of previous example.

Example.
Consider an expression a[i] in line 6 in Fig. 1.5 (a). If the condition

of the if statement is true, the expression is redundant; otherwise, it is not.
An expression that is redundant on some, but not all, execution paths is
called partially redundant.

End of Example.

PRE makes partially redundant expression fully redundant by inserting
expressions.

6

Chapter 1. Introduction

1: if(...){
2: x=a[i];
3: }else{
4: ...
5: }
6: y=a[i];

(a)

if(...){
 t=a[i];
 x=t;
}else{
 ...
 t=a[i];
}
y=t;

(b)

Figure 1.5: Using PRE to remove partially redundant expression. (a) Orig-
inal code. (b) Result of PRE.

Example.
In Fig. 1.5 (a), PRE inserts statement t=a[i] into then and else parts

as shown in Fig. 1.5 (b); therefore, the partially redundant a[i] becomes
fully redundant. Finally, all the fully redundant expressions can be removed
by replacing them with t, which results in a program as shown in Fig. 1.5
(b).

End of Example.

1.4 Contribution

To improve the efficient utilization of the memory hierarchy, we propose
three new optimization techniques based on PRE, PRE-based scalar re-
placement (PRESR) [76], global load instruction aggregation (GLIA) [77],
and multidimensional GLIA (MDGLIA) [79]. Furthermore, in order to en-
hance effectiveness of these PRE based techniques, we propose a new PRE
technique effective demand-driven PRE (EDDPRE) [78] that is based on
demand-driven data-flow analysis.

The contribution details of this thesis are as follows:

• Development of effective query propagation for removing re-
dundant array references.

Traditional PRE and scalar replacement require the iterative applica-
tions of their entire algorithm for removing all redundant expressions.
Regarding PRE, because it detects redundant expressions based on
their lexical equality, removing lexically different expressions with the

7

Chapter 1. Introduction

i=a[k];
j=i;
x=a[j];
if(...){
 y=b[i];
}else{
 i++;
}
z=a[i];

(a)

Is the value of
a[i] redundant?

i=a[k];
j=i;
x=a[j];
if(...){
 y=b[i];
}else{
 i++;
}
z=a[i];Is the value of

a[i] redundant?

(b)

Figure 1.6: Propagating a query for a[i] by EDDPRE. (a) Original pro-
gram. (b) Query propagation.

same value requires the iterative applications of PRE and copy prop-
agation, as explained detail in Chapter 3. Regarding scalar replace-
ment, traditional techniques are applied to each nest-level in a nested
loop; therefore, if an array reference can be found to be redundant
by analyzing some nest-level at a time, traditional techniques need
to be applied iteratively. In contrast, EDDPRE and PRESR can re-
move redundant array references by only once application. For each
array reference, these techniques backwardly propagate a query that
can detect redundant array references by checking whether the value
of the array reference is redundant or not even if they are lexically
different. This is achieved by applying global value numbering (GVN)
that assigns value numbers to all array reference. If some array refer-
ences generate the same value, GVN assigns the same value number to
the array references; therefore, GVN finds redundant array references,
leading to the disuse of copy propagation. Our GVN creates two kinds
of occurred value numbers table at each control flow graph (CFG) node
in order to suppress unnecessary query propagation. EDDPRE and
PRESR propagate queries that check occurrence of the value number
of inquired array references on CFG of the program independent of its
structure.

Example.

Consider the array reference a[i] in Fig. 1.6 (a). Because the values of
i and j are same on a path through the then part, the array reference
is redundant on the path. On the other hand, these values are different
from each other on another path through the else part; therefore, the

8

Chapter 1. Introduction

false

i=a[k];
j=i;
x=a[j];
if(...){
 y=b[i];
}else{
 i++;
}
z=a[i];

true

(a)

i=a[k];
j=i;
x=a[j];
if(...){
 y=b[i];
 t=x;
}else{
 i++;
 t=a[i];
}
z=t;

(b)

Figure 1.7: (a) Result of query propagation shown in Fig. 1.6. (b) Trans-
lating the original program.

array reference is not redundant on the path. That is, a[i] is partially
redundant. EDDPRE backwardly propagates a query ”Is the value of
a[i] redundant?”, as shown in Fig. 1.6 (b). Considering a query
that is propagated to the then part, it is further propagated before
the if statement, and then, it gets an answer true because it can
find that the value of a[j] is same as the inquired array reference’s
value. Considering a query propagated to the else part, the query can
get an answer false without propagating it before the if statement
because there is no occurrence of value until before the a[i]. These
results are returned backed to the a[i], as shown in Fig. 1.7 (a).
Using these results, EDDPRE finds that a[i] is partially redundant;
therefore, it inserts a[i] into the else part. Finally, EDDPRE replaces
the inquired a[i] with newly introduced an introduced temporary
variable, as shown in Fig. 1.7 (b).

End of Example.

• Decreasing the number of references from processor to cache
memory based on effective demand-driven analysis.

Removing redundant array references promotes memory references to
register references, which means that it promotes even cache references
to register references. This is achieved by EDDPRE and PRESR.
These techniques remove redundant array references included in an it-
eration of a loop. In addition, PRESR can also remove array references
that are redundant over iterations.

9

Chapter 1. Introduction

while(i<N){
 t=a[i];
 j=i;
 while(j<M){
 sum+=j+a[i-1];
 }
 b[i]=sum;
 i=i+1;
}

(a)

Is the value of
a[i-1] redundant?

Is the value of
 a[i] redundant?

while(i<N){
 t=a[i];
 j=i;
 while(j<M){
 sum+=j+a[i-1];
 }
 b[i]=sum;
 i=i+1;
}

(b)

false

true

while(i<N){
 t=a[i];
 j=i;
 while(j<M){
 sum+=j+a[i-1];
 }
 b[i]=sum;
 i=i+1;
}

true

(c)

t’=a[i-1];

while(i<N){
 t=a[i];
 j=i;
 while(j<M){
 sum+=j+t’;

 }
 b[i]=sum;
 i=i+1;
 t’=t;

}

(d)

Figure 1.8: Query propagation of PRESR. (a) Original program. (b) Query
propagation. (c) Result of query propagation. (d) Result of translating the
original program.

Example.

Consider the array reference a[i-1] in Fig. 1.8 (a). This array refer-
ence is redundant because the referenced data is already loaded to by
a[i] in the previous iteration. To remove this redundancy, PRESR
backwardly propagates a query ”Is the value of a[i-1] redundant?”
as shown in Fig. 1.8 (b). Consider a query that is propagated through
the back edge to the exit of the loop body. This query is propagated to
the definition i=i+1 of an induction variable included in the inquired

10

Chapter 1. Introduction

array reference. To check redundant array references in the previous
iteration, the query is changed to check the value of a[i] by replac-
ing i with the right-hand side of the statement defining the i, and
then, the query is propagated further. This query will be propagated
to a[i] below the while statement; therefore, it gets true. Because a
query propagated to outside of the loop gets false, this array reference
is partially redundant. Similar to EDDPRE, PRESR inserts a[i-1]
at the entry of the loop, and then it returns true, as shown in Fig. 1.8
(c). Finally, PRESR replaces the inquired a[i-1] with t’, as shown
in Fig. 1.8 (d).

End of Example.

• Decreasing the number of references from cache memory to
main memory based on PRE framework.

GLIA makes references to the same array continuous by moving the
references immediately after preceding other references to the same
array. This movement is achieved based on PRE framework. By this
movement, some cache misses can be suppressed because data in an
array are continuously stored in the main memory. To explain the
motivation for GLIA, we show how accessed data are copied into cache
memory with an example program in Fig. 1.9. In this thesis, for
ease of explanation, we assume that cache memory is directly mapped
without loss of generality. That is, when the data are transferred from
the main memory to the cache memory, the cache line is determined
by the memory address modulo of the number of lines in the cache
memory.

Example.

Consider the array reference a[i+1] in the C program in Fig. 1.9.
After execution of the array reference a[i], the data from a[i] and
a[i+1] are copied to a cache line whose index is 10. Then, because
execution of the array reference b[i] results in a cache miss, the data
contained in b[i] and b[i+1] are also copied into cache memory.
In this case, these data are copied to the cache line at the index 10

because the address of b[i] is 1010; therefore, the data from a[i]

and a[i+1] are removed from cache memory, which may result in a
cache miss for the subsequent access of a[i+1].

As shown in the example, once data at a specific array index is loaded
from main memory, it is stored in cache memory along with other
data belonging to the same array. That is, continuously accessing the
same array may result in cache hits. Continuously accessing the same
array can be promoted by moving references to an array around other

11

Chapter 1. Introduction

11

00

10

01

a[i]

void main(){
 x=a[i];
 y=b[i];
 z=a[i+1];
}

a[i+1]

Cache memory

Main memory

a[i]

a[i+1]

b[i]

b[i+1]

0011

0010

1010

1011

Figure 1.9: Motivation example of GLIA. This figure represents that exe-
cution b[i] expels the reference data of a[i] and a[i+1] from the cache
memory because the execution results in cache miss.

void main(){
 x=a[i];
 z=a[i+1];
 y=b[i];
}

Figure 1.10: Moving the array reference a[i+1] by GLIA.

reference to the same array. GLIA moves a[i+1] immediately before
b[i] so as to follow a[i], as shown in Fig. 1.10.

End of Example.

In addition, a multidimensional array can be regarded as an array of
lower dimensional arrays, which means that it is more effective to con-
tinuously aggregate the array references with the most similar indexes
in higher dimensions. We extend GLIA to handle multidimensional
arrays for moving a reference immediately after the preceding refer-
ences to the same array with the largest number of similar indexes.
We call this extended GLIA MDGLIA. MDGLIA computes the num-
ber of indexes of each array reference, preceding a candidate that was
moved, which are the same as the indexes of the candidate; then,

12

Chapter 1. Introduction

MDGLIA moves the candidate to the points in the program close to
the references holding the number of the same indexes.

• Demonstrating the effectiveness of our techniques through
experiments employing popular benchmarks.

We have implemented EDDPRE, PRESR, GLIA, and MDGLIA as
low-level intermediate representation converters in a COINS compiler
[24]. We evaluated the effects of our techniques using programs from
CFP2000 and CINT2000 in SPEC’s Benchmarks. On average, the
analyzing cost of EDDPRE was about half of the demand-driven PRE.
PRESR improved the performance of all the programs about 2% on
average. GLIA and MDGLIA decreased the number of cache misses
of many programs.

1.5 Thesis Organization

Chapter 2 presents preliminaries and details the algorithms of two basic op-
timization techniques, GVN and PRE. Chapter 3 describes the algorithm for
EDDPRE, and demonstrates the analytical improvement and efficiency of
execution of objective code. Chapter 4 explains the algorithm for PRESR
where EDDPRE is extended to remove redundant array references across
loop iterations and shows the experimental result. Chapter 5 outlines the
algorithm for GLIA and MDGLIA and the experimental results from sup-
pressing the number of cache misses. Chapter 6 concludes this thesis and
indicates future directions of this thesis.

13

Chapter 2

Background

In this chapter, we define the program representation and control flow graph,
and then provide the details of the data-flow analysis. Finally, we describe
the algorithms of GVN and PRE that are the basis of our technique.

2.1 Preliminaries

2.1.1 Program Representation

Many modern compilers consist of five stages: lexical analysis, syntax anal-
ysis, semantic analysis, code optimization, and code generation. Lexical
analysis creates a sequence of tokens from a source program, and then syn-
tax analysis builds abstract syntax trees (ASTs) from those tokens. The
ASTs are checked for their consistency with declarations by semantic anal-
ysis such as type checking. After that, the ASTs are transformed into an
intermediate representation (IR). The IR code is used as both input and
output for optimizations that are independent of programming languages
and machines.

We assume that the IR code is a sequence of statements, that have at
most one operator, known as three-address code [2], as the following:

x← y op z

2.1.2 Control Flow Graph

We assume that a control flow graph (CFG) has been built for each program.
The CFG is a graph structure, which is represented as a quadruple (N, E,
start, end), where N is a set of node, E denotes a set of edges N × N,
start is a start node with an empty statement, and end is an end node with

14

Chapter 2. Background

x=1;
y=1;
z=x+y;
if(z<0){
 w=z;
}else{
 w=-z;
}

(a)

0

1

2 3

4

5

w=z w=-z

x=1
y=1
z=x+y

(b)

Figure 2.1: (a) Original code. (b) An example CFG of the code. Each node
corresponds to a basic block.

an empty statement. 1

Example.
Figure 2.1 (b) shows a CFG of Fig. 2.1 (a). As the left side code has one

if -else statement, it has four basic blocks. These basic blocks correspond
to Nodes 1, 2, 3, and 4 in the CFG. In particular, Nodes 0 and 5 are called
the start and end node, respectively.

End of Example.

A given edge is expressed as (m,n) ∈ E, where m is referred to as a
predecessor of n and n is known as a successor of m. In general, a node has
several predecessors and successors because of the nondeterministic branch-
ing structure of a CFG. Here, the sets of predecessors and successors of node
n are denoted as pred(n) and succ(n), respectively.

When all the paths from start to node n include node m, it is said that
m dominates n [4]. If m dominates n and m is not n, it is said that m
strictly dominates n. An edge a→ b where the destination b dominates the
source a is called a back edge [2].

In the CFG, it is assumed that the critical edges, which are edges leading
from a node with more than one successor to a node with more than one
predecessor, have been removed by inserting synthesized nodes, because the

1In this thesis, we sometime omit the start node and the end node to simplify expla-
nation.

15

Chapter 2. Background

2 x=a[i] 4

53 y=a[i]

1

6

(a)

2
t=a[i]
x=t 4

53 y=t

7 t=a[i]

1

6

(b)

Figure 2.2: Removing critical edge. (a) Original code. (b) After removing
the critical edge and applying PRE.

critical edges can block effective code motion.

Example.
In Fig. 2.2 (a), there is a critical edge from Node 4 to Node 3. As a[i]

at Node 3 is partially redundant, it can be removed by inserting the same
expression at Node 4, but PRE does not allow such an insertion because the
insertion introduces a new computation at the path through Nodes 1, 4, 5,
and 6. To remove the partially redundant expressions, a new node, Node 7,
is inserted on the critical edge as shown in Fig. 2.2 (b).

End of Example.

2.1.3 Data-flow Analysis

Data-flow analysis is performed to collect information for code optimiza-
tions, such as constant propagation, copy propagation, common sub-expression
elimination, GVN, dead code elimination [6, 53], register promotion, and so
on. To present formal definitions, we use Fig. 2.3 to show how the data-flow
analysis for a constant propagation collects information.

Example.
Consider applying constant propagation to the code in Fig. 2.3. A

variable a is initialized to 1 at Node 1, and then it is used at Node 2.
To propagate the value of a from Node 1 to Node 2, the initial value 1 is

16

Chapter 2. Background

1 a=1

2 b=a+2

3 c=0

4 d=a+5

5 a=3

6

Figure 2.3: An example code for constant propagation.

recorded at the exit of Node 1.
End of Example.

The information collected at the exit of a node n, OUT[n], can be for-
mally defined by a transfer function f , and information collected at the entry
of n, IN[n], as follows:

OUT[n] = f(IN[n]) (2.1)

Example.
Consider the statement a=3 in Fig. 2.3. Once the statement has been

executed, the value of a is modified to 3. In other words, the statement
generates a definition of a, 3, and kills all definitions of the variable, 1,
reaching to the node.

End of Example.

The transfer function of a program point x can be formally defined as
follows:

f(x) = gen ∨ (x− kill) (2.2)

Consider the statement a=3 in Fig. 2.3, in which gen and kill correspond
to 3 and 1, respectively. Here, if a transfer function uses information at the
entry point of a node to determine information about the exit point as well
as constant propagation, its direction is forwards. In contrast, if the function
uses information at the exit point of a node to determine information about
the entry point, its direction is backwards.

17

Chapter 2. Background

To present the formal definition of IN[n], we continue to explain the
example of constant propagation in Fig. 2.3.

Example.
We consider the value of a that can reach the expression a+5 at Node

4 in Fig. 2.3. a is defined at 1 at Node 1, whereas it is defined to as 3 at
Node 5. These values can reach the a+5 through Node 3 because the former
value propagates on a path that consists of Nodes 1, 2, 3, and 4 while the
latter value propagates through a back edge and Nodes 3 and 4. This result
indicates that it is impossible to statically determine which value is used
at the a+5. This observation shows that the analysis has to calculate the
intersection of values propagated on all paths from start to Node 3 that is
a join point.

End of Example.

IN[n] is formally defined as follows:

IN[n] =
∏
∀i

Fi(IN[start]) (2.3)

where Fi is the functional composition of the transfer function over

the execution path Pi from the start node to ni.

To collect accurate information, the optimizer should calculate equation
(2.3); however, in general, it is impossible to do so because of existing loops.

Example.
Consider the number of execution paths from start to Node 4 in Fig.

2.3. Let P 1
4 be an execution path that consists of Nodes 1, 2, 3, and 4. Let

P 2
4 be an execution path that consists of Nodes 1, 2, 3, 4, 5, 3, and 4. Let

P 3
4 be an execution path that consists of Nodes 1, 2, 3, 4, 5, 3, 4, 5, 3, and

4. Furthermore, we can define P 4
4 , P

5
4 , ..., P

n
4 as well as the aforementioned

paths. Thus, an infinite number of execution paths can be assumed for a
program including the paths within loops.

End of Example.

Therefore, to calculate the data-flow information for any program, equa-
tion (2.4) presents an approximate solution as follows:

IN[n] =
∏

p∈pred(n)
OUT[p] (2.4)

The result of solving equation (2.3) is called the meet-over-path (MOP)
solution. On the other hand, the approximate solution is called the maxi-
mum fixed point (MFP), which is determined by repeatedly solving equations
(2.1) and (2.4) until the values of IN and OUT are fixed [2]. Notice that,

18

Chapter 2. Background

if the transfer function f of equation (2.2) satisfies distributivity, the MFP
solution is the same as the MOP solution [50].

To define formal equations, we used constant propagation whose the
transfer function’s direction is forwards. In contrast, for an optimizer whose
the transfer function’s direction is backwards, IN[n] and OUT[n] are formally
defined as follows:

OUT[n] =
∏

s∈succ(n)
IN[s]

IN[n] = f(OUT[n])

2.1.4 Static Single Assignment Form

Many programming languages support mutable variables. Such variables are
useful for writing programs along control flows in imperative programming
languages, but at times, this result in complex data-flow analyses because
these variables can be modified at any point. If each variable can have only
one value without modification, it is possible to simplify data-flow analysis
by defining the transfer function without any kill term.

Static single assignment (SSA) form is one variety of program repre-
sentation that allows every variable to be defined only once [4, 9]. In SSA
form, the representation with only one definition for each variable is achieved
through attaching a unique version number to an original variable name per
a definition. Furthermore, in SSA form, a special function φ that alterna-
tively returns one of the arguments depending on a control flow is inserted
to merge several definitions that reach the same uses. The φ function gives
the property where each definition dominates all of its uses, so that code
optimizers can be more simply described for programs in SSA form. Trans-
formation into SSA form is achieved by the following two steps: 1) inserting
φ functions, and 2) renaming variables. The φ functions can be efficiently
inserted at the dominance frontiers of all the definitions of each variable.
The dominance frontier of a node n is a set of nodes that n cannot domi-
nate. Notice that the insertions of φ functions result in the insertions of new
assignments, that have to be considered for additional dominance frontiers.
Thus, dominance frontiers can be recursively defined; these are referred to
as iterated dominance frontiers. The φ functions have to be inserted at all
the iterated dominance frontiers.

Once φ functions are inserted, the variables can be renamed. Remember
that each definition dominates all uses. That is, the new version of a variable
name that is generated at each definition is only used at nodes dominated by
the definition. On the other hand, there are φ functions using the definition
at immediate successors of nodes dominated by the definition. Therefore,

19

Chapter 2. Background

3 4

5

i=1

2

1

6

i=0

x=i+1

(a)

3 4

5

i₂=1

2

1

6

i₁=0

i₃=φ(i₂,i₁)

i₄=φ(i₃,i₁)
x₁=i₄+1

(b)

Figure 2.4: An example of SSA form. (a) Normal form code. (b) SSA form
code.

renaming the definitions and uses can be efficiently achieved by traversing
a dominator relation.

Example.
Consider a variable i in Fig. 2.4 (a). The variable is defined twice at

Nodes 1 and 3. In normal form, they are shared through a common variable
i which is used at Node 6. In contrast, in SSA form, variable i2 does not
dominate Node 6, but its value may be used at that node. To carry the
value to its use, SSA form inserts φ functions at the entry of Nodes 5 and 6,
and then variable i4 is defined by Node 6 where it is used as i4+1, as shown
in Fig. 2.4 (b).

End of Example.

Three algorithms are known for efficiently transforming code from nor-
mal form into SSA form [11, 18, 27]. As the φ function is not a real statement
that some processors can execute, it is necessary to transform its SSA form
into normal form [8, 11, 64, 74].

2.2 Fundamental Code Optimization Techniques

In this section, we explain four compiler optimizations that are the basis of
our technique.

20

Chapter 2. Background

a=read()
b=a+1
c=a+1
x=b+5
y=c+5
z=x*5
w=y*5

(a)

a=read() [1]
b=a+1 [3]
c=a+1 [3]
x=b+5 [5]
y=c+5 [5]
z=x*5 [6]
w=y*5 [6]

(b)

Figure 2.5: Assigning value numbers. (a) Original code. (b) After value
numbering. The numbers with ”[]” represent the value numbers of the
corresponding expressions.

2.2.1 Global Value Numbering

Value numbering is a technique that removes redundant computations that
generate the same value without depending on their lexical forms in a basic
block. Cocke and Schwarts described a local technique that assigns a unique
number, called a value number, to expressions with the same value numbers
for operands and the same operator [23]. In addition, the variables with
the value generated by the expressions are assigned the value number. The
process of assigning value numbers to expressions and variables is called
value numbering. Value numbering is often implemented by recording each
value number in a hash-table where it has a tuple of the value numbers of the
operands and the operator as the key. If expressions with a value number
equal to e are found through their tuple in the hash-table for a basic block,
they are congruent with e.

Example.
In Fig. 2.5 (a), two variables b and c have the same value, a+1; therefore,

both b+5 and c+5 must compute to the same value. The congruence of these
expressions results in the same value number for variables x and y. Similarly,
two variables z and w also have the same value number. Notice here that the
value numbers are assigned to not only variables but also constant values.
In this example, the constant values 1 and 5 are assigned to value numbers
[2] and [4], respectively. As a result, the expressions are assigned to value
numbers as shown in Fig. 2.5 (b).

End of Example.

21

Chapter 2. Background

2 3

1

x₁=a[i₁]
y₁=a[i₁]
z₁=x₁+1

4 w₁=y₁+1

(a)

2 3

1

x₁=a[i₁]
y₁=x₁

z₁=x₁+1

4 w₁=y₁+1

(b)

Figure 2.6: Effectiveness of GVN. (a) Original code represented in a CFG.
(b) Result of applying GVN on a dominance tree. The labels of the tree
correspond to the CFG.

To replace the redundant expression with the variable to which the pre-
ceding congruent expression is assigned, each expression in a basic block is
processed from top to bottom.

Value numbering locally detects congruent expressions within a basic
block, whereas a technique globally detecting congruent expressions in an
entire program is called global value numbering (GVN) [3, 21, 35, 37, 59,
65, 67, 69], which is based on a program converted into SSA form. Typical
GVN techniques traverse a dominator tree using a depth-first and left-first
search, in the process of which once an expression is visited, GVN assigns a
value number to the expression. At this time, it records the assigned value
number to a hash-table. After value numbering all expressions in a node,
GVN propagates the hash-table to the children in the dominance tree.

Example.
Consider two variables x1 and y1 at Node 1 in Fig. 2.6 (a). They are each

assigned the expression a[i1], that is, the same value number is assigned to
them, which means that the expression assigned to y1 is redundant; there-
fore, the expression can be replaced with x1. Then, the value numbers of
the three variables are propagated to Nodes 2, 3, and 4, which are children
of Node 1 on a dominator tree that is shown in Fig. 2.6 (b). As result of
this propagation, y1+1 can be replaced with z1 because z1 is assigned x1+1

that has the same value number as y1+1. The propagation way of the value
numbers on the dominator tree guarantees that the value numbers efficiently
reach their uses, based on the dominance property of SSA.

End of Example.

22

Chapter 2. Background

1

2 3

4

x=a[i]

y=a[i]

(a)

1

2 3

4

t=a[i]
x=t

y=t

(b)

Figure 2.7: Effectiveness of CSE. (a) Original code. (b) Result of applying
CSE.

2.2.2 Common Sub-expression Elimination

If more than one expression is executed on a path, and the value would not
be changed between them; these expressions, excluding the first one, are
said to be redundant on the path. If an expression is redundant on all the
paths from start to the expression, the expression, which is called a com-
mon sub-expression, can be removed by replacing it with a variable with the
same value. The optimization is called a common sub-expression elimina-
tion (CSE) [22], which contributes to decreasing the number of expressions
to be executed in run time. In order to replace a redundant expression
with a variable, a temporary variable assigned the preceding expression is
introduced as a variable.

Example.
Consider a[i] at Node 4 in Fig. 2.7 (a). As the same expression has

already been computed at Node 1, the expression is redundant at Node
4. CSE inserts a statement t=a[i] before the first occurrence, and then
replaces all redundant a[i] with t as shown in Fig. 2.7 (b).

End of Example.

2.2.3 Loop Invariant Code Motion

If an expression is computed in a loop without any change in its value,
it is called a loop invariant expression. In general, executing loop invariant
expressions outside the loop remarkably decreases the execution cost because
the code inside the loop can be repeatedly executed a lot of times. Loop
invariant code motion (LICM) moves the loop invariant expressions out of
loops.

23

Chapter 2. Background

i=1;
while(i<1000){
 x=a[0];
 i+=1;
}
print(x);

(a)

i=1;
x=a[0];
while(i<1000){
 i+=1;
}
print(x);

(b)

Figure 2.8: Effectiveness of LICM. (a) Original code. (b) Result of applying
LICM.

Example.
Consider the a[0] in the while loop in Fig. 2.8 (a). As the expression

is an array reference with a constant as the index, and without any modifi-
cation within the loop, the expression is loop invariant. If the expression is
moved outside the loop, as shown in Fig. 2.8 (b), the number of executions
of the expression is reduced from 1,000 to 1.

End of Example.

2.2.4 Partial Redundancy Elimination

If an expression e is redundant at n on all paths from start to n, it can be
removed by CSE. Such an expression is said to be fully redundant. That
is, CSE removes only fully redundant expressions. On the other hand, CSE
cannot remove an expression that is redundant at n on some (but not all)
paths from start to n. Such an expression is said to be partially redundant.

PRE makes a partially redundant expression fully redundant by insert-
ing some expressions at preceding points and then removing the original
expression. In PRE, a loop invariant expression can also be regarded as a
partially redundant expression because it is not redundant on a path from
the entry of loop, but it is redundant on a path from the exit of loop body
to the entry. Once PRE is applied to the loop invariant expression, some
expressions are inserted outside the loop, and the original expression inside
the loop is removed. This process corresponds to LICM. Thus, PRE includes
the effectiveness of CSE and LICM.

Example.
Consider a[i] at Node 4 in Fig. 2.9 (a). The expression is redundant

on a path through Node 2 whereas it is not redundant on another path. To
remove the redundant expression, PRE inserts statements t=a[i] at Nodes

24

Chapter 2. Background

1

2 3

4

x=a[i]

y=a[i]

(a)

1

2 3

4

t=a[i]
x=t

y=t

t=a[i]

(b)

Figure 2.9: Effectiveness of PRE. (a) Original code. (b) Result of applying
PRE.

2 and 3. As the insertions make the original expression fully redundant, it
can be removed as shown in Fig. 2.9 (b).

End of Example.

The first PRE algorithm was proposed by Morel and Renvoise in 1979
[57] as a bi-directional data-flow analysis. Although Morel and Renvoise’s
algorithm is a powerful technique, it has two issues: 1) some redundant ex-
pressions cannot be removed, and 2) some insertions are ineffective, where
ineffective insertions lengthen the lifetime of temporary variables, leading to
an increase of register pressure. To improve the effect of PRE, many tech-
niques have been proposed to achieve optimal completeness, computation,
lifetime, or cost [5, 40, 51, 52, 68, 70], SSA-based sparse analysis algorithm
[19, 49, 60, 81], speculative inserting based on profile [13, 38, 46, 72, 84, 87],
removing redundant memory reference instructions [32, 48, 54, 55], and so
on [10, 28, 29, 30].

In the rest of this section, we define the basic properties of PRE, availabil-
ity and anticipability, and then we explain lazy code motion (LCM) [51, 52]
that is one of the most popular technique of PRE and the basis of our
technique.

Basic Properties

Expression e is available at node n iff e is computed on any path p from
start to n, and there is no definition of e’s operands since the most recent
occurrence of e on p [5]. When e is available at n, n is up-safe with respect
to e, and e is partially available at node n iff there is at least one path
from start to n in which e is computed without subsequent redefinition of
its operands. When e is available at n, e is fully redundant and can be
replaced with the variable that has the preceding execution result. When e

25

Chapter 2. Background

is partially available at n, e is partially redundant. The partially redundant
expression can be eliminated after inserting expressions to make the original
expression fully redundant.

Expression e is anticipable at node n iff e is computed along any path r
from n to end, and the operands of e are undefined before the first compu-
tation of e on r [5]. When e is anticipable at n, n is down-safe with respect
to e. PRE inserts expressions at the down-safe nodes without extending
the lengths of any path. If some expressions are inserted at non down-safe
nodes, the insertions are speculative. The speculative insertions allow loop
invariant expressions inside a zero-trip loop such as a while loop to be moved
out of the loop.

Lazy Code Motion

PRE removes redundant expressions by inserting some expressions. How-
ever, the insertions and removals process tends to lengthen the live-ranges of
variables carrying preceding expression values to their uses, so that the vari-
ables may be spilled in the register allocation phase [12, 17, 20, 36, 61, 63, 83].
To address the problem, LCM consists of the first code motion hoisting ex-
pressions as early as possible and the second code motion delaying them
as late as possible. The first code motion contributes to eliminating all
removable expressions, and the second one contributes to minimizing the
live-ranges of variables. These code motions have to satisfy down-safety and
up-safety.

Down-safety is used to ensure that LCM does not introduce a new occur-
rence of the inserted expression on any execution path. Down-safety is repre-
sented by predicate DownSafe. In addition, up-safety is used to ensure that
there are some paths where the number of expressions is decreased by the in-
sertions and removals. Up-safety is represented by predicate UpSafe. These
safeties are defined based on the local properties Comp(n) and Transp(n).
These predicates denote that n contains an occurrence of e, and no operands
are defined or modified in n, respectively. In particular, the property rep-
resented by Transp(n) is called the transparency at node n. To explain the
algorithm, in the rest of section, we assume that each node has only one
statement, and e represents the concerned expression to help understand
the algorithm. The local properties are defined as follows:

Definition 2.2.1 (Local properties of LCM).

Comp(n)
def⇔ rhs(n) = e

Transp(n)
def⇔ Def (n) �∈ Var(e)

In the equations, functions rhs(n), Def (n), and Var(ar) return the right-
hand side of statement at n, a variable defined at node n, and a set of

26

Chapter 2. Background

variables which are used in ar, respectively. Using these local properties,
predicates DownSafe and UpSafe are defined as follows:

Definition 2.2.2 (Safety).

DownSafe(n)
def⇔ (n �= end) ∧

(Comp(n) ∨ Transp(n) ∧
∏

s∈succ(n)
DownSafe(s))

UpSafe(n)
def⇔ (n �= start) ∧∏

p∈pred(n)
Comp(p) ∨ (Transp(p) ∧ UpSafe(p))

Safe(n)
def⇔ DownSafe(n) ∨ UpSafe(n)

Example.
Consider partially redundant expression a[i] in Fig. 2.10 (a). Once a

statement t=a[i] is inserted at Node 1, the original expressions at Nodes
4 and 6 can be removed by replacing them with t. However, this insertion
introduces a new computation on a path through Node 2. If the control
flows along the path, the execution time may be increased. To prevent
such insertions, LCM checks down-safety at each node. As a result, LCM
determines that Nodes 3, 4, 5, and 6 satisfy the down-safety as shown in
Fig. 2.10 (b).

End of Example.

After determining the down-safe nodes, LCM determines optimal node
where expressions can be inserted. The optimal nodes are determined by
the predicates Earliest and Latest . The predicate Earliest(n) denotes that
node n is the closest to start of the nodes m satisfying DownSafe(m) or
UpSafe(m). The predicate Latest(n) denotes that node n is the closest to the
node c that satisfies Comp(c) on each path from Earliest to end, and there
is no node that satisfies the Comp on the path from Earliest to c. Earliest
is determined as a maximal fixed point of its data-flow equation. Latest
is determined based on a maximal fixed point of the data-flow equation of
predicate Delayed(n), which denotes that the expression can be delayed until
the exit of node n. Notice that Delayed is based on the result of Earliest ;
therefore, they have to be computed in proper sequence. These predicates
are defined as follows:

27

Chapter 2. Background

3

4 5

6

x=a[i]

y=a[i]

1

2

7

(a)

3

4 5

6

x=a[i]

y=a[i]

1

2

7

: DownSafe

(b)

Figure 2.10: Motivation example of LCM. (a) Original code. (b) down-safety
of a[i]

Definition 2.2.3 (Determine insertion candidate nodes).

Earliest(n)
def⇔ Safe(n) ∧

((n = start) ∨
∑

p∈pred(n)
¬Transp(p) ∨ ¬Safe(p))

Delayed(n)
def⇔ Earliest(n) ∨

(n �= start) ∧
∏

p∈pred(n)
¬Comp(p) ∧ Delayed(p)

Latest(n)
def⇔ Delayed (n) ∧ (Comp(n) ∨

∑
s∈succ(n)

¬Delayed(s))

Example.
Consider the four nodes with dotted borders that satisfy down-safety in

Fig. 2.10 (b). Only Node 3 has a predecessor that does not satisfy the down-
safety or up-safety of them. As a result, Earliest(3) is true whereas others
are false, as shown in Fig. 2.11 (a). From Node 3, LCM checks whether
each node satisfies Delayed . As Node 4 satisfies Comp, Node 6 does not
satisfy Delayed . As a result, Delayed(3), Delayed(4), and Delayed(5) are
true. Finally, the nodes satisfying Latest are Nodes 4 and 5, as shown in
Fig. 2.11 (b).

End of Example.

28

Chapter 2. Background

3

4 5

6

x=a[i]

y=a[i]

1

2

7

: Earliest

(a)

3

4 5

6

x=a[i]

y=a[i]

1

2

7

: Latest

(b)

Figure 2.11: Insertion candidates. (a) Earliest . (b) Latest .

LCM inserts expressions at the entry of nodes n satisfying the pred-
icate Insert(n), where node n also satisfies Latest(n). Notice that LCM
does not insert expressions without decreasing the number of executed ex-
pressions on some paths because such insertions are unnecessary. In order
to exclude the unnecessary insertions, LCM specifies them based on the
predicate Isolated(n) that denotes that the insertion at n does not result
in removing any expression other than original one; therefore, Insert(n) is
defined as Latest(n) ∧ ¬Isolated(n). After insertions at the entry points of
nodes n satisfying Insert(n) are performed, the original expressions at nodes
n satisfying the predicate Replace(n) that denotes that n contains an e are
replaced with the temporary variable holding the value of the expression.
These predicates are defined as follows:

Definition 2.2.4 (Translation of the Program).

Isolated(n)
def⇔

∏
s∈succ(n)

Latest(s) ∨ ¬Comp(s) ∧ Isolated(s)

Insert(n)
def⇔ Latest(n) ∧ ¬Isolated(n)

Replace(n)
def⇔ Comp(n) ∧ ¬(Latest(n) ∧ Isolated(n))

Example.
As shown Fig. 2.12 (a), Isolated(4) and Isolated(5) are false. This result

indicates that insertions to these nodes are useful for removing redundancy.

29

Chapter 2. Background

3

4 5

6

x=a[i]

y=a[i]

1

2

7

: Isolate

(a)

3

4
5

6

x=t

y=t

1

2

7

t=a[i]
4’ t=a[i]

(b)

Figure 2.12: Translated program. (a) Isolate. (b) Result of applying LCM.

Finally, LCM inserts a statement t=a[i] with the temporary variable t that
is unique for the expression at Nodes 4 and 5, and then replaces the original
a[i] with t, as shown in Fig. 2.12 (b). Here, LCM assumes that each CFG
node has only one instruction, and LCM makes a new CFG node 4’ for the
inserted t=a[i] at Node 4.

End of Example.

30

Chapter 3

Effective Demand-driven
PRE

In this chapter, we describe the algorithm of effective demand-driven PRE
(EDDPRE). Section 3.1 explains the motivation of EDDPRE. Section 3.2
describes a previous demand-driven PRE. Section 3.3 gives the detail of
EDDPRE. Section 3.4 shows experimental results to demonstrate the effec-
tiveness of EDDPRE. Section 3.5 and Section 3.6 summarize, respectively,
the related works and EDDPRE.

3.1 Motivation

Traditional PRE exhaustively analyzes the entire program based on data-
flow equations, before transforming the program to remove all of the redun-
dant expressions found during the analysis. The removal of the expressions
leads to some copy assignments; therefore, the application of copy prop-
agation has the effect of exposing new redundancies, which are known as
second-order effects. To remove more redundant expressions by capturing
these effects, it is necessary to repeatedly apply PRE and copy propagation.

To address the issue, a demand-driven PRE, PRE based on query prop-
agation (PREQP) [80], is proposed. For each expression e, PREQP back-
wardly propagates a query to determine if e is available. An answer true
means that e is available on the path on which the query was propagated
whereas false means that it is not. The query generated at the origin of e is
duplicated at a join point that is a program point with several predecessors.
Consequently, in case where the answers at the join point are both true
and false, PREQP inserts expressions at nodes where false were obtained
in order to make e available. After the insertion, PREQP replaces e with
an introduced temporary variable, and then PREQP applies demand-driven
copy propagation. Although this copy propagation can reveal some new re-
dundant expressions, applying it for all expressions sometimes incur greater

31

Chapter 3. Effective Demand-driven PRE

costs than exhaustive PRE. In addition, the query may sometimes be propa-
gated unnecessarily in order to check the redundancy of an expression, even
if the expression is not redundant on some execution paths, as explained in
the next section.

In this chapter, we propose EDDPRE to suppress unnecessary copy
propagation and query propagation. First, EDDPRE applies global value
numbering (GVN) in order to statically detect redundant expressions that
are lexically different expressions for disuse of copy propagation. During
GVN, EDDPRE records occurrences of the value numbers into tables at
each CFG node. For each expression, EDDPRE propagates a query that
checks whether the value number of the inquired expressions is available or
not. This query is propagated to each node while a value number of the
inquired expression is recorded in the value number occurrence table.

The advantages of EDDPRE are summarized as follows:

• EDDPRE can capture many second-order effects without copy propa-
gation and iterative applications of whole algorithm.

• EDDPRE suppresses unnecessary query propagations by recording the
occurrence of value numbers on paths from the start node to the exit
of each node.

3.2 PRE Based on Query Propagation

PREQP is applied to programs translated into SSA form. PREQP visits
each CFG node that represents a basic block in topological sort order, and
performs query propagation [67] to check whether each expression e can be
eliminated at the node. Before explaining the detail, we present an example
how PREQP removes the redundant expressions.

Example.
Consider the statement z1=x1+1 at Node 3 in Fig. 3.1 (a). The x1+1

is redundant because there is the statement y1=x1+1 that has the same ex-
pression in the right-hand side immediately before it. PREQP replaces it
with y1, and then PREQP applies copy propagation in order to capture the
second-order effect through replacing z1 with y1. The copy propagation tra-
verses Nodes 3, 4, 5, and 6 dominated by Node 3 while replacing z1 with y1.
Remember here that the uses of each variable are dominated by the defini-
tion of it in SSA form. The copy propagation results in the program shown
in Fig. 3.1 (b), where it is found that the right-hand side of a statement
j1=y1+1 is redundant. Then, PREQP is applied to the expression, so that
it is replaced it with i1. After that, the copy propagation is applied again.

Consider the loop invariant expression x1+2 at Node 5 shown in Fig.
3.2 (a). PREQP propagates a query ”is x1+2 available?” to the predecessor

32

Chapter 3. Effective Demand-driven PRE

3

y₁=x₁+1
z₁=x₁+1
i₁=y₁+1
j₁=z₁+1

5

4
i₂=φ₄(i₃,i₁)

j₂=φ₄(j₃,j₁)

1

2

x₁=read()

a₁=x₁+2
i₃=i₂+1
j₃=j₂+1

6 b₁=x₁+3

(a)

3

y₁=x₁+1
z₁=y₁
i₁=y₁+1
j₁=y₁+1

5

4
i₂=φ₄(i₃,i₁)

j₂=φ₄(j₃,j₁)

1

2

x₁=read()

a₁=x₁+2
i₃=i₂+1
j₃=j₂+1

6 b₁=x₁+3

(b)

Figure 3.1: Effect of PREQP’s removing redundant expression and applying
copy propagation. (a) Original program. (b) After removing x1+1 at Node
3.

4. There is no expression in Node 4; therefore, the query is further prop-
agated to two predecessors 3 and 5. Following this, the query propagated
to Node 3 is further propagated to Nodes 2 and 1 in this order. However,
the expression is not found, so that the answer false is returned to Node
4. By contrast, the query propagated to Node 5 obtains the answer true
because x1+2 itself is found at Node 5. The two answers true and false mean
that x1+2 is partially available at Node 4. In this case, PREQP makes it
available by inserting a statement t1=x1+2 into Node 3, where traditional
PREs check down-safety. However, PREQP ignores the down-safety in the
case where the query is propagated to the inquired expression itself, so that
loop invariant expressions are speculatively moved out of the loop, even if
the down-safety is not satisfied. Consequently, the answer true is returned
to Node 5; therefore, x1+2 is determined to be redundant. Finally, x1+2 is
replaced with t1, as shown in Fig. 3.2 (b).

When a query is propagated over a φ function that defines some operands
of the inquired expression, the operands are replaced with arguments cor-
responding to predecessors where the query is propagated. For example,

33

Chapter 3. Effective Demand-driven PRE

3

y₁=x₁+1
z₁=y₁
i₁=y₁+1
j₁=i₁

5

4
i₂=φ₄(i₃,i₁)

j₂=φ₄(j₃,i₁)

1

2

x₁=read()

a₁=x₁+2
i₃=i₂+1
j₃=j₂+1

6 b₁=x₁+3

Is x₁+2 redundant?

(a)

3

y₁=x₁+1
z₁=y₁
i₁=y₁+1
j₁=i₁
t₁=x₁+2

5

4
i₂=φ₄(i₃,i₁)

j₂=φ₄(j₃,i₁)

1

2

x₁=read()

a₁=t₁
i₃=i₂+1
j₃=j₂+1

6 b₁=x₁+3

(b)

Figure 3.2: Effect of PREQP’s query propagation. (a) Example of propa-
gating a query. (b) Result program of applying PREQP

consider a query regarding i2+1 at Node 5. The query is propagated to
Nodes 3 and 5 over a φ function i2=φ4(i3,i1) after Node 4. In this situa-
tion, two new queries ”Is i1+1/i3+1 available?” are generated for Nodes 3
and 5, respectively. We call this replacement φ function replacement.

If a query is propagated twice to a node without φ function replacement
in a loop, the answer true should be returned for the maximum fixed point
of the data-flow equations. However, this rule may lead to unnecessary code
motion passing some empty loops. For example, in Fig. 3.2 (a), consider that
a query regarding x1+2 is propagated from Node 2 to Node 2 through the
back edge. If it is simply assumed that the second visit to Node 2 returns
an answer true, an expression would be inserted into Node 1 because an
answer false is returned from Node 1. However, as mentioned above, the
expression should be inserted into Node 3; therefore, inserting it into Node
1 unnecessarily extends the live-range of an introduced temporary variable.
To suppress the unnecessary insertion, PREQP defines a predicate isReal
to indicate that the answer true is derived from the fact that the query has

34

Chapter 3. Effective Demand-driven PRE

reached a real expression. Insertions are allowed only if isReal is true. Thus,
the insertion into Node 1 is suppressed because isReals at Nodes 1 and 2
are false, so that, false is returned from Node 2.

End of Example.

These observations lead to formal definitions of the answer of a query in
PREQP. In this definition, e represents an inquired expression. Once a query
is propagated to a node, PREQP determines the answer at the entry of a
node under the predicate NAnswer . As mentioned above, NAnswer is true
if one of the following two conditions is satisfied: 1) all answers are obtained
as true from predecessors, or 2) expressions are inserted into predecessors,
where the second condition is denoted by Insertable. In addition, PREQP
represents the answer at the exit of a node as XAnswer , which is defined
using Local that denotes some occurrences the expression in the node. The
N /XAnswer and Local are formally described as follows:

Definition 3.2.1. When a query is propagated to a node n, the answer is
defined as follows:

XAnswer(e, n)
def⇔ (n �= start) ∧

(Local(e, n) ∨ Transp(e, n) ∧ NAnswer(e, n))(3.1)

NAnswer(e, n)
def⇔ Insertable(e, n) ∨∏

p∈pred(n)
XAnswer(transPhi(e, p, n), p)(3.2)

where Transp(e, n) indicates transparency that means no operands of e is
defined at n, and transPhi performs φ function replacement. transPhi(e, p, n)
replaces each operand of e with a φ function’s relevant argument that cor-
responds to predecessor p if n contains the φ function.

Definition 3.2.2 (Rules of the local answer for a query). Local(e, n) is
defined by the following rules, which are checked when a query is propagated
to node n:

(1) If n is a node where the query has already been propagated, and the
current query is same as the previous one, the answer is true.

(2) If n is a node where the query has already been propagated, and the
current query is different from the previous one, the answer is false.

(3) If n is the original node of the query, and the original query is also the
same as the current query, both the answer and isSelf (e, n) are true
where isSelf indicates that the query has been propagated back to the
original location of inquired expression.

(4) If n is a node where e occurs in n, both the answer and isReal(e, n) are
true.

35

Chapter 3. Effective Demand-driven PRE

Rule (2) takes account of the situation where some operands of the ex-
pression are changed, so that the current value is different from inquired
expression. In this situation, the answer false should be returned. Other
rules correspond with the above explanation.

Insertable gives the details of the condition for insertions. As mentioned
above, if answers true and false are returned to a node where isReal and
down-safety are true, expressions are inserted into predecessors that had
returned false. Note here that, the down-safety condition is ignored for a
loop invariant expression in order to promote speculative code motion out
of a loop. The loop invariant expressions are identified through a predicate
isSelf . These conditions are formally described as follows:

Definition 3.2.3 (Insertion condition).

isReal(e, n)
def⇔ e occurs in n ∨

∑
p∈pred(n)

isReal(e, p) (3.3)

isSelf (e, n)
def⇔ the original expression of e is in n ∨

∑
p∈pred(n)

isSelf (e, p)

Insertable(e, n)
def⇔

∑
p∈pred(n)

isReal(e, p)

∧ (DownSafe(e, n) ∨
∑

p∈pred(n)
isSelf (e, p)) (3.4)

PREQP also checks down-safety through query propagation. The answer
depends on transPhi and Local . However, Local ignores rule (3) in the query
propagation. This definition is presented in that of DownSafe.

Definition 3.2.4 (Down-safety based on query propagation). Down-safety
is defined with performing the replacement of a variable defined by a φ func-
tion with a suitable argument.

DownSafe(e, n)
def⇔ (n �= end) ∧

∏
s∈succ(n)

Local(e′, s) ∨

Transp(e′, s) ∧DownSafe(e′, s)(3.5)
where e′ = transPhi(e, n, s)

After inserting expressions, PREQP inserts a φ function if NAnswer is
true and the size of the node’s pred is more than 1.

Example.
As mentioned above, the application of PREQP to the program in Fig.

3.2 (a) causes copy propagation twice. Because the copy propagation based
on SSA form checks all of the nodes dominated by a node containing the

36

Chapter 3. Effective Demand-driven PRE

definition and the dominance frontiers of them; therefore, Nodes 3, 4, 5, and
6 are checked twice.

Consider the expression j2+1, which is redundant because the expres-
sion computes the same value as i2+1. However, PREQP cannot eliminate
the expression because the query of PREQP pessimistically finds equality
between expressions. When a query regarding j2+1 is propagated to Nodes
3 and 5 from Node 4, the new queries j1+1 and j3+1 are generated. These
expressions cannot reach any same expression through the further propa-
gation. Finally, considering the expression x1+3 that is not redundant, the
fact cannot be found without propagating a query to Node 1 through all the
nodes.

End of Example.

Compared with the traditional PRE technique based on data-flow anal-
ysis, PREQP can improve the analysis efficiency for many programs because
it efficiently captures many second-order effects by repeating the redundancy
elimination and copy propagation processes within limited program regions
without analyzing the entire program. In some programs, however, the anal-
ysis efficiency of PREQP can be worse than the traditional PRE because
the nodes traversed during the copy propagation and query propagation in
PREQP still include many nodes not contributing to the final result.

3.3 Effective Demand-driven PRE

In this section, we provide the details of EDDPRE. At the beginning, we
describe an overview of EDDPRE’s algorithm, and then, we present the
details of each steps with pseudo code.

3.3.1 Algorithm Overview

EDDPRE consists of the following two steps:

1. Optimistic GVN

This step identifies the same expressions by assigning value num-
bers for them. The value numbers can be managed by a hash-table
valueTable where expressions with the same value number can be as-
sumed to be expressions generating the same value, even if their lexical
forms are different. In addition to the hash-table, for each CFG node,
GVN creates two tables: a local value occurrence table and a path value
occurrence table. The local value occurrence table of node n records
value numbers occurred in n. The path value occurrence table of a
node n manages the occurred value numbers on all paths from the
start node to the exit of n. This path value occurrence table is used to
quickly know the preceding occurrence of inquired expression without

37

Chapter 3. Effective Demand-driven PRE

query propagation. In addition, EDDPRE can optimistically assigns
value numbers to φ functions with cyclic dependence inside a loop,
which contributes to detecting the same expressions with induction
variable.

2. Redundancy Removal

In this step, redundant expressions are removed through query propa-
gation and transformation. Query propagation is carried out for each
expression in topological sort order. Once the query propagation for
expression e results in true, insertion points are determined. During
the transformation, suitable expressions and φ functions carrying their
values are inserted. Finally, if e is fully redundant, it is replaced with
the variable containing the value of the available expressions. Note
that EDDPRE speculatively inserts expressions only if e is a loop in-
variant expression as well as PREQP.

3.3.2 Optimistic Global Value Numbering

GVN traverses the dominator tree in depth-first and left-first search. Once
an expression has been visited, GVN assigns a value number to it. The value
number of the expression can be obtained through the hash-table valueTable
by using a variable name or a tuple of an operator and value numbers of
operands as a key. The value number of an operand can also be obtained
from valueTable by using the operand’s variable name as a key. If the same
tuple has already existed in valueTable, the expression is assigned to the
value number; otherwise, the expression is assigned to a new value number
that is recorded in the hash-table, using the tuple as a key. If the expression
is on the right-hand side of an assignment, the variable on the left-hand side
is assigned to the same value number. GVN assumes that every function
call returns a different value; therefore, each variable defined by a function
call is assigned a different value number.

EDDPRE assumes that the child nodes of each node in the domina-
tor tree are sorted in topological sort order. To assign value numbers to
arguments of φ functions as many as possible before assigning value num-
bers to the φ functions, GVN should traverse in topological sort order in
CFG. Traversing the dominance tree in depth-first and left-first search can
be proven to correspond with the topological sort order in the CFG through
lemmas 1 and 2, where we assume that ni and nj are two arbitrary children
of node n in the dominance tree, and that Ni and Nj are the subtree node
sets that include the ni and nj as roots in the dominance tree, respectively.
Fig. 3.3 depicts the relation between the subtrees of node n.

Lemma 1. njd is nj if there is an edge (nis, njd) in the CFG where nodes
nis and njd are included in Ni and Nj , respectively.

38

Chapter 3. Effective Demand-driven PRE

n

n
i

N
i

n
is

n
j

N
j

n
jd

dominator tree edge

CFG edge

1

2

k

r

Figure 3.3: Proof of equality between traversals of topological sorted domi-
nance tree in depth-first and left-first search and a topologically sorted CFG.
We assume 2 < k < r.

Proof . If we assume that njd is not nj , njd is included in the subtree
that has one of the children of nj as a root. nis is not dominated by nj ;
therefore, some paths do not include nj from the start node to njd through
edge (nis, njd) in the CFG. This contradicts the fact that njd is dominated
by nj .

Lemma 2. ∀nia ∈ Ni precedes
∀nja ∈ Nj in the topological sort order in

the CFG if ni precedes nj in the topological sort order in the CFG.

Proof . Assume that Nj includes a node njs preceding nid ∈ Ni when
ni precedes nj . At this time, there is an edge from njs to nid in the CFG;
therefore, njs precedes ni according to the lemma 1. In addition, considering
that ns dominates njs, nj precedes njs in the CFG. As a result, because ni

precedes nj , This contradicts the assumption.

Lemma 2 suggests that the depth-first and left-first search order in the
dominator tree corresponds to one of the topological sort orders of CFG if
children of each node in the dominator tree has been sorted in the topological
sort order of CFG.

For an acyclic CFG, the traversal can determine value numbers of all
expressions. By contrast, for a general CFG with some cycles, the value
numbers of several φ functions may not be determined in case where their
arguments are defined in the bodies of loops. Assume a φ function pn with
arguments nvargs, the value numbers of which have not yet been deter-
mined, is found at node n. In such cases, in general, the nvargs should be
conservatively assumed to have different value numbers. However, if all the

39

Chapter 3. Effective Demand-driven PRE

3

y₁=x₁+1
z₁=x₁+1
i₁=y₁+1
j₁=z₁+1

5

4
i₂=φ₄(i₃,i₁)

j₂=φ₄(j₃,j₁)

1

2

x₁=read()

a₁=x₁+2
i₃=i₂+1
j₃=j₂+1

6 b₁=x₁+3

(a)

[11]

[11]

[1]

[3]

[3]

[12]
[12]

[7]

3

y₁=x₁+1
z₁=x₁+1
i₁=y₁+1
j₁=z₁+1

5

4
i₂=φ₄(i₃,i₁)

j₂=φ₄(j₃,j₁)

1

2

x₁=read()

a₁=x₁+2
i₃=i₂+1
j₃=j₂+1

6 b₁=x₁+3

[4]

[4]

[10]

(b)

Figure 3.4: Effect of optimistic value numbering. (a) Original program. (b)
A result of GVN that is carried out on the dominator tree.

predecessors corresponding to nvargs are dominated by n, GVN optimisti-
cally assigns the same temporary value number 0 to all nvargs, and then
continues value numbering for the sub-dominator tree of n. Once GVN has
been completed for the subtree, the value numbers of the nvargs have been
determined; therefore, the value number of pn can be also determined. At
this time, the φ functions to which the same value number has been opti-
mistically assigned may be partitioned into different value numbers. In this
case, GVN is once again applied to the subtree of n. The optimistic GVN
guarantees the assignment of correct value numbers in at most two traver-
sals a φ function. Notice there that the repeated traversals are limited to
the nodes dominated by the φ function.

Example.
Given a dominator tree for the CFG in Fig. 3.4 (a), GVN traverses the

dominator tree, shown in Fig. 3.4 (b), using the depth-first and left-first
search. Node 1 is visited first, and the expressions in the node are assigned
value numbers. After that, Nodes 2, 3, and 4 are processed as well in this
order. In Node 3, variables i1 and j1 are assigned the same value numbers,
and then the φ functions are assigned value numbers in Node 4. In this case,
although arguments i3 and j3 have not yet been assigned value numbers,

40

Chapter 3. Effective Demand-driven PRE

optimistic GVN can be applied to the φ functions through assigning these
arguments the temporary value number 0 because the unprocessed Node 5
of the predecessors corresponding to the arguments is dominated by Node
4. Once value numbers are assigned to statements of Nodes 4, 5, and 6,
the φ functions are assigned value numbers once again. Finally, expressions
are assigned value numbers as shown in Fig. 3.4 (b). In the figures of this
thesis, we present each value number as a bracketed number. Note that
the constant values 1 and 2 are also assigned value numbers [2] and [6],
respectively.

End of Example.

For each node n, after assigning value numbers to all expressions included
in n, these value numbers are recorded in a local value occurrence table of
n. Moreover, for each CFG node n, GVN creates a path value occurrence
table that is defined as the union of the local value occurrence table of n
and the path value occurrence table of predecessors of n.

Pseudo Codes

The GVN algorithm is shown in Programs 3.1, 3.2, 3.3, and 3.4. Program
3.1 defines functions for the traversal of a dominator tree and the value
numbering of statements. Program 3.2 defines functions for assigning a value
number to each statement with hash-table valueTable. Program 3.3 defines
two functions for checking whether optimistic value numbering should be
performed and checking whether the result is correct. Program 3.4 shows a
function for making a path value occurrence table for each CFG node.

At the beginning, the function globalValueNumbering is called to per-
form GVN. This function initializes a global variable value to generate a
new value number when a new entry is added into valueTable. After the
initialization, to traverse each node, it calls the function traverseDomTree.
Finally, it calls function makePathValueTable to make path value occurrence
tables. traverseDomTree(n, optimistic) calls the function numbering to as-
sign a value number to each expression included in n first. If optimistic
of the arguments is true, value numbers are optimistically assigned to the
expressions. After the value numbering for the visiting node n, this func-
tion checks whether value numbers are optimistically assigned to φ functions
in the n’s children nodes by function checkPhiArg defined in Program 3.3.
When the optimistic value numbering is performed, checkPhiVal is called
for checking correctness of optimistic value numbering.

numbering assigns a value number to each φ function, each variable
assigned the return value of a function call, and each expression. These
expressions are identified by functions isPhi , isFunc, and isExp. If the
argument optimistic is true, for checking the correctness of optimistic value
numbering, φ functions are recoded into table samePhis.

41

Chapter 3. Effective Demand-driven PRE

Program 3.1 (Traversing of GVN)

Function: globalValueNumbering()
1: Initialize a global value value.
2: Call traverseDomTree(root , false) to visit the dominator tree.
3: Call makePathValueTable() to make path value occurrence tables.

Function: traverseDomTree(n, optimistic)
// Arguments: n is a node of dominator tree. optimistic represents
// whether the optimistic GVN is performed.
4: Perform value numbering to n by numbering(n, optimistic).
5: for each child kid of n in depth-first and left-first search.
6: if (checkPhiArg(kid))
7: Perform optimistic GVN by traverseDomTree(kid, true).
8: Check correctness of the optimistic GVN by checkPhiVal(kid).
9: else
10: Call traverseDomTree(kid, optimistic).

Function: numbering(n, optimistic)
// Arguments: n is a node of dominator tree. optimistic represents
// whether the optimistic GVN is performed.
11: for each statement st of n.
12: if (isPhi(st) ∨ isFunc(st) ∨ isExp(rhs(st)))
13: Get a value number val of st by value(st).
14: if(optimistic ∧ isPhi(st) ∧ val is assigned to another φ function)
15: Record lhs(st) in table samePhis for using in function checkPhiVal .
16: Record (val, lhs(st)) in the local value occurrence table.

Assigning a value number to a statement st is performed in function
value(st) defined in Program 3.2. If st is a trivial assignment, this func-
tion returns a value number of the right-hand side of st. Notice that the
right-hand and left-hand sides of a statement are represented by rhs(st)
and lhs(st), respectively. If st is a function call, value generates a new
value number for st and returns the value number. Otherwise, the func-
tion translates each operand of expression or argument of φ function in the
statement into its value number at line 5, which is used to determine the
value number of the statement. When a new value number is assigned to st,
newValue increments the global variable value, and adds the value number
with the expression as a key to valueTable before returning the value num-
ber. valueTable is used for getting the value number of an expression if it
includes an entry for the expression, as shown in function getValue.

Program 3.3 shows functions checkPhiArg and checkPhiVal that deter-
mine whether the optimistic value numbering is performed, and checks cor-
rectness of the optimistic value numbering, respectively. checkPhiArg checks
whether each argument of the φ function has already been assigned a value

42

Chapter 3. Effective Demand-driven PRE

Program 3.2 (Assigning value numbers)

Function: value(st)
// Arguments: st is a statement.
// Return value: a value number of st.
1: if (st is a trivial assignment) return getValue(rhs(st))
2: if (isFunc(st)) return newValue(lhs(st))
3: if (isPhi(st) ∧ all value numbers of the arguments are same)
4: return the value number
5: Make ve by changing each operand of rhs(st) to its value numbers.
6: return getValue(ve)

Function: newValue(exp)
// Arguments: exp is an expression.
// Return value: a value number of st.
7: Increment value.
8: Record (exp, value), exp is a key of value, in hash-table valueTable.
9: return value

Function: getValue(ve)
// Arguments: ve is an expression whose operands are changed to
// corresponding value numbers.
// Return value: a value number of ve.
10: if (ve is recorded in valueTable as a key) return valueTable.get(ve)
11: else return newValue(ve) // Assign a new value number to ve.

number. If some arguments have no corresponding value number, and n
dominates the predecessors corresponding to the arguments, the arguments
are assigned the temporary value number 0. If n does not dominate the
predecessor, checkPhiArg returns false and assigns a new value number to
the φ function in a conservative manner.

The function checkPhiVal returns true if some φ functions are assigned
the same value number as some entries recorded in samePhis that is defined
in function numbering of Program 3.1. Otherwise, it returns false after
deleting the φ function in samePhis because the φ function needs to be
assigned to a different value number.

After completing value numbering, EDDPRE creates a path value occur-
rence table for each node by calling makePathValueTable shown in Program
3.4. Remember that this function uses CFG nodes rather than dominator
tree. This function uses a stack worklist to manage nodes. If there are some
nodes in the worklist , a node n is popped, and then n’s path value occur-
rence table is made. Whenever a value number is added into the path value
occurrence table, the successors of n are pushed to worklist . The process is
repeated until there is no node in the worklist .

43

Chapter 3. Effective Demand-driven PRE

Program 3.3 (Determine whether optimistic value number is per-
formed and test its correctness)

Function: checkPhiArg(n)
// Arguments: n is a node of dominator tree.
// Return value: Decision of whether the optimistic GVN is performed.
1: let ans := false
2: for each φ function phi included in n
3: for each argument arg of phi
4: if (valueTable records the value number of arg as a key) continue
5: if (n dominates the corresponding predecessor)
6: Record (arg , 0) in hash-table valueTable.
7: ans := true
8: else
9: for each argument zarg that is assigned a value number 0 of phi
10: if (valueTable.get(zarg) = 0)
11: Remove the tuple of zarg from valueTable
12: return false
13: return ans

Function: checkPhiVal(n)
// Arguments: n is a node of dominator tree.
14: for each φ function phi included in n
15: Get a value number v of phi by value(phi).
16: Record (v, lhs(st)) in the local value occurrence table.
17: Get a φ function p included in samePhis corresponding to lhs(st).
18: if (v is different from a value number of p)
19: traverseDomTree(n, true)

Program 3.4 (Make path value occurrence table)

Function: makePathValueTable()
// Note: this function is performed on CFG.
1: let worklist := {succ(start)}
2: while worklist �= ∅
3: Get a node n by pop from worklist .
4: Let size be a size of n’s path value occurrence table pvot.
5: Add value numbers of n’s local value occurrence table into pvot.
6: for all p ∈ pred(n)
7: Add value numbers of p’s path value occurrence table into pvot.
8: if (size �= the size of pvot)
9: worklist .push(succ(n))

3.3.3 Query Propagation

In this section, we explain how query propagation of PREQP is extended
to EDDPRE. EDDPRE propagates a query that checks if some expressions

44

Chapter 3. Effective Demand-driven PRE

Is [7] redundant?

3

y₁=x₁+1
z₁=y₁
i₁=y₁+1
j₁=i₁

5

4
i₂=φ₄(i₃,i₁)

j₂=φ₄(j₃,j₁)

1

2

x₁=read()

a₁=x₁+2
i₃=i₂+1
j₃=j₂+1

6 b₁=x₁+3

[11]

[11]

[1]

[3]

[3]

[12]
[12]

[7]

[4]

[4]

[10]

(a)

3

y₁=x₁+1
z₁=y₁
i₁=y₁+1
j₁=i₁
t₁=x₁+2

5

4
i₂=φ₄(i₃,i₁)

j₂=φ₄(j₃,j₁)

1

2

x₁=read()

a₁=t₁
i₃=i₂+1
j₃=i₃

6 b₁=x₁+3

(b)

Figure 3.5: Effect of EDDPRE’s query propagation. (a) Original program.
(b) A result program.

have the same value number as e at each node. Before explain the detail of
extension, we show how query propagation of EDDPRE is carried out.

Example.
Consider the loop invariant expression x1+2 with value number is [7] at

Node 5 in Fig. 3.5 (a). EDDPRE propagates a query ”is [7] available?” to a
predecessor Node 4. There is no expression in Node 4 with value number [7];
therefore, the query is further propagated to two predecessors Nodes 3 and
5. Following this, the query propagated to Node 3 is further propagated to
Nodes 2 and 1 in this order, and then the answer false is returned to Node
4 as well as PREQP. By contrast, the query propagated to Node 5 obtains
the answer true because x1+2 itself is found at Node 5. The two answers
true and false mean that x1+2 is partially available at Node 4. Similar to
PREQP, EDDPRE makes it available by inserting the statement t1=x1+2

into Node 3 without checking its down-safety. Finally, EDDPRE replaces
x1+2 with t1, as shown in Fig. 3.5 (b).

Although PREQP performs a copy propagation for the replaced expres-
sion in order to change lexical representation of some expression, EDDPRE
disuses copy propagation because of checking value numbering. Further-

45

Chapter 3. Effective Demand-driven PRE

more, for the expression x1+3 at Node 6, the first occurrence of the value
number is Node 6; therefore, Node 5’s path value occurrence table does not
contain the value number. That is, EDDPRE results in false as soon as
propagating a query to only the predecessor Node 5 whereas PREQP has to
propagate a query to all the nodes.

End of Example.

To achieve this extension, EDDPRE redefines predicts, XAnswer , isReal ,
DownSafe, and Local , as follows:

Definition 3.3.1. XAnswer of equation (3.1) and isReal of equation (3.3)
are extended for checking value numbers and ignoring transparency as fol-
lows:

XAnswer(e, n)
def⇔ (n �= start) ∧ (Local(e, n) ∨NAnswer(e, n)) (3.6)

isReal(e, n)
def⇔ a value number of e occurs in n ∨

∑
p∈pred(n)

isReal(e, p)

Because EDDPRE checks occurrences with the same value as inquired
expression, the answer XAnswer is changed to ignore transparency that is
used in checking the lexical equality.

Definition 3.3.2 (Down-safety of EDDPRE). DownSafe of equation (3.5)
is also extended to check value numbers as follows:

DownSafe(e, n)
def⇔ (n �= end) ∧

∏
s∈succ(n)

Local(e′, s) ∨DownSafe(e′, s)

where e′ = transPhi(e, n, s)

Definition 3.3.3 (Rules for the local answer to a query). Local(e, n) is
redefined for checking occurrence of e’s value number by the following rules,
which are checked when a query is propagated to node n:

(1) If n is a node where the query has already been propagated, and the
value number of the current e is same as the previous one, the answer
is true.

(2) If n is a node where the query has already been propagated, and the
value number of the current e is different from the previous one, the
answer is false.

(2’) If n is a node where no value number of the query occurred on any path
from the start to the exit of n, and the value number is not dependent
on the φ function, the answer is false.

(3) If n is the original node of the query, and the original query is also the
same as the current query, both the answer and isSelf (e, n) are true.

46

Chapter 3. Effective Demand-driven PRE

(4) If n is a node where the value number of e has been recorded in its local
value occurrence table, both the answer and isReal(e, n) are true.

Pseudo Codes

To perform query propagation of EDDPRE, EDDPRE calls the function
eliminate shown in Program 3.5. For each expression, the function analyzes
local redundancies by localMap recording value numbers for occurrences at
the current node first. If the expression is locally redundant, it is replaced
with a variable holding the same value. Otherwise, it calls function propagate
to propagate a query after calling the function initialize for initializing the
global tables that are used to record expressions and value numbers in query
propagation. If the expression is redundant, it is replaced with the suitable
variable.

We describe the pseudo code of propagate in Program 3.6. propagate
determines an answer at the entry of node n after propagating queries to
predecessors. Lines 2–4 perform the preparation for propagating a new query
to the predecessors. transPhi of equation (3.2) is applied at line 2, and nep
is then introduced to hold the return value. After obtaining the new query
nep, a new value number of nep is determined at line 3, and the query is
then recorded in order to insert an expression into some predecessors at line
4. At line 5, function local is called to obtain an answer that corresponds
to XAnswer . Following propagations to all predecessors, the answer for n
is determined by the answers obtained from its predecessors under equation
(3.2). If the answer of this node is true, PRESR inserts expressions into the
predecessors where the answers are false, and then inserts the φ function.
Function local corresponds to equation (3.6).

Program 3.5 (Analysis redundancy)

Function: eliminate()
1: for each CFG node n in toporogical sort order
2: Make a local occurrence map localMap
3: for each statement st of n
4: if (¬isExp(rhs(st))∨ st is a trivial assignment) continue
5: Get a value number val of st by value(st).
8: if (localMap.containsKey(val))
9: let predVar := localMap.get(val)
10: Replace rhs(st) with predVar .
11: else
12: Put (val, lhs(st)) into localMap.
12: Initialize global tables used during propagating a query.
13: Let originalN be n.
15: if (propagate(rhs(st), n))
16: Replace rhs(st) with the introduced temporal variable.

47

Chapter 3. Effective Demand-driven PRE

Program 3.6 (Query propagation)

Function: propagate(e, n)
// Arguments: The inquired expression e, and visiting CFG node n.
// Return value: A tuple of isAvail , isReal , and isSelf that denote the
// answer of query at n, occurrence of e, and visited itself, respectively.
1: for each p ∈ pred(n)
2: Make a new array reference nep by transPhi(e, p, n).
3: Determine a value number valp of nep.
4: Record nep in order to insert it at the exit of p later if it is necessary.
5: (isAvailp , isRealp , isSelfp) = local(valp, nep, p)
6: if (Insertable(e, n) ∨∏

p∈pred(n) isAvailp) // equation (3.2)

7: Insert nep made at line 4 into predecessors whose isAvailp is false.
8: Insert a φ function into the entry of n.
9: return (true,

∑
p∈pred(n) isRealp ,

∑
p∈pred(n) isSelfp)

10: else
11: return (false, false, false)

Function: local(val, e, n)
// Arguments: The inquired expression e, and visiting CFG node n.
// Return value: A tuple of isAvail , isReal , and isSelf that denote the
// answer of query at n, occurrence of e, and visited itself, respectively.
12: if (n is the start node) return (false, false, false)
13: if (condition of Rule (1) is satisfied) return (true, false, false)
14: if (condition of extended Rule (2) is satisfied) return (false, false, false)
15: Record val in order to check Rules (1) and (2)
16: if (val is recorded in local value occurrence table of n)
17: if (n equals to originalN and e is same as the original expression)
18: return (true, true, true) // Corresponding to Rule (3)
19: else
20: return (true, true, false) // Corresponding to Rule (4)
21: else if (n’s path value occurrence table does not record val ∧

¬dependPhi(e))
// Corresponding to Rule (2’)

22: return (false, false, false)
23: else
24: return propagate(e, n)

3.4 Experimental Results

We implemented EDDPRE as a low-level intermediate representation con-
verter using a COINS compiler [24]. To evaluate the benefits of EDDPRE as
accurately as possible, we compared EDDPRE with PREQP and PRE*2,
which applies PRE twice and copy propagation once between them. We
used the machine with Intel Core i5-2320 3.00GHz as a CPU and Ubuntu
12.04 LTS as an OS.

48

Chapter 3. Effective Demand-driven PRE

Table 3.1: Execution time of objective code

Programs A.PRE*2 B.PREQP C.EDDPRE (A-C)/A (B-C)/B

equake 69.1 sec 65.2 sec 65.5 sec 5.2% -0.5%

art 35.7 sec 36.1 sec 33.6 sec 5.9% 6.9%

mcf 34.3 sec 33.7 sec 33.7 sec 1.7% 0.0%

bzip2 73.3 sec 77.3 sec 75.4 sec -2.9% 2.5%

gzip 103 sec 100 sec 99 sec 3.9% 1.0%

ammp 119 sec 118 sec 120 sec -0.8% -1.7%

vpr 68.4 sec 72.2 sec 65.9 sec 3.7% 8.7%

parser 102 sec 105 sec 104 sec -2.0% 1.0%

twolf 110 sec 110 sec 108 sec 1.8% 1.8%

Table 3.2: Analysis time

Programs A.PRE*2 B.PREQP C.EDDPRE (A-C)/A (B-C)/B

equake 1,949 msec 879 msec 677 msec 65.3% 23.0%

art 384 msec 423 msec 271 msec 29.4% 35.9%

mcf 998 msec 866 msec 374 msec 62.5% 56.8%

bzip2 1,018 msec 1,104 msec 745 msec 26.8% 32.5%

gzip 2,669 msec 1,952 msec 1,087 msec 59.3% 44.3%

ammp 10,959 msec 6,035 msec 3,532 msec 67.8% 41.5%

vpr 5,047 msec 4,574 msec 2,498 msec 50.5% 45.4%

parser 3,744 msec 3,945 msec 2,265 msec 39.5% 42.6%

twolf 36,012 msec 14,484 msec 10,546 msec 70.7% 27.2%

We evaluated the effects of EDDPRE using three programs (equake, art,
and ammp) from CFP2000 and six programs (mcf, bzip2, gzip, vpr, parser,
and twolf) from CINT2000 in the SPEC benchmarks.

Table 3.1 shows the execution time results for PRE*2, PREQP, and
EDDPRE. Regarding PREQP and EDDPRE, most of the programs were
improved or matched when using EDDPRE. In particular, the efficiency of
art and vpr were improved by about 6.9% and 8.7%, respectively. EDDPRE
can eliminate more redundancies than PREQP because EDDPRE uses op-
timistic value numbering. However, compared with PRE*2, moving loop
invariant expression speculatively may decrease the execution efficiency as
well as PREQP.

Table 3.2 shows the analyzing time results for PRE*2, PREQP, and ED-
DPRE, all of which were improved by applying EDDPRE. In particular, the
efficiency of twolf was improved by about 70.7% compared with PRE*2. The

49

Chapter 3. Effective Demand-driven PRE

Table 3.3: The time of query propagation

Programs A.PREQP B.EDDPRE (A-B)/A

equake 661 msec 265 msec 59.9%

art 311 msec 74 msec 76.2%

mcf 667 msec 79 msec 88.2%

bzip2 837 msec 279 msec 66.7%

gzip 1,447 msec 260 msec 82.0%

ammp 4,516 msec 1,102 msec 75.6%

vpr 3,369 msec 773 msec 77.1%

parser 2,964 msec 753 msec 74.6%

twolf 10,662 msec 2,635 msec 75.3%

Table 3.4: The number of nodes which query propagated

Programs A.PREQP B.EDDPRE A-B

equake 31,884 37,328 -5,444

art 10,149 5,949 4,200

mcf 10,271 3,503 6,768

bzip2 37,719 21,626 16,093

gzip 43,167 18,844 24,323

ammp 169,749 90,815 78,934

vpr 108,917 64,483 44,434

parser 96,056 53,484 42,572

twolf 497,177 343,105 154,072

efficiency of mcf was also remarkably improved by about 56.8% compared
with PREQP.

Furthermore, Table 3.3 shows the query propagation time results for
PREQP and EDDPRE, all of which were improved by applying EDDPRE.
In particular, the efficiency of mcf was remarkably improved by about 88.2%.
The number of nodes propagated by the queries using the two techniques
is shown in Table 3.4, where EDDPRE visited fewer nodes than PREQP
other than equake. PREQP does not generate queries for the expressions
with operands that are defined in the node, whereas EDDPRE generates
queries for the expressions because EDDPRE does not consider the defi-
nition. Thus, it is possible to that EDDPRE generates more queries than
PREQP. However, the analytical efficiency of EDDPRE was better than
PREQP, as shown in Table 3.3, because the answers to queries are obtained
immediately for non-redundant expressions and EDDPRE does not need to

50

Chapter 3. Effective Demand-driven PRE

apply copy propagation.

3.5 Related Work

The original PRE technique was proposed by Morel and Renvoise [57], which
uses bi-directional data-flow analysis. This technique can eliminate some
redundant expressions and move loop invariant expressions out of loops, but
some redundant expressions are not removed because the technique does not
insert expressions at not down-safe nodes.

In general, most PRE techniques increase the register pressure because
the live-range of variables are extended by inserting expressions. To suppress
the register pressure, a variant of PRE, LCM, was proposed [51, 52]. LCM
moves expressions as early as possible as the first code motion, and then
delays the expressions as late as possible as the second code motion. The first
code motion enables eliminating all of the removable expressions, and the
second one enables minimizing the live-ranges of the variables. Bodik et al.
proposed another variant of PRE that eliminates all redundant expressions
by copying certain parts of the program [5]. However, the copying process
can change the reducible loops into irreducible loops. It is not possible
for this technique to be used with other optimization techniques that are
assumed to be applied to reducible program. For such a technique, the
translation from an irreducible program into a reducible program may be
effective, but tends to increase the program size. These PRE techniques need
to apply copy propagation repeatedly to catch second-order effects. Kennedy
et al. proposed PRE on SSA, SSAPRE, which exploits the properties of the
SSA form [49]. SSAPRE produces a factored redundancy graph (FRG) for
each expression, and then applies PRE to the FRG, which decreases the
analyzing cost because of the sparse structure of the FRG. However, some
redundancies are not eliminated because SSAPRE is based on the lexical
equality of expressions.

GVN was extended from the local approach by Rosen et al. [67]. The
GVN utilizes a hash-table to record the value numbers of each node. Expres-
sions are moved up nodes to check whether the expression is recorded in the
hash-table of the node, and then redundant expressions are eliminated. This
technique uses query propagation and the loop information to analyze fully
redundancy; therefore, it depends on the control flow structure. Further-
more, the technique requires the iterative applications of copy propagation
repeatedly as well as PREQP. EDDPRE does not depend on any program
structure, and performs the analysis efficiently because it does not need to
use the loop information and copy propagation. Alpern et al. proposed an-
other GVN technique that uses partitioning on a dependence graph of SSA,
which is called value graph, to detect congruent expressions as candidates of
redundant expressions. Because their technique calculates congruent parti-

51

Chapter 3. Effective Demand-driven PRE

tions as maximal flow points, it can detect congruent expressions with some
induction variables [3]. However, redundancy elimination techniques based
on their congruence cannot handle some redundant expressions eliminated
by traditional techniques because of the value graph structure including φ
functions. Ruthing et al. proposed a technique that canonicalizes the value
graph with regard to the φ functions to remove the structure constraint [69],
but its analysis is costly. Nie and Cheng proposed a technique based on the
SSA form for sparse analysis, which eliminates as many redundant expres-
sions as Ruthing’s technique [59]. Click proposed a technique that extended
Alpern et al.’s technique by moving loop invariant expressions out of the
loops [21]. This technique requires the loop structure information because
it moves expressions downward without moving into the loop, after moving
upward speculatively.

Cooper and Xu proposed a technique that eliminates all of the fully re-
dundant load instructions, which combined GVN with common sub-expression
elimination [26]. This technique handles the redundancies by assigning a
value number to a tuple with the operator of the store/load instruction
and the value number of the address. VanDrunen and Hosking proposed
a technique that eliminates partially redundant expressions based on the
value number based method [81]. This technique defines the availability
and anticipability based on value number, but needs to be repeatedly ap-
plied to eliminate all of the redundant expressions because it is not based on
the data-flow equation of pure PRE. Odaira and Hiraki proposed the par-
tial value number redundancy elimination (PVNRE) that combines GVN
and PRE [60]. PVNRE maps the value numbers of the φ function and its
arguments to another value number to eliminate lexically different partial
redundancy. PVNRE defines that back edges are not transparent to pre-
vent the movement of expressions with induction variables outside of the
loop. The transparency of back edge means PVNRE is only applicable to
programs without any irreducible loop. By contrast, EDDPRE does not
depend on any control flow structure, and enables moving loop invariant
expressions outside the loop speculatively.

3.6 Summary

In this chapter, we proposed a new effective demand-driven PRE (EDDPRE)
that eliminates more redundant expressions than previous techniques by us-
ing optimistic value numbering and effective query propagation and record-
ing occurrences of the value numbers. To demonstrate its effectiveness, we
applied EDDPRE to several benchmark programs, which showed that ED-
DPRE improved efficiency of the analysis in all cases and the execution
efficiency of generated object code in most cases.

52

Chapter 4

Demand-driven Scalar
Replacement

In this chapter, we describe the algorithm of PRE-based scalar replacement
(PRESR). Section 4.1 explains the motivation for PRESR. Section 4.2 sum-
marizes the related works. Section 4.3 defines array reference representation.
Section 4.4 gives the details of PRESR. Section 4.5 shows experimental re-
sults to demonstrate the effectiveness of PRESR, and Section 4.6 summarizes
PRESR.

4.1 Motivation

PRE removes redundant expressions, and moves loop invariant expressions
out of loops. Traditional PRE lexically detects partially redundant expres-
sions based on data-flow equations, and then inserts expressions at suitable
points to make them fully redundant, thereby removing them. PRE is a
powerful code optimization technique; however, it poses two issues. First,
each application of PRE has the potential for exposing other redundant ex-
pressions; therefore, copy propagation must be performed to reveal their
lexical redundancy. The process tends to increase analysis costs. Second,
PRE cannot be applied across several loop iterations. This restriction does
not permit PRE to manage redundant expressions over some iterations, such
as array references with various induction variables as their indices.

To address the first issue, we have proposed EDDPRE that is defined in
Chapter 3. For each program represented in SSA form, EDDPRE applies
GVN, and then for each expression e, backwardly propagates a query to
determine if e is available in terms of its value number. An answer true
means that e is available on the path on which the query was propagated
whereas false means that it is not. The query generated at the origin of e is
duplicated every time it is propagated to a join point. Consequently, in case
where the answers are both true and false, EDDPRE inserts expressions

53

Chapter 4. Demand-driven Scalar Replacement

2

i₂=φ₂(i₁,i₃)
x₁=a[i₂-1]+1

a[i₂+1]=x₁

i₃=i₂+1

1 i₁=1

3

(a)

2

t₄=φ₂(t₃,t₂)

t₂=φ₂(t₁,x₁)

i₂=φ₂(i₁,i₃)
x₁=t₄+1

a[i₂+1]=x₁

i₃=i₂+1

1

i₁=1

t₁=a[i₁]

t₃=a[i₁-1]

3

(b)

Figure 4.1: Effect of PRESR. (a) Original program. (b) After applying
PRESR.

with the value numbers derived from e at each node where a false was
obtained in order to make e fully redundant.

In this chapter, we address the second PRE issue by extending EDDPRE
in order to remove redundant array references across several iterations of a
loop in a manner similar to scalar replacement [15, 16, 66]. We call this
extended EDDPRE PRESR. Compared to traditional scalar replacement
techniques, PRESR can remove redundant array references over iterations
with the following two features: 1) PRESR can be applied to any type of con-
trol flow structure without altering any loop structure, including irreducible
loops, and 2) PRESR determines the most appropriate insertion points in
a program through a single application. The first feature is useful because
changing program structures may increase its size and number of instruc-
tions, such as goto instructions. The second feature contributes to reducing
the number of instructions, such as trivial assignments and initializations.

PRESR propagates a query for each array reference. If the inquired array
reference has some induction variables in its index, and the related query is
propagated to the definition of the variable, then the query is modified by
replacing the induction variables with the right-hand side of the definition.
This modification enables a query to check previous iterations.

Example.
Consider the array reference a[i2-1] at Node 2 in Fig. 4.1 (a). PRESR

backwardly propagates a query ”Is the value number of a[i2-1] available?”

54

Chapter 4. Demand-driven Scalar Replacement

for the array reference from Node 2 to its predecessors, Node 1 and Node 2.
At this time, since there is a φ function that defines i2 and uses i1 and i3
as arguments at Node 2, queries regarding a[i1-1] and a[i3-1] are propa-
gated to Nodes 1 and 2 as well as EDDPRE. Once the query is propagated to
Node 1, false is obtained as an answer. On the other hand, for the query re-
garding a[i3-1] propagated to Node 2, the definition i3=i2+1 of i3 is found
at Node 2. Once a definition of an induction variable such as i3 has been
found, the variable is replaced with the right-hand side of its definition– in
this case i2+1 –to check availability in the previous iteration. Hence, a new
query regarding a[i2] is generated and continuously propagated. Further-
more, applying the same process to the a[i2] results in a query regarding
a[i2+1] at Node 2. Because an array reference, a[i2+1], identical to the
inquired expression is found on the left-hand side of a statement at Node 2;
therefore, the query gets the answer true. Consequently, as both true and
false are obtained at the predecessors of Node 2, a[i2] is found to be par-
tially available at Node 2. In this case, to make it available, PRESR inserts
a statement t1=a[i1] into Node 1, where the answer false was obtained.
Furthermore, to carry the value of x1 or t1 to the point where the query was
initiated, PRESR inserts a φ function t2=φ2(t1,x1) at the entry of Node 2.
Following the insertion, the answer of query a[i2] at Node 2 is found to be
true. Thus, once a query obtains an answer at a node, the answer is returned
to the successor node. Hence, true is returned through the back edge to the
successor 2. As a result, as well as the preceding process, true is obtained
at Node 2 for the initial query regarding a[i2-1] following the insertion of
statement t3=a[i1-1] into Node 1 and a φ function t4=φ2(t3,t2) into Node
2. The φ function contributes to carrying the value of a[i1-1] or a[i2+1].
Finally, PRESR replaces a[i2-1] with t4 as a redundant array reference,
as shown in Fig. 4.1 (b). Throughout this process, PRESR inserts compen-
sation code, such as t1=a[i1] and t3=a[i1-1], at the most suitable points
without checking the loop-nest level. Thus, PRESR can remove redundant
array references at any level in a nested loop, such as a2[i2-1] at Node 5
in Fig. 4.4.

End of Example.

The contributions of PRESR are summarized as follows:

• PRESR uses only pure SSA form for removing array references to be
redundant in some iterations.

PRESR can be easily implemented and combined with other SSA
based optimization techniques in any compiler.

• PRESR can be applied to irreducible as well as reducible loops, and
removes redundant array references at any nest-level in a nested loop.

55

Chapter 4. Demand-driven Scalar Replacement

Because query propagation does not depend on control flow struc-
tures, PRESR can be applied to programs that include some irre-
ducible loops, which may be generated by aggressive optimizations
[25], such as instruction aggregation [34] and removing redundan-
t/dead expression[5, 6], apart from the single application of traditional
scalar replacements.

• PRESR detects redundant array references, simultaneously inserting
initializations for scalar temporaries, the insertion points suitable for
which are globally determined as compensation code.

Traditional scalar replacement techniques first detect redundant array
references and then determine where to insert the compensation code.
PRESR inserts array references and φ functions as compensation code,
based on the answers returned from each query.

• PRESR removes redundant array references on demand.

It is known that demand-driven analysis of PRE is more efficient than
exhaustive analysis techniques [78].

4.2 Related Work

In this section, we compare PRESR with traditional scalar replacement and
register promotion studies, revealing the differences between them.

4.2.1 Scalar Replacement

Scalar replacement is a code optimization technique that removes reuses
of array references beyond loop iterations, to improve the effect of register
allocation. The first technique was proposed by Callahan et al. [15]. Their
technique detects redundancy by using a dependence graph; therefore, it is
able to remove redundant array references included only in the innermost
loops that consist of only one basic block.

Carr and Kennedy extended the original technique to manage control
flow by incorporating PRE [16]. This is one of the most general techniques
for scalar replacement; however, it includes an assumption regarding control
flow that may limit its usefulness. The assumption is that this technique
can be applied only to the innermost loops which have to be reducible.

Rishi et al. proposed a scalar replacement based on array SSA form that
can manage control flow within and across loop iterations [66]. Their tech-
nique extended array SSA form, which is proposed in [33], to capture the
availability of previous iterations by inserting header φ nodes at loop head-
ers. To insert the nodes, it is necessary to assume that every loop has only

56

Chapter 4. Demand-driven Scalar Replacement

one incoming edge. Thus, their technique cannot remove array references
that are included in irreducible loops. Although irreducible loops can be
converted to reducible ones, the conversion process increases program size
and analyzing costs. In addition, their technique introduces scalar tempo-
raries that contain the values of redundant array references and removes the
array references by replacing them with the temporaries. These processes
are performed on the original input program. The code to initialize the
scalar temporaries is inserted in the loop preheader. After transforming the
program, the array SSA form must be reconstructed before any subsequent
phase that eliminates redundant memory instructions, because the array
SSA form depends on the occurrence of memory operations. These analyz-
ing and transforming processes must be applied iteratively in each nesting
level of the loop-nest tree beginning with the innermost loop, to remove all
redundant array references.

In contrast, the process of analysis and transformation programs used in
PRESR is comparatively simpler. If array references are determined to be
partially available at certain nodes, modified array references are inserted
in nodes that return false as a query answer. Because the propagation is
independent of the control flow structure, array references can be inserted
in the most appropriate nodes over the entire program, e.g. moving loop
invariant array references out of loops over the several nesting levels of them.
In addition, PRESR inserts φ functions to capture different values as well as
EDDPRE, because PRESR is performed on pure SSA form. The φ functions
can also enable reusing values across iterations. That is, PRESR does not
require inserting copy assignments in loop bodies, unlike traditional scalar
replacement techniques. This process can also be applied to irreducible loops
as well as reducible loops without transforming loop structures, including
zero-trip loops.

4.2.2 Register Promotion

Lu and Cooper proposed a register promotion that moves explicit memory
references outside loops by using point-to analysis with data-flow analysis
[56]. Lo et al. proposed a technique based on sparse PRE [55]. Their
technique constructs a loop-nest tree, and then it speculatively moves mem-
ory references outside loops. These techniques replace memory references
with register references, similarly to scalar replacement; however, these tech-
niques do not remove redundancies across several iterations.

Bodik et al. proposed a path-sensitive register promotion that detects
numerous redundant references across several iterations [7]. Their technique
is based on a value name graph (VNG), which consists of address value slices.
First, symbolic slices of the address operand are created by backwardly prop-
agating addresses on the CFG. Then, the equality among the slices, which
are initially separated, is exposed by GVN, so that address value slices are

57

Chapter 4. Demand-driven Scalar Replacement

obtained. Their technique assumes that the redundancies are removed on
the VNG. The VNG creation process is similar to the analysis in PRESR, be-
cause these processes use GVN and backwardly propagate addresses or array
references on the CFG. However, PRESR removes them immediately after
detecting the redundancy, by speculative movement. PRESR can remove
redundant array references more rapidly than the Bodik et al.’s approach.

4.3 Array Reference Representation

We assume that every array reference appears only in either the left-hand
side or the right-hand side of a statement. That is, a procedure call f(a[i])
is split into two statements such as t = a[i] and f(t), and a store statement
with nested array references a[i] = a[a[i − 1]] is split to three statements
such as t = a[i− 1], t0 = a[t] and a[i] = t0.

Similar to EDDPRE, each CFG node represents a basic block in PRESR.
In case where store statements can be executed between load statements that
access the same address, the results of the load operations may be different.
To distinguish these load statements, the different versions are attached to
the name of the arrays in the same way as scalar SSA form, such as a1[i1].

We assume that the assignment to an array element defines the array
itself; therefore, the name of the array is distinguished for each definition
of the element. In addition, our SSA form increments the version number
for arrays where a φ function is inserted in scalar SSA form. These version
numbers for the arrays are managed in hash-table arrayVersion[n]. This
hash-table is used to determine which version number was the largest at the
exit of each node whenever a query has been propagated to predecessors.

Example.
Consider the array reference a3[i1] at Node 4 in Fig. 4.2. Because there

is a store statement at Node 3, the version number is incremented. If it was
the definition of a scalar variable, a φ function would be inserted at the entry
of Node 4. However, it is an array reference; therefore, as mentioned above,
PRESR implicitly increments the version number at nodes where φ functions
should be inserted in scalar SSA form, instead of inserting the φ function.
Thus, in our SSA form, the left-hand side of the store statement, a2[i1], is
lexically different from a3[i1] in Fig. 4.2, although they contain the same
value. To detect the redundancy, PRESR changes the version number when
propagating a query to each predecessor by using arrayVersion shown in
Table 4.1. For example, in Fig. 4.3, PRESR identifies that the a3[i1] is
partially redundant by propagating a1[i1] and a2[i1] to predecessors 2 and
3, respectively. Finally, the result shown in Fig. 4.3 can be obtained.

End of Example.

58

Chapter 4. Demand-driven Scalar Replacement

z₁=a₃[i₁]4

1

2 3
x₁=a₁[i₁]

a₂[i₁]=i₁

Is the value number
of a₂[i₁] available?

Is the value number
of a₁[i₁] available?

Figure 4.2: An example program after attaching versions for arrays. When
PRESR propagates a query for a3[i1], its attached version is changed by
using arrayVersion, as displayed in Table 4.1.

Table 4.1: arrayVersions from Fig. 4.2
node number array version

1 1

2 1

3 2

4 3

t₂=φ₄(i₁,t₁)

z₁=t₂
4

1

3
x₁=a₁[i₁]

a₂[i₁]=i₁
2 t₁=a₁[i₁]

Figure 4.3: Resulting program after applying PRESR to Fig. 4.2.

4.4 Demand-driven Scalar Replacement

PRESR extends optimistic GVN and query propagation of EDDPRE to
manage array references. In particular, in the query propagation, some
operands of inquired expression have to be replaced with the right-hand
side of their definitions when the query is propagated to their definitions in
order to achieve the query propagation across several iterations.

59

Chapter 4. Demand-driven Scalar Replacement

4.4.1 Value Numbering for Array References

In addition to assigning a value number to each scalar expression, as defined
in Section 3.3.2, PRESR also assigns value numbers to array references.
The value number of an array reference a1[i1] is defined by the tuple of an
operator [] and the value numbers of the start address a1 and index i1. If
the same tuple is found in the hash-table, its value number is assigned to
the array reference; otherwise, a new value number is assigned to the array
reference. Subsequently, the value number is recorded, rending the tuple a
key in the hash-table. Similar to scalar expressions, these value numbers are
recorded in the local value occurrence table and the path value occurrence
table at each CFG node.

4.4.2 Redundancy Removal over Iteration

PRESR propagates a query for each array reference. The query propagation
is basically same as EDDPRE, except for three extensions. First, Local is
modified to allow a query to iteratively visit the same node, considering
aliases. Second, XAnswer is modified for replacement of variables. Third,
PRESR weakens the condition for speculative insertion in order to increase
opportunities for removing redundant array references.

Extension of Local .

As shown how PRESR removes redundant array reference beyond the loop
iterations with the motivation example in Section 4.1, a query should be
iteratively propagated to a node. Moreover, for safe code motion, the aliases
of memory references must be checked. The modified rules of Local are as
follows:

Definition 4.4.1 (Rules for a local answer to a query). Local(e, n) is re-
defined for iteratively propagating queries to a node by the following rules,
which are checked when a query is propagated to node n:

(1) If n is a node where the query has already been propagated, and the
value number of the current e is same as the previous one, the answer
is true.

(2) If n is a node where the query has already been iteratively propagated
beyond a certain number of times, according to the number of bound-
aries, and the value number of the current e is different from the
previous one, the answer is false.

(2’) If n is a node where no value number of the query occurred on any path
from the start to the exit of n and the value number is not dependent
on the φ function, the answer is false.

60

Chapter 4. Demand-driven Scalar Replacement

(3) If n is the original node of the query, and the original query is also same
as the current query, both the answer and isSelf (e, n) are true.

(4) If n is a node where the value number of e has been recorded in its local
value occurrence table, both the answer and isReal(e, n) are true.

(4’) If n contains any aliases of store statements, the answer is false.

Rule (2) of EDDPRE returns false if a query has already propagated
twice to the same node. PRESR increases the number until it is the same
as a threshold that is initially given as a parameter visitLimNum.

Extension of XAnswer .

To check redundancy in a previous iteration, PRESR extends equation (3.6)
to replace each variable with the right-hand side of its definition, and then
checks redundancy for the new query. Let replaceOp(e, n) be a function
that performs the replacement of the variable of e if n is a node where the
operands are defined.

Definition 4.4.2 (XAnswer of PRESR). Let e′ be the result of replaceOp.
To replace variables, XAnswer is redefined as follows:

XAnswer(e, n)
def⇔ (n �= start) ∧ (Local(e, n) ∨{

NAnswer(e, n) if e = e′

Local(e′, n) ∨ NAnswer(e′, n) otherwise
) (4.1)

XAnswer(e, n) first checks the occurrence of the value number of e if
n is different from the start node. If the value number does not occur in
n, replaceOp is called. The result of the replacement is represented as e′.
Following the replacement, XAnswer checks the occurrence of the new value
number of e′. If there is no occurrence of the new value number in n, a query
for e′ is propagated to predecessors by NAnswer .

Extension of speculative insertion.

PRESR weakens the condition for the speculative insertion. This insertion is
performed when some variables in an expression are replaced with the right-
hand side of their definitions. This extension increases the opportunity for
removing redundant array references.

Example.
Consider the a2[i2-1] at Node 6 in Fig. 4.4 (a). a2[i2-1] has the same

value as the a2[i2+1], which is defined two iterations prior, and a2[i2+1] is
outside the innermost loop. The redundant array reference can be removed

61

Chapter 4. Demand-driven Scalar Replacement

i₁=1

i₂=φ₃(i₁,i₃)

j₁=i₂

j₂=φ₆(j₁,j₃)
b₃[j₂+1]=a₂[i₂-1]+b₂[j₂-1]

j₃=j₂+1

i₃=i₂+1

1

3

4

5

6

7

a₂[i₂+1]=c₁[i₂]

2

(a)

t₉=φ₆(t₈,t₇)

t₇=φ₆(t₆,t₁)

j₂=φ₆(j₁,j₃)
t₁=t₅+t₉

b₃[j₂+1]=t₁

j₃=j₂+1

i₃=i₂+1

t₅=φ₃(t₄,t₃)

t₃=φ₃(t₂,t₀)

i₂=φ₃(i₁,i₃)
3

j₁=i₂

t₆=b₂[j₁]

t₈=b₂[j₁-1]

4

5

6

7

t₀=c₁[i₂]

a₂[i₂+1]=t₀

1

2
t₂=a₁[1]

t₄=a₁[0]

i₁=1

(b)

Figure 4.4: Effect of PRESR. (a) Original program. (b) After applying
PRESR.

by inserting two statements, t2=a1[1] and t4=a1[0], into Node 2, and two
φ functions, t3=φ3(t2,t0) and t5=φ3(t4,t3), into Node 3 as shown in Fig.
4.4 (b). However, Node 2 is not down-safe for these two statements. That
is, in order to remove the array reference, the array references should be
speculatively inserted. Note that although b2[j2-1] can be removed by
traditional scalar replacement techniques, they cannot remove a2[i2-1] by
single application.

End of Example.

62

Chapter 4. Demand-driven Scalar Replacement

Definition 4.4.3 (Insertion of PRESR). To speculatively insert array ref-
erences, Insertable (equation (3.4)) is redefined as follows:

AlgRepl(e, n)
def⇔ e �= replaceOp(e, n) ∨

∑
p∈pred(n)

AlgRepl(e, p) (4.2)

Insertable(e, n)
def⇔

∑
p∈pred(n)

isReal(e, p) ∧

(DownSafe(e, n) ∨
∑

p∈pred(n)
isSelf (e, p) ∨ AlgRepl(e, p))

AlgRepl(e, n) indicates that some variables of e are replaced with the
right-hand side of the definition at n, or there are predecessors of n that
satisfy this predicate.

Pseudo Codes

We show pseudo codes of PRESR’s query propagation in Program 4.1 and
Program 4.2 that define functions propagate and local . PRESR extends
function propagate to check whether some operands are replaced with the
right-hand side of their definition for calculating AlgRepl of equation (4.2)
at line 6. Further, PRESR extends function local to check the extended
Local property at lines 11–17.

Program 4.1 (Query propagation)

Function: propagate(e, n)
// Arguments: The inquired expression e, and visiting CFG node n.
// Return value: A tuple of isAvail , isReal , and isSelf that denote the
// answer of query at n, occurrence of e, and visited itself, respectively.
1: for each p ∈ pred(n)
2: Make a new array reference nep by transPhi(e, p, n).
3: Determine a value number valp of nep.
4: Record nep in order to insert it at the exit of p later if it is necessary.
5: (isAvailp , isRealp , isSelfp) = local(valp, nep, p)
6: algRepl [n] :=

∑
p∈pred(n) algRepl [p]

7: if (Insertable(e, n) ∨∏
p∈pred(n) isAvailp) // equation (3.2)

8: Insert nep made at line 4 into predecessors whose isAvailp is false.
9: Insert a φ function into the entry of n.

10: return (true,
∑

p∈pred(n) isRealp ,
∑

p∈pred(n) isSelfp)
11: else
12: return (false, false, false)

63

Chapter 4. Demand-driven Scalar Replacement

Program 4.2 (Analysis occurrence of value number)

Function: local(val, e, n)
//Arguments: A value number val, the inquired array reference e, and visiting
// CFG node n.
// Return value: A tuple of isAvail , isReal , and isSelf .
1: if (n is the start node) return (false, false, false)
2: if (the condition of Rule (1) is satisfied) return (true, false, false)
3: if (the condition of extended Rule (2) is satisfied) return (false, false, false)
4: Record val in order to check Rules (1) and (2)
5: Increment the visited number of n
6: if (val is recorded in local value occurrence table of n)
7: if (n equals to originalN and e is same as the original expression)
8: return (true, true, true) // Corresponding to Rule (3)
9: else

10: return (true, true, false) // Corresponding to Rule (4)
11: else if (some operands of e are defined in n)
12: Make new array reference ne by replaceOp.
13: Let nval be a value number of ne.
14: algRepl [n] := (ne �= e)
15: return local(nval, ne, n, true)
16: else if (the condition of Rule (4’) is satisfied)
17: return (false, false, false)
18: else
19: return propagate(e, n)

4.5 Experimental Results

We implemented PRESR as a low-level intermediate representation con-
verter using a COINS compiler. We evaluated the effects of PRESR using
loops from four programs (gzip, parser, bzip2, and twolf) from CINT2000,
and two programs (art and equake) from CFP2000 in the SPEC bench-
marks. We conducted various experiments on a machine equipped with a
Xeon E5-1660 3.3GHz CPU and Debian 64bit OS. We set 3 to visitLimNum
in this experiment, because this number is sufficient to detect redundancy
for SPEC2000 benchmark programs.

To evaluate the benefits derived from PRESR, we compared it with TSR,
as follows:

TSR applies traditional scalar replacement that is proposed in [16].

PRESR converts normal form to SSA form, applies PRESR, and converts
SSA form back to normal form.

Table 4.2 and Table 4.3 list the execution time and dynamic load instruc-
tion count that was measured by PAPI [62] interface when TSR and PRESR
were applied to the loops of the programs listed above. The performances

64

Chapter 4. Demand-driven Scalar Replacement

Table 4.2: Results of execution time
Program TSR Time (sec) PRESR Time(sec) Improvement

gzip 77.1 76.0 1.4%

parser 85.0 83.7 1.5%

bzip2 64.6 63.4 1.9%

twolf 100 97.9 2.1%

art 32.6 31.5 3.4%

equake 27.7 27.0 2.5%

Table 4.3: Results of the dynamic number of load statement

Program TSR Loads PRESR Loads Decrease

gzip 9.17E+10 8.58E+10 6.4%

parser 1.41E+11 1.34E+11 4.4%

bzip2 1.06E+11 9.71E+10 8.1%

twolf 1.04E+11 9.93E+10 4.8%

art 7.13E+10 5.12E+10 28.2%

equake 7.83E+10 7.15E+10 8.7%

of all the programs were improved when PRESR was applied. In particular,
the execution efficiency of art was improved by about 3.4%. The dynamic
number of executed load instructions for art decreased about 28.2%.

Next, we evaluated the analysis costs of PRESR, to demonstrate that
PRESR’s analysis is more efficient than the iterative application of the ex-
haustive technique. In this evaluation, we compared PRESR with PRE*2
and EDDPRE MEM, as follows:

PRE*2 applies PRE twice, and also applies copy propagation between the
two applications of PRE.

EDDPRE MEM applies EDDPRE only to array references.

Figure 4.5 shows the ratio of analysis time of EDDPRE MEM and PRESR
to PRE*2. As demonstrated by the results, comparing PRESR with PRE*2,
all programs were improved by applying PRESR. In particular, the improve-
ment was about 67.9% in twolf. In contrast, comparing PRESR with ED-
DPRE MEM, the analysis cost increased twice in all programs, though the
number of iterative visits was less than visitLimNum.

In general, scalar replacement uses register spill moderation to suppress
spills. In the evaluation, we applied only PRESR or traditional scalar re-
placement without the register spill moderation. It is straightforward to
combine PRESR with the register spill moderation, because PRESR can
simply decide not to be redundant without query propagation if the register

65

Chapter 4. Demand-driven Scalar Replacement

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

EDDPRE_MEM PRESR

gzip parser bzip2 twolf art equake

Figure 4.5: Ratio of analyzing costs, compared with exhaustive style of PRE.

spill moderator determines that registers are full. In addition, it would be
effective to preferentially remove more costly array references such as [66].
If PRESR could had a list of array references sorted according to their cost,
it could stop removing them in the case of no register available for removing
them.

4.6 Summary

In this chapter, we proposed a demand-driven scalar replacement technique
called PRESR that can remove all redundant array references from any
level of loop in a single application without restriction to input control flow
structures. PRESR removes redundant array references by applying query
propagation. To detect redundancies across several iterations, the operand
of the query is replaced with the right-hand side of the definition statement,
if the query is propagated to a node that includes the statement. To show
its effectiveness, we applied PRESR to several benchmark programs. The
result showed that PRESR improved the execution efficiency of objective
code in all cases. In future work, we intend to devise an additional tech-
nique to removes unnecessary store instructions based on query propagation
techniques such as PRESR.

66

Chapter 5

Global Load Instruction
Aggregation

In this chapter, we describe the algorithm of multidimensional global load in-
struction aggregation (MDGLIA). Section 5.1 explains the motivation of this
technique. Section 5.2 summarizes the related works. Section 5.3 gives pre-
liminary definitions needed for the purpose of explaining MDGLIA, and sum-
marizes lazy code motion (LCM). Section 5.4 gives the details of the exten-
sion of LCM to MDGLIA. Section 5.5 shows experimental results to demon-
strate the effectiveness of MDGLIA. Section 5.6 summarizes MDGLIA.

5.1 Motivation

Most modern processors have some cache memories that are much faster
than a main memory. Whenever the processor needs the data at address
x in main memory, cache memory is checked whether a copy of the data is
stored in the cache memory first. At this time, it is called cache hit if the
data at x is found in cache memory; otherwise, it is called cache miss. In
the case of the cache hit, because the data is obtained without any accessing
main memory, the program is executed without stalling. Conversely, once
the cache miss occurs, the processor fetches the data around x in the main
memory and places them in the cache memory for cache hits later. In this
case, the reference to x not only causes significant delay because of the
fetching but also removes the old data in the same cache line. This means
that continuous accesses to addresses that are distant each other in the
main memory may result in cache misses, which can decrease the execution
efficiency of the program.

Once a data at a specific array index is loaded from main memory, it
is placed in cache memory along with other data belonging to the same
array. Therefore, if the accesses to the same array are executed contin-
uously, they may contribute to the cache hits. Furthermore, considering

67

Chapter 5. Global Load Instruction Aggregation

void main(){

 x=a[i][j]

 y=a[k][l]

 z=a[i][j+1]

}

00

01

10

11

a[k][l+1]

a[k][l]

a[i][j]

a[i][j+1]

・
・
・

・
・
・

0011

0100

1011

1100

・
・
・

a[i][j] a[i][j+1]

Figure 5.1: An example of a cache miss that is a target of MDGLIA.

that a multidimensional array represents an array of lower dimensional ar-
rays, preferentially aggregating references with same indexes more in higher
dimensions may further decrease cache misses.

Example.
Consider the array reference a[i][j+1] in Fig. 5.1. In this chapter,

for ease of explanation, we assume that cache memory is directly mapped
without loss of generality. That is, when the data are transferred from
the main memory to the cache memory, the cache line is determined by
the memory address modulo of the number of lines in the cache memory.
The referenced data of a[i][j+1] is copied on the cache memory after the
execution of array reference a[i][j], but the execution of a[k][l] may
expel it. Therefore, a[i][j+1] will get a cache miss. However, this cache
miss can be prevented by moving a[i][j+1] immediately before a[k][l].

End of Example.

We present a new cache optimization technique, MDGLIA, that contin-
uously aggregates the array references with the same indexes more in higher
dimensions. MDGLIA extended LCM to aggregate array references, without
sacrificing the removal effects of redundant expressions. MDGLIA computes
how many indexes of each array reference preceding a moved candidate are
same as ones of the candidate, and then MDGLIA moves the candidate to
the program points close to the references with the same indexes most in
higher dimensions.

Example.
Consider array references in Fig. 5.2 (a). Aggregation is applied to each

array reference traversing CFG in the topological sort order. First, MDGLIA
moves the array reference a[k][l] immediately before the array reference
b[i] because the execution of b[i] between a[i][j] and a[k][l] may

68

Chapter 5. Global Load Instruction Aggregation

5

6

z=a[k][l]

w=a[i][j+1]

1

3

2

7

x=a[i][j]

4 y=b[i]

(a)

5

6

z=t

w=t’

1

3

2

7

x=a[i][j]

4 y=b[i]

6’

5’ t=a[k][l]

t’=a[i][j+1]

(b)

Figure 5.2: Effectiveness of MDGLIA. (a) Original code. (b) Result of
applying MDGLIA.

cause the data of a[k][l] to be removed from the cache memory if the
data of b[i] shares some cache lines for a[k][l]. Here, MDGLIA makes
a new Node 5’ for the moved array reference. Next, consider a[i][j+1] at
Node 6. Although a sub-array a[i] is accessed at Nodes 3 and 6, another
array b and sub-array a[k] are accessed between them. Hence, the data of
a[i][j+1] may be removed from the cache memory after the execution of
them. MDGLIA moves a[i][j+1] immediately before a[k][l] as shown
in Fig. 5.2 (b).

End of Example.

The advantages of MDGLIA are summarized as follows:

• MDGLIA not only removes redundant array references but also de-
creases the number of cache misses, considering array dimensions.

• MDGLIA suppresses spills without decreasing the effect of preventing
cache miss.

5.2 Related Work

5.2.1 Cache Optimization

Once a data in the memory is used, it tends to be used again in the near
future, and the data stored around it tends to be used in much of the
program. These two phenomena are called temporal locality and spatial

69

Chapter 5. Global Load Instruction Aggregation

locality, respectively, which are utilized in order to improve the execution
efficiency of the programs through cache memories. Popular techniques for
enhancing the localities are due to transforming loop structures [1, 4, 44].
Although these techniques often greatly improve the execution efficiency of
a program, its application tends to be limited to specific control structures
such as a simple loop. However, MDGLIA is based on global code motion,
which does not have to change the control structure of a program; therefore,
MDGLIA can be applied to any programs.

There are some techniques that improve cache efficiency based on data
layout. Cache-conscious data placement (CCDP) [14] reduces the cache
conflict misses by considering the data layout. CCDP uses the temporal
relationship graph (TRG). In the TRG, the nodes represent objects (e.g.,
functions, arrays, and global variables) to be placed into the data cache.
The edges between the objects represent the estimated number of cache
misses that would occur if the two objects mapped to the same cache set. A
compiler assigns addresses to the objects based on the conflict cost metric
calculated for the TRG so as to minimize the cache conflict misses. Although
CCDP can reduce the cache conflict misses for a processor core with a single
execution context, it loses much of its benefit in a multithreaded environment
because inter-thread conflicts are not deterministic. Sarkar and Tullsen
proposed a technique that extends CCDP to multithreaded architectures
[71]. In their technique, the extra cost is generated so that threads share
objects in cache blocks is added to each TRG edge as weight. Similar to
CCDP, the compiler assigns addresses to the objects using a TRG so as
to minimize the cache conflict misses cost. As another technique based on
the object layout, Ishitobi et al. proposed a technique for suppressing the
energy consumption of on-chip memory by considering memory allocation
on a processor that has cache memory and scratchpad memory [47]. Their
technique considers a cacheable region, a scratchpad region, and a non-
cacheable regions so as to minimize the total energy consumption and the
number of cache misses. These approaches deal with memory allocation
methods for data but not the ordering method of the execution code.

5.2.2 Removing Redundant Expressions

The original PRE technique was proposed by Morel and Renvoise [57], which
uses bi-directional data-flow analysis. This technique can eliminate some
redundancies and move loop invariant expressions out of loops, but some re-
dundant expressions are not removed because the technique does not insert
expressions at non down-safe nodes. Dhamdhere extended this technique
to insert expressions on edges [28], and Dhamdhere and Patil proposed an-
other technique that removes redundancies based on uni-directional data-
flow analysis [30]. Bodik et al. proposed the removal of all redundant expres-
sions by copying certain parts of the program [5]. Kawahito et al. proposed

70

Chapter 5. Global Load Instruction Aggregation

a technique that removes partially redundant load and store instructions by
extended PRE [48]. These techniques remove redundant expressions, but
decreasing the number of cache misses is out of their target.

As another technique based on code motion, there is a speculative code
motion technique [55], which speculatively moves load instructions out of
loops. This technique needs to recognize loop structures, whereas MDGLIA
can be applied to an entire program without recognizing them, because
MDGLIA is based on PRE.

5.3 Background

5.3.1 Program Representation

We assume that MDGLIA is applied to the intermediate representation con-
verted from a source program, which is represented as a sequence of state-
ments with at most an operator or a function, and to CFG each node of
which represents a single statement rather than a basic block. The right-
hand side of an assignment is called an expression. Some statements include
load and store instructions with memory access, which is described as an ar-
ray reference, e.g., a[i][j] with address a and indexes i and j. The statement
loading the data at memory location a[i][j] into a virtual register x is ex-
pressed as assignment statement x = a[i][j], which we call a load statement.
Similarly, a statement storing the data in a virtual register x to a memory
location a[i][j] is expressed as a[i][j] = x, which we call a store statement.

We assume that the memory access solely appears in assignment. That
is, a procedure call f(a[i][j]) is split into two statements such as t = a[i][j]
and f(t). In addition, a store statement with a nested array reference
a[i][j] = a[b[i]][k] is split to three statements such as t = b[i], t0 = a[t][k] and
a[i][j] = t0. Moreover, the load statement includes a temporary virtual reg-
ister instead of original virtual register in the left-hand side. For example,
the load statement i = a[i][j] is split into two statements such as t = a[i][j]
and i = t by introducing a temporary virtual register t. We assume that any
arrays are laid out in row-major order on the memory such as arrays in C,
which means that the leftmost index corresponds to the highest dimension
of the array.

5.3.2 Lazy Code Motion

PRE tends to lengthen the live-ranges of variables carrying loaded values to
their uses because it removes redundant expressions by inserting some ex-
pressions. LCM tries to address the problem by hoisting expressions as early
as possible and delaying them as late as possible. The hoisting contributes
to eliminating all removable expressions, and the delaying contributes to
minimizing the live-ranges of variables.

71

Chapter 5. Global Load Instruction Aggregation

1

32

4

x=a[i]

y=a[i]

t=a[i]

hoisting

(a)

1

32

4

x=a[i]

y=a[i]

t=a[i]

delaying
t=a[i]

(b)

Figure 5.3: Code motions of LCM. (a) Hoisting expressions. (b) Delaying.

1

3

4 y=t

t=a[i]

2 x=t

2’ t=a[i]

Figure 5.4: Result of applying LCM to Fig. 5.3 (a).

Example.
Consider an array reference a[i] at Node 4 in Fig. 5.3 (a). This array

reference is partially redundant because it is redundant on a path through
Node 2 whereas it is not on another path through Node 3. To remove this
array reference, LCM determines CFG nodes at which array references can
be inserted first. If it is inserted at Node 1, it is able to remove the redundant
array reference by replacing the reference with the introduced temporary t.
Notice here that, the live-range of t is lengthened; therefore, LCM delays
the insertion node, as shown in Fig. 5.3 (b). Finally, LCM inserts the array
references at Nodes 2 and 3, and then it replaces the original a[i] with t,
as shown in Fig. 5.4.

End of Example.

These code motions have to satisfy two kinds of safeties: down-safety and
up-safety. Down-safety is used to ensure that LCM does not introduce a new
occurrence of the inserted expression on any execution path. Down-safety is
represented by predicate DownSafe. In addition, up-safety is used to ensure

72

Chapter 5. Global Load Instruction Aggregation

that there are some paths where the number of expressions is decreased by
the insertions and removals. Up-safety is represented by predicate UpSafe.
These safeties are defined under the condition of transparency that ensures
that the value of an expression does not change at the program points of
concern. LCM represents it by predicate Transp. Because the up-safety
is one of the most important predicates of MDGLIA, we show the formal
definition.

UpSafe(n)
def⇔ (n �= start) ∧∏

p∈pred(n)
Comp(p) ∨ (Transp(p) ∧ UpSafe(p)) (5.1)

where the predicate Comp(n) denotes that node n includes a same expres-
sion.

Example.
As shown in Fig. 5.3 (a), DownSafe of Nodes 1, 2, and 3 are true because

of no modification for i nor a[i] at Nodes 2, 3, and 4. In contrast, UpSafe
of all nodes are false. Because no occurrence of the array reference on a
path from Node 1 to Node 3, UpSafe(4) is false. Others nodes’ UpSafe is
obviously false.

End of Example.

LCM determines two kinds of insertion nodes based on the predicates
Earliest and Latest , which determine insertion points in two code mo-
tions mentioned above, respectively. The predicate Earliest(n) denotes that
node n is the closest to start of the nodes m satisfying DownSafe(m) or
UpSafe(m). The predicate Latest(n) denotes that node n is the closest to
the node c that satisfies Comp(c) on each path from Earliest to end, and
there is no node that satisfies the Comp on the path from Earliest to c.
Latest(n) is defined on the basis of maximal fixed points of the data-flow
equation for the predicate Delayed(n), which denotes that the expression
can be delayed until the exit of node n.

Example.
Consider the a[i] in Fig. 5.3 (a). First, LCM decides that Earliest(1)

is true because DownSafe(1) is true, and this node is the closest to the
start node. Then, LCM delays the insertion points through the decisions of
Delayed and Latest , which result in true for Comp(2), false for Delayed(4),
and true for Latest at Nodes 2 and 3.

End of Example.

Here, asDelayed is also one of the most important predicates for MDGLIA,
we present the formal definition.

73

Chapter 5. Global Load Instruction Aggregation

Delayed(n)
def⇔ Earliest(n) ∨

(n �= start) ∧
∏

p∈pred(n)
¬Comp(p) ∧Delayed(p) (5.2)

LCM inserts expressions at the entry of nodes n satisfying the predicate
Insert(n), which denotes that n is one of nodes satisfying Latest . Note that
LCM does not insert any expression without decreasing the number of ex-
pressions on some paths, because such insertions are unnecessary. Therefore,
Insert(n) is defined as Latest(n) ∧ ¬Isolated(n) on the basis of the predi-
cate Isolated(n) which denotes that the insertion at n enables removing no
expression other than original one.

5.4 Array Reference Aggregation

MDGLIA aggregates each array reference ar traversing CFG in the topolog-
ical sort order. Similar to LCM, MDGLIA calculates DownSafe, UpSafe,
Earliest , Delayed , and Latest to determine nodes to move ar. In the delaying
process, MDGLIA checks start addresses and the number of corresponding
indexes of array references to aggregate them while considering the order of
accesses to arrays.

5.4.1 Local Properties

For the checking addresses, MDGLIA defines local properties SameAddr ,
Transpe, TranspAddr, and isSame. SameAddr and isSame represent equal-
ities of start addresses and whole expressions, respectively. SameAddr(n)
denotes that n contains a load statement referring to the same array refer-
ence as ar. isSame, corresponding to Comp of LCM, denotes that SameAddr
is true and the indexes are same as ar. Transpe(n), corresponding to Transp
of LCM, denotes that there is no modification to ar and no store operation
to the array referred by ar in n. TranspAddr denotes that there is neither
modification to ar nor reference to arrays different from ar.

To determine these predicates, we use predicates rhs, isLoad , TopAddr ,
Store, Def , and Var . rhs(n) returns the right-hand side of a statement
at the node n. isLoad(n) denotes that node n includes a load statement.
TopAddr(ar) returns the start address of ar if ar is an array; otherwise, it
returns ⊥. Store(n) denotes that node n includes a store statement that
accesses the same array as ar. Def (n) gives a variable defined at node n.
Var(ar) gives a set of variables which are used in ar. The local properties
are formally defined as follows:

74

Chapter 5. Global Load Instruction Aggregation

SameAddr(n)
def⇔ isLoad(n) ∧ (TopAddr(rhs(n)) = TopAddr(ar))

Transpe(n)
def⇔ Def (n) �∈ Var(ar) ∧ ¬Store(n)

TranspAddr(n)
def⇔ Transpe(n) ∧ (¬isLoad(n) ∨ SameAddr(n))

isSame(n)
def⇔ rhs(n) �= ⊥ ∧ rhs(n) = ar

5.4.2 Modified Global Properties

MDGLIA uses modified UpSafe and Delayed of LCM.

Extending UpSafe

UpSafe(n) of equation (5.1) is modified to denote that there are some array
references whose start addresses are same as ar on all sub-paths leading to
the node n. This predicate is formally defined as follows:

UpSafe(n)
def⇔ (n �= start) ∧∏

p∈pred(n)
SameAddr(p) ∨ (Transpe(p) ∧ UpSafe(p))

The modification not only contributes to detecting the access order to
arrays, but also gives the criterion for speculatively moving array references.

Example.
In Fig. 5.5 (a), consider applying MDGLIA to the a[i+1]. Because the

array reference a[i] is executed at Node 1, UpSafe(2) is true; therefore,
Earliest(2) is true. It leads Delayed(2) to be true, but Delayed(3) becomes
false because TranspAddr (2) is false. As a result, Latest(2) becomes true;
therefore, a[i+1] is inserted before Node 2 as shown in 5.5 (b). Notice
here that a[i+1] does not originally exist on the path through Node 3 in
Fig. 5.5 (a). That is, this insertion is speculative. Speculative code motion
may increase the number of the expression on some paths. However, if
the speculatively inserted array references cause cache misses, the execution
efficiency would be significantly decreased.

End of Example.

Extending Delayed

Delayed of equation (5.2) is modified to check whether keep-order condition
and keep-dimension condition are satisfied.

75

Chapter 5. Global Load Instruction Aggregation

1 x=a[i]

2 y=b[i]

4 z=a[i+1]3

5

(a)

1 x=a[i]

2 y=b[i]

4 z=t3

5

4’ t=a[i+1]

(b)

Figure 5.5: Speculative code motion. (a) Original code. (b) Moving array
reference, not satisfying down-safety.

Keep-order Condition

The keep-order condition guarantees that there is no any reference to the
array different from ar at n after preceding reference to the same array as
ar. The keep-order condition is represented by keepOrder(n), and defined
as follows:

partialUpSafe(n)
def⇔

∑
p∈pred(n)

UpSafe(p)

keepOrder(n)
def⇔ ¬partialUpSafe(n) ∨ TranspAddr(n)

Example.
We show an example of the effect of aggregation considering keep-order

condition in Fig. 5.6 (a). Consider moving the a[k][l] at Node 5. Nodes
3 and 5 contain array references that reference to array a; however there
is an array reference that reference to array b between them. To move the
a[k][l] immediately before Node 4, MDGLIA determines Earliest through
checking UpSafe and DownSafe first. As there is no a[k][l] on the path
through Node 2, DownSafe(1) and UpSafe(1) are false. These results cause
Earliest(1) to be false. On the other hand, another path through Node 3
has the same reference at Node 5. Hence, DownSafe(3) and Earliest(3) are
true, which causes Delayed(3) to be true. At each node from the Node 3,
MDGLIA checks whether the keep-order condition is satisfied. Node 3 has
an array reference that reference to the same array as a[k][l]; however,

76

Chapter 5. Global Load Instruction Aggregation

DownSafe(1), UpSafe(1): false

DownSafe(3): true

Earliest(3): true

Delayed(3): true

UpSafe(4): true

SameAddr(4): false

keepOrder(4): false

Delayed(5): false5

6

z=a[k][l]

w=a[i][j+1]

1

3

2

7

x=a[i][j]

4 y=b[i]

(a)

5

6

z=t

w=a[i][j+1]

1

3

2

7

x=a[i][j]

4 y=b[i]

5’ t=a[k][l]

(b)

Figure 5.6: Effectiveness of extending UpSafe. (a) Result of computing
data-flow equations to move a[k][l] at Node 5. (b) Result of moving the
array reference.

Node 4 has another array reference that references to different array. Hence,
SameAddr(3) is true, and then UpSafe(4) is true; however SameAddr(4) is
false. These results cause keepOrder(4) and Delayed(5) to be false. Even-
tually, Latest(4) and Insert(4) are true, so that MDGLIA inserts an array
reference immediately before the Node 4 and removes the original expres-
sion, as shown in Fig. 5.6 (b).

End of Example.

Keep-dimension Condition

The keep-dimension condition contributes to the aggregation of references
to closer addresses in the same array through keeping the number of cor-
responding indexes from decreasing. To keep the number, this condition
uses two kinds of predicates: number of corresponding indexes (nCI) and
propagated nCI (pnCI).

nCI is the number of higher indexes corresponding with ar for represent-
ing closeness on the main memory between references to an array. nCI (n)
checks whether each index of the array reference at n is same as correspond-
ing index of ar, one by one in left-first, whenever n contains a reference to
the same array as ar. This predicate is formally defined as follows:

77

Chapter 5. Global Load Instruction Aggregation

Definition 5.4.1. We assume that ar is a[i1][i2]...[ik]...[in], and r is
b[j1][j2]...[jk]...[jm]. Then,

nCI (r)
def⇔

⎧⎪⎪⎨
⎪⎪⎩

k if a = b ∧ il = jl ∧
(k = n ∨ k = m ∨ ik+1 �= jk+1)
where ∀l ∈ {1, ..., k}

0 otherwise

The condition means that if their start addresses are same, these indexes
are checked about whether the kth index is same or not until it is the last
index.

pnCI (n) denotes the number of indexes of the reference which has the
most same indexes as ar on all execution paths to the exit of n from pre-
ceding node where SameAddr is true. pnCI can be defined by the data-flow
equation based on nCI as follows:

pnCI (n)
def⇔

⎧⎨
⎩

0 if n = start
nCI (n) if SameAddr(n)
Max ({pnCI (m) | m ∈ pred(n)}) otherwise

The equation can be iteratively solved as well as typical data-flow anal-
ysis. If node n includes a reference to the same start address as ar, then
pnCI (n) equals to nCI (n). Otherwise, pnCI (n) is the maximal value of the
pnCI of all predecessors, except the start node.

The keep-dimension condition is represented by predicate keepDimension
that is defined using partialUpSafe and pnCI as follows:

keepDimension(n)
def⇔ ¬partialUpSafe(n) ∨

∏
p∈pred(n)

pnCI (n) ≥ pnCI (p)

This predicate denotes n does not include any reference with nCI less
than the preceding references.

Delaying Considering Keep-order and Keep-dimension Conditions

MDGLIA checks whether the keep-order and keep-dimension conditions are
satisfied in addition to Delayed of LCM. Once these conditions are intro-
duced, Delayed is simply changed as follows:

Delayed(n)
def⇔ Earliest(n) ∨ (n �= start) ∧∏

p∈pred(n)
¬isSame(p) ∧ keepOrder(p) ∧

keepDimension(p) ∧Delayed(p)

78

Chapter 5. Global Load Instruction Aggregation

Delayed(3): true

nCI(3): 1

pnCI(3): 1

nCI(5’): 0

pnCI(5’): 0

Delayed(4): false

keepDimension(5’): false

5

6

z=t

w=a[i][j+1]

1

3

2

7

x=a[i][j]

4 y=b[i]

5’ t=a[k][l]

Figure 5.7: Computing closeness of each addresses of a[i][l] at Node 4
and Delayed .

Example.
In Fig. 5.7, we show results of data-flow analysis of MDGLIA when it

moves the a[i][j+1] at Node 6 in Fig. 5.6 (b). Nodes 3 and 6 contain
array references that reference to sub-array a[i], but there is an array ref-
erence that reference to sub-array a[k] between them. To move a[i][j+1]
immediately before Node 5’, MDGLIA determines Earliest first. Because
Earliest(3) is true as well as in the case where moving the a[k][l] in Fig.
5.6 (a), Delayed(3) is true. At each node following the Node 3, MDGLIA
checks whether the keep-dimension condition is satisfied. Although nCI
and pnCI of Node 3 are 1, nCI and pnCI of the successor 5’ are 0; there-
fore, keepDimension(5′) and Delayed(4) are false. Eventually, Latest(5′)
and Insert(5′) are true; therefore, MDGLIA inserts an array reference im-
mediately before the Node 5′ and removes the original expression, as shown
in Fig. 5.2 (b).

End of Example.

Finally, to help understanding of whole algorithm, we present formal defi-
nitions of all global predicates other thanUpSafe, keepOrder , keepDimension,
and Delayed as follows:

79

Chapter 5. Global Load Instruction Aggregation

DownSafe(n)
def⇔ (n �= end) ∧

(isSame(n) ∨ Transpe(n) ∧
∏

s∈succ(n)
DownSafe(s))

Safe(n)
def⇔ UpSafe(n) ∨DownSafe(n)

Earliest(n)
def⇔ Safe(n) ∧

((n = start) ∨
∑

p∈pred(n)
¬Transpe(p) ∨ ¬Safe(p))

Latest(n)
def⇔ Delayed (n) ∧ (isSame(n) ∨

∑
s∈succ(n)

¬Delayed(s))

Isolated(n)
def⇔

∏
s∈succ(n)

Latest(s) ∨ ¬isSame(s) ∧ Isolated(s)

Insert(n)
def⇔ Latest(n) ∧ ¬Isolated(n)

Replace(n)
def⇔ isSame(n) ∧ ¬(Latest(n) ∧ Isolated(n))

5.4.3 Application to the Entire Program

We design MDGLIA as a demand-driven analysis, which is applied to each
array reference one by one, rather than exhaustive one. In general, PRE
based approaches are known that an application of it exposes new redun-
dant expressions. The effect is called second-order effects. Capturing them
as many as possible results in removing more redundant expressions. How-
ever, capturing all the second-order effects requires iterative applications of
PRE, which are costly because PRE is traditionally designed based on an
exhaustive data-flow analysis [60, 78, 80]. On the other hand, the demand-
driven applications of PRE to the entire program in the topological sort
order enables efficiently capturing a lot of the second-order effects, as shown
in Chapter 3. Furthermore, for the aggregating array references, demand-
driven application contributes to suppressing unnecessary code motion.

Example.
In Fig. 5.8 (a), Nodes 2 and 3 might expel data that may be used later

from a cache memory. At this time, if MDGLIA would move all array refer-
ences in the exhaustive application such as the traditional PRE, references
a[i+1] and b[i+1] would be moved as shown in Fig. 5.8 (b). As a result,
even if the problems of cache misses are resolved, it would enhance register
pressure of the temporary variable which had the value of b[i+1] because
the unnecessary code motion of b[i+1] lengthened the live-range of it. By
contrast, in demand-driven application, only the a[i+1] is moved to the

80

Chapter 5. Global Load Instruction Aggregation

4

1

3

2

x=a[i]

y=b[i]

z=a[i+1]

w=b[i+1]

(a)

4’

1

2

3’

x=a[i]

t=a[i+1]

y=b[i]

t’=b[i+1]

4

3 z=t

w=t’

(b)

4

3’

3

2

t=a[i+1]

y=b[i]

z=t

w=b[i+1]

1 x=a[i]

(c)

Figure 5.8: Preserving unnecessary code motion. (a) Original code. (b)
Result of applying exhausive analysis version of MDGLIA to a[i+1]. (c)
Result of applying demand-driven style MDGLIA to a[i+1].

entry of Node 2 based on the demand-driven application manner as shown
Fig. 5.8 (c).

End of Example.

5.5 Experimental Results

We have implemented MDGLIA as a low-level intermediate representation
converter in a COINS compiler. To emphasize the benefits of MDGLIA, we
compared MDGLIA with the following two optimizations.

LCM-MEM only removes redundant array references based on LCM.

GLIA aggregates references to the same array without considering their
dimensions.

We evaluated the effects of these optimizations for two programs (equake
and art) of CFP2000 and three programs (mcf, gzip, and twolf) of CINT2000
in the SPEC benchmarks on x86 machine whose CPU and OS are, respec-
tively, Intel Core2Duo U9600 1.6GHz and CentOS. The system parameters
of the machine are shown in Table 5.1.

To show how many cache misses can be decreased by GLIA and MDGLIA,
we measured the following two hardware counters.

DCache Repl: the number of replacement at L1 data cache.

L2 Lines Out: the number of cache out from L2 cache.

81

Chapter 5. Global Load Instruction Aggregation

Table 5.1: System parameters of cache memories
Parameters L1D L2

Total size (KB) 32 3,072
Line size (bytes) 64 64
The number of cache line 512 49,152
Associativity 8 12

We simply call these numbers L1D cache miss and L2 cache miss, respec-
tively.

The result of comparison among the cache misses for the three optimiza-
tions is shown in Fig. 5.9, and the results of the number of L1D and L2 cache
misses, respectively, are shown in Tables 5.2 and 5.3. Comparing GLIA and
MDGLIA with LCM-MEM, L1D cache misses occur to the same degree
for four programs (art, mcf, gzip, and twolf), though they increased about
7% for a program (ammp). Comparing GLIA with LCM-MEM, L2 cache
misses decreased for three programs (art, mcf, and gzip). In particular, the
cache misses remarkably decreased about 19.9% for art. In contrast, they
increased for two programs (ammp and twolf). Comparing MDGLIA with
LCM-MEM, L2 cache misses decreased for four programs (art, mcf, gzip, and
ammp). In particular, the cache misses remarkably decreased about 30.3%
in art. On the other hand, they increased for a program (twolf). Com-
paring MDGLIA with GLIA, L2 cache misses decreased for four programs
(art, gzip, ammp, and twolf). In particular, the cache miss remarkably de-
creased about 15.6% in ammp. For ammp, comparing these techniques with

L1D_cache_miss-GLIA

L1D_cache_miss-MDGLIA

L2_cache_miss-GLIA

L2_cache_miss-MDGLIA

art mcf gzip ammp twolf

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

Figure 5.9: Decrease rate of cache misses.

82

Chapter 5. Global Load Instruction Aggregation

Table 5.2: The number of DCache Repl
Program LCM-MEM GLIA MDGLIA

art 11,439,104,576 11,453,555,362 11,444,685,513
mcf 7,567,419,160 7,531,488,486 7,544,975,464
gzip 7,725,469,653 7,707,389,218 7,818,871,317
ammp 21,792,733,488 23,216,563,772 23,413,676,395
twolf 9,056,125,547 9,029,509,531 8,986,903,509

Table 5.3: The number of L2 Lines Out
Program LCM-MEM GLIA MDGLIA

art 366,823,834 293,702,375 329,018,854
mcf 727,422,092 720,133,268 724,349,339
gzip 25,856,048 25,177,224 24,706,624
ammp 408,120,338 419,706,166 354,268,633
twolf 1,518,718 1,812,932 1,678,713

LCM-MEM, although L2 cache misses increased for GLIA, they decreased
for MDGLIA. This is because MDGLIA can aggregate more array references
than GLIA, showing that the aggregation of the array references with the
most similar indexes in higher dimensions is important.

In some programs, GLIA and MDGLIA caused cache misses to increase.
The increase is considered to be derived from the following reasons: 1) the
number of spills of temporary variables increased, and 2) speculative code
motion lengthened execution paths without contributing to decrease of cache
misses, as mentioned in Section 5.4.2.

The first reason can be considered to be for the use of LCM frame-
work of these techniques, which is known to increase the number of spills
[39] although LCM tries to decrease them by delaying insertion points. In
addition, GLIA and MDGLIA tend to stop the delaying earlier than LCM.

Example.
Consider an array reference a[i][j+1] in Fig. 5.10 (a). The array

reference is redundant at Node 6; therefore, it can be removed by LCM-
MEM, as shown in Fig. 5.10 (b). On the other hand, this array reference is
just moved in GLIA and MDGLIA, as shown in Fig. 5.10 (c) and Fig. 5.10
(d). This observations show that GLIA and MDGLIA may enhance more
register pressure than LCM-MEM. If some spills occur, they may decrease
the effects of GLIA and MDGLIA by the insertions of some store and load
instructions between the array references to the same array. In other words,
the spills may increase not only the length of some execution path but also
the number of cache misses.

End of Example.

83

Chapter 5. Global Load Instruction Aggregation

3 z=b[i]

4 w=a[i][j+1]

5 o=c[i][j]

6 p=a[i][j+1]

2 y=a[k][l]

1 x=a[i][j]

(a)

4’ t=a[i][j+1]

4 w=t

5 o=c[i][j]

6 p=t

3 z=b[i]

2 y=a[k][l]

1 x=a[i][j]

(b)

3 z=b[i]

4 w=t

5 o=c[i][j]

6 p=t

4’ t=a[i][j+1]

2 y=a[k][l]

1 x=a[i][j]

(c)

3 z=b[i]

4 w=t

5 o=c[i][j]

6 p=t

2 y=a[k][l]

4’ t=a[i][j+1]

1 x=a[i][j]

(d)

Figure 5.10: Difference of an insertion point for a[i][j+1]. (a) Original
code. (b) Result of applying LCM-MEM. (c) Result of applying GLIA. (d)
Result of applying MDGLIA.

We conducted experiments to confirm how the problems increased the
number of cache misses.

Impact of Spill

We show the number of spills for the applications of three optimizations in
Table 5.4. Comparing GLIA and MDGLIA with LCM-MEM, they caused
more spills for four programs (mcf, gzip, ammp, and twolf). In particular,
the number of the spills increased about 20% for twolf. However, in spite
of the increase of the spills, L1D cache misses were held to the same degree
as LCM-MEM for mcf and gzip. These additional results show that, the
increase of the spills does not always increase the number of cache misses.
Actually, applying MDGLIA to ammp decreased L2 cache misses although
it increases the number of spills. In contrast, for twolf, the number of both
spills and cache misses increased. It is considered that load/store for spills

Table 5.4: The number of register spills
Program A.LCM-MEM B.GLIA C.MDGLIA (A-B)/A (A-C)/A (B-C)/B

art 28 28 28 0.0 % 0.0 % 0.0 %
mcf 61 71 71 -16.4 % -16.4 % 0.0 %
gzip 107 114 114 -6.5 % -6.5 % 0.0 %
ammp 317 334 335 -5.4 % -5.7 % -0.3 %
twolf 804 962 979 -19.7 % -21.8 % -1.8 %

84

Chapter 5. Global Load Instruction Aggregation

-30.0%

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

art

GLIA MDGLIA USGLIA USMDGLIA

mcf gzip ammp twolf

Figure 5.11: The decrease ratio of L2 cache miss for GLIA, MDGLIA, US-
GLIA, and USMDGLIA to the cache miss for LCM-MEM.

were inserted between references continuously moved by MDGLIA. Thus, a
new register allocation technique for suppressing more cache misses is one
of our future works.

Speculative Code Motion vs. Unspeculative Code Motion

In order to comparatively confirm how many number of cache misses the
speculative code motion decreases, we implemented the following two opti-
mizations that do not speculatively aggregate array references:

USGLIA aggregates array references with the keep-order condition based
on UpSafe of equation (5.1).

USMDGLIA aggregates array references with the keep-order and keep-
dimension conditions based on UpSafe of equation (5.1).

First, we show the result of L2 cache misses for USGLIA and US-
MDGLIA in addition to GLIA and MDGLIA in Fig. 5.11 and Table 5.5.
Comparing GLIA with USGLIA, GLIA increased the number of cache misses
for three programs (art, ammp, and twolf). In contrast, comparing MDGLIA
with USGLIA, MDGLIA decreased the number of the cache misses for two
programs (art and gzip). Comparing MDGLIA with USMDGLIA, MDGLIA
decreased the number of the cache misses for four programs (art, mcf, gzip,
and ammp). Thus, MDGLIA was better than these unspeculative versions
on average. This is because speculative code motion can aggregate more
array references than unspeculative ones. Table 5.6 shows the number of
stopped delaying by checking keep-order or keep-dimension conditions in
the speculative and unspeculative code motions. As shown in the table, the

85

Chapter 5. Global Load Instruction Aggregation

Table 5.5: The number of L2 cache miss of USGLIA and USMDGLIA, and
the cache miss ratio of them to the cache miss for GLIA and MDGLIA

Program USGLIA vs. GLIA vs. MDGLIA USMDGLIA vs. MDGLIA

art 282,855,332 3.7 % -10.6 % 297,012,498 -16.1 %
mcf 721,268,586 -0.2 % 0.4 % 732,708,340 -1.2 %
gzip 25,449,483 -1.1 % -3.0 % 26,351,879 -6.7 %
ammp 345,935,455 17.6 % 2.4 % 359,701,112 -1.5 %
twolf 1,689,141 6.8 % -0.6 % 1,667,434 0.7 %

Table 5.6: The number of aggregated array references under keepOrder and
keepDimension in speculative/not speculative code motion

Speculative Not Speculative
Program keepOrder keepDimension keepOrder keepDimension

art 438 22 145 22
mcf 750 298 104 71
gzip 829 134 182 77
ammp 8,043 2,015 719 512
twolf 30,399 7,313 8,855 811

speculative code motion was able to aggregate move more array references
than unspeculative one.

Considering L2 cache miss when GLIA, MDGLIA, USGLIA, or US-
MDGLIA was applied to twolf, they increased L2 cache misses for the pro-
gram. Although the increase for GLIA was about 20%, the other increases
were about 10%. Furthermore, comparing USGLIA and USMDGLIA, the
results of L2 cache misses are held to the same degree. These results in-
dicate that GLIA speculatively inserts array references, which cause the
number of spills to increase, leading to cache misses. On the other hand,
speculative aggregation of array references with the most similar indexes in
higher dimensions decreases the cache misses although MDGLIA increases
more number of spills than GLIA. That is, the speculative aggregation under
keep-dimension condition decreased the L2 cache misses.

Finally, these results shows that the aggregation of array references is
more useful technique for decreasing cache misses than simply removing
redundant array references. However, unspeculative code motion is bet-
ter than speculative ones for some programs. Because the speculative code
motion can move array references further than unspeculative one has po-
tential, we believe that MDGLIA can be improved by profiling whether the
aggregated array references get cache hit.

86

Chapter 5. Global Load Instruction Aggregation

5.6 Summary

In this chapter, we have proposed a new global code motion technique for
aggregating array references with the most similar indexes in higher dimen-
sions of the same array in order to suppress cache misses. MDGLIA not
only suppresses the cache misses but also suppresses spills through delaying
the load instructions without changing their access order.

In order to show the effectiveness of MDGLIA, we applied it to some
benchmark programs. As a result, we have shown that there are some
programs in which it decreases the number of cache misses. As future work,
we can consider 1) making a new register allocation that preferentially spills
variables that will get cache hits, and 2) aggregating array references based
on sophisticated informations of cache memory and their addresses on main
memory.

87

Chapter 6

Conclusion and Future
Direction

The optimization of memory hierarchy utilization is one of the most impor-
tant techniques of code optimizations because accesses to the main memory
remarkably decreases the efficiency of execution of objective code. To solve
this issue, many researchers have proposed a lot of kinds of hardware struc-
tures and various code optimization techniques, such as register promotion,
register allocation, and loop transformation. However, the penalty of access
to the main memory tends to increase; therefore, the importance of the issue
will increase further.

6.1 Summary of Contributions

This thesis presents a new code motion-based memory hierarchy utiliza-
tion optimization framework. In particular, partial redundancy elimination
(PRE) plays a fundamental role in the framework. PRE removes redundant
array references by inserting expressions to suitable points in a program and
replacing them with the introduced temporary variables. The framework ex-
tends the potential of PRE to remove array references that are redundant
over iterations and suppress cache misses from occurring.

The main contributions of the framework are summarized as follows:

• Removing redundant array references by efficient demand-
driven analysis without sacrificing traditional PRE’s power

The contribution is derived from the effective demand-driven PRE
(EDDPRE). EDDPRE removes redundant array reference in about
half cost of the traditional PRE in combination with global value
numbering (GVN) and query propagation. When removing all re-
dundant array references including second-order effects with the tra-
ditional PRE, because it detects redundant expressions based on their

88

Chapter 6. Conclusion and Future Direction

lexical equality, iterative applications of copy propagation and PRE
is required for removing lexically different expressions with the same
value. On the other hand, GVN can reveal the redundant expressions
even if they are lexically different. In addition, the query propagation
can shorten range to be analyzed.

• Decreasing the number of memory references by increas-
ing the number of register references through efficient query
propagation.

EDDPRE replaces redundant array references with a temporary vari-
able holding value of inserted expressions. In addition, we extended
EDDPRE to handle array references that are redundant across several
iterations, such as scalar replacement. We named this extended ED-
DPRE PRE-based scalar replacement (PRESR). PRESR inserts com-
pensation code for maintaining the behavior of a program at a less
frequently executed point, and then it removes the redundant array
reference. Array references accesses to cache memory whereas using
temporary variables gets the data from register; therefore, EDDPRE
and PRESR reduce the number of memory references. We showed
that PRESR can improve the efficiency of execution of some bench-
mark programs. PRESR improved the execution efficiency of SPEC
2000 benchmark programs about 2% on average.

• Decreasing the number of cache misses based on PRE frame-
work.

We proposed two new cache optimization techniques, global load in-
struction aggregation (GLIA) and multidimensional GLIA (MDGLIA).
GLIA aggregates array references for making accesses to the same ar-
ray continuous because loading data at a specific array index from
main memory places it in the cache memory along with other data
belonging to the same array. Therefore, some array references can be
executed before the reference data are removed from cache memory by
the aggregation. To achieve aggregation, we extended PRE to move
the references immediately after other preceding references to the same
array and then delaying it immediately before another reference to a
different array.

We showed that GLIA basically works well. Comparing removal of
redundant array references, the last level (L2) cache misses decreased
remarkably about 19.9% in the best case. However, the number of the
cache misses increased for some programs.

In order to enhance effect of aggregation, MDGLIA extended GLIA to
manage the array dimensions because a multidimensional array repre-
sents an array of lower dimensional arrays, preferentially aggregating

89

Chapter 6. Conclusion and Future Direction

references with same indexes in higher dimensions may further de-
crease cache misses. MDGLIA computes the number of same indexes
as a moved candidate each preceding array reference has, and then
MDGLIA moves the candidate to the program points that are the
closest to the reference with the most similar indexes in higher dimen-
sions.

As a result, MDGLIA could decrease L2 cache misses greater than
GLIA. Comparing MDGLIA with GLIA, L2 cache misses decreased for
several programs. In particular, the cache misses remarkably decreased
about 15.6% in the best case.

6.2 Future Direction

This section proposes the future directions of the framework. We proposed
only code motion-based techniques; however, using others optimization may
enhance our techniques. We believe following new techniques will obtain
remarkable gains from this framework, and will be demanded.

Using Sophisticated Alias Analysis

As our framework moves load statements, these techniques must consider
an alias that points to a memory location referred by another pointers for
safe movement. Pointer analysis reveals a memory location for each pointer
reference [45]; therefore, whether two pointer references refer to a same
memory location or not becomes obvious [86].

To improve the precision of pointer analysis, many researchers have
proposed several algorithms. These techniques can be roughly classified
into flow-sensitivity [31, 42, 43, 58, 75, 85] or flow-insensitivity [41]. Flow-
sensitive pointer analysis calculates the pointer information at each pro-
gram point along control flows, whereas flow-insensitive pointer analysis
ignores execution order. Furthermore, pointer analysis techniques can be di-
vided into two classes context-sensitivity [73, 82, 88] or context-insensitivity.
Context-sensitivity considers the values of the arguments of function calls.

In this thesis, we used a very simple alias analysis. Using the state of
the art alias analysis or pointer analysis may reveal the potential of our
framework.

Profile Guided MDGLIA

Although MDGLIA suppressed cache misses, it could perform more effective
code motion if it can use detailed information such as the memory addresses
of array data. The reason is that main memory data are generally placed on
a cache memory based on the number of cache line and associativity. This

90

Chapter 6. Conclusion and Future Direction

information will enable predicting whether each array reference will result
in cache misses.

Cache Miss Sensitive Register Allocation

Although PRE is a powerful code optimization technique, the insertion and
removal processes move some expression to nodes of the CFG closer to the
start node; therefore, the register pressure tends to increase [17, 63, 83]. If a
spill occurs, some store and load instructions are inserted at some program
points. The extra execution cost derived from these additional instructions
may be greater than the improvement due to the redundancy elimination.
Because our framework is extended from PRE, our framework also tends to
increase register pressure. To suppress this cost, register allocation should
preferentially spill variables for which load/store instructions inserted by
spilling result in cache hits. This cache miss sensitive register allocation
may increase the impact of PRE and our framework.

91

Bibliography

[1] Aho, A. V., Sethi, R. and Ullman, J. D.: Compilers: principles,
techniques, and tools, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1986).

[2] Aho, A. V., Lam, M. S., Sethi, R. and Ullman, J. D.: Compilers: Prin-
ciples, Techniques, and Tools (2nd Edition), Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (2006).

[3] Alpern, B., Wegman, M. N. and Zadeck, F. K.: Detecting equality
of variables in programs, Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’88, New York, NY, USA, ACM, pp. 1–11 (1988).

[4] Appel, A. W.: Modern Compiler Implementation in ML: Basic Tech-
niques, Cambridge University Press, New York, NY, USA (1997).

[5] Bodik, R., Gupta, R. and Soffa, M. L.: Complete removal of redun-
dant expressions, Proceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implementation, PLDI ’98, New
York, NY, USA, ACM, pp. 1–14 (1998).

[6] Bodik, R. and Gupta, R.: Partial Dead Code Elimination Using Slicing
Transformations, Proceedings of the ACM SIGPLAN 1997 Conference
on Programming Language Design and Implementation, PLDI ’97, New
York, NY, USA, ACM, pp. 159–170 (1997).

[7] Bodik, R., Gupta, R. and Soffa, M. L.: Load-reuse analysis: design
and evaluation, Proceedings of the ACM SIGPLAN 1999 conference
on Programming language design and implementation, PLDI ’99, New
York, NY, USA, ACM, pp. 64–76 (1999).

[8] Boissinot, B., Darte, A., Rastello, F., de Dinechin, B. D. and Guillon,
C.: Revisiting Out-of-SSA Translation for Correctness, Code Quality
and Efficiency, Proceedings of the 7th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’09, Washing-
ton, DC, USA, IEEE Computer Society, pp. 114–125 (2009).

92

Bibliography

[9] Braun, M., Buchwald, S., Hack, S., Leiba, R., Mallon, C. and Zwinkau,
A.: Simple and efficient construction of static single assignment form,
Proceedings of the 22nd international conference on Compiler Construc-
tion, CC’13, Berlin, Heidelberg, Springer-Verlag, pp. 102–122 (2013).

[10] Briggs, P. and Cooper, K. D.: Effective Partial Redundancy Elimina-
tion, Proceedings of the ACM SIGPLAN 1994 Conference on Program-
ming Language Design and Implementation, PLDI ’94, New York, NY,
USA, ACM, pp. 159–170 (1994).

[11] Briggs, P., Cooper, K. D., Harvey, T. J. and Simpson, L. T.: Practi-
cal Improvements to the Construction and Destruction of Static Single
Assignment Form, Softw. Pract. Exper., Vol. 28, No. 8, pp. 859–881
(1998).

[12] Briggs, P., Cooper, K. D. and Torczon, L.: Improvements to graph
coloring register allocation, ACM Trans. Program. Lang. Syst., Vol. 16,
No. 3, pp. 428–455 (1994).

[13] Cai, Q. and Xue, J.: Optimal and efficient speculation-based partial re-
dundancy elimination, Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime opti-
mization, CGO ’03, Washington, DC, USA, IEEE Computer Society,
pp. 91–102 (2003).

[14] Calder, B., Krintz, C., John, S. and Austin, T.: Cache-conscious data
placement, Proceedings of the eighth international conference on Ar-
chitectural support for programming languages and operating systems,
ASPLOS-VIII, New York, NY, USA, ACM, pp. 139–149 (1998).

[15] Callahan, D., Carr, S. and Kennedy, K.: Improving register allocation
for subscripted variables, Proceedings of the ACM SIGPLAN 1990 con-
ference on Programming language design and implementation, PLDI
’90, New York, NY, USA, ACM, pp. 53–65 (1990).

[16] Carr, S. and Kennedy, K.: Scalar replacement in the presence of con-
ditional control flow, Softw. Pract. Exper., Vol. 24, No. 1, pp. 51–77
(1994).

[17] Chaitin, G. J.: Register allocation & spilling via graph coloring, Pro-
ceedings of the 1982 SIGPLAN symposium on Compiler construction,
SIGPLAN ’82, New York, NY, USA, ACM, pp. 98–105 (1982).

[18] Choi, J.-D., Cytron, R. and Ferrante, J.: Automatic Construction of
Sparse Data Flow Evaluation Graphs, Proceedings of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’91, New York, NY, USA, ACM, pp. 55–66 (1991).

93

Bibliography

[19] Chow, F., Chan, S., Kennedy, R., Liu, S.-M., Lo, R. and Tu, P.: A New
Algorithm for Partial Redundancy Elimination Based on SSA Form,
Proceedings of the ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, PLDI ’97, New York, NY, USA,
ACM, pp. 273–286 (1997).

[20] Chow, F. and Hennessy, J.: Register allocation by priority-based col-
oring, Proceedings of the 1984 SIGPLAN symposium on Compiler con-
struction, SIGPLAN ’84, New York, NY, USA, ACM, pp. 222–232
(1984).

[21] Click, C.: Global code motion/global value numbering, Proceedings of
the ACM SIGPLAN 1995 conference on Programming language design
and implementation, PLDI ’95, New York, NY, USA, ACM, pp. 246–
257 (1995).

[22] Cocke, J.: Global Common Subexpression Elimination, Proceedings of
a Symposium on Compiler Optimization, New York, NY, USA, ACM,
pp. 20–24 (1970).

[23] Cocke, J. and Schwarts, J. T.: Programming Languages and Their Com-
pilers: Preliminary Notes, Courant Institute of Mathematical Sciences,
New York University (1970).

[24] COINS: http://coins-compiler.sourceforge.jp/.

[25] Cooper D., K., Harvey, T. J. and Kennedy, K.: Iterative data-flow
analysis, revisited, Technical report (2004).

[26] Cooper D., K. and Xu, L.: An efficient static analysis algorithm to
detect redundant memory operations, Proceedings of the 2002 workshop
on Memory system performance, MSP ’02, New York, NY, USA, ACM,
pp. 97–107 (2002).

[27] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N. and Zadeck,
F. K.: Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph, Technical report, Providence, RI, USA
(1991).

[28] Dhamdhere, D. M.: A fast algorithm for code movement optimisation,
SIGPLAN Not., Vol. 23, No. 10, pp. 172–180 (1988).

[29] Dhamdhere, D. M.: E-path PRE:partial redundancy elimination made
easy, SIGPLAN Not., Vol. 37, No. 8, pp. 53–65 (2002).

[30] Dhamdhere, D. M. and Patil, H.: An elimination algorithm for bidirec-
tional data flow problems using edge placement, ACM Trans. Program.
Lang. Syst., Vol. 15, No. 2, pp. 312–336 (1993).

94

Bibliography

[31] Dillig, I., Dillig, T. and Aiken, A.: Sound, Complete and Scalable Path-
sensitive Analysis, Proceedings of the 2008 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’08, New
York, NY, USA, ACM, pp. 270–280 (2008).

[32] Fernandez, M. and Espasa, R.: Link-Time Path-Sensitive Memory Re-
dundancy Elimination, Proceedings of the 10th International Sympo-
sium on High Performance Computer Architecture, HPCA ’04, Wash-
ington, DC, USA, IEEE Computer Society, pp. 300– (2004).

[33] Fink, S. J., Knobe, K. and Sarkar, V.: Unified Analysis of Array and
Object References in Strongly Typed Languages, Proceedings of the 7th
International Symposium on Static Analysis, SAS ’00, London, UK,
UK, Springer-Verlag, pp. 155–174 (2000).

[34] Gal, A., Probst, C. W. and Franz, M.: HotpathVM: An Effective JIT
Compiler for Resource-constrained Devices, Proceedings of the 2Nd In-
ternational Conference on Virtual Execution Environments, VEE ’06,
New York, NY, USA, ACM, pp. 144–153 (2006).

[35] Gargi, K.: A Sparse Algorithm for Predicated Global Value Numbering,
Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, PLDI ’02, New York, NY, USA,
ACM, pp. 45–56 (2002).

[36] George, L. and Appel, A. W.: Iterated register coalescing, ACM Trans.
Program. Lang. Syst., Vol. 18, No. 3, pp. 300–324 (1996).

[37] Gulwani, S. and Necula, G. C.: Global Value Numbering Using Ran-
dom Interpretation, Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’04, New
York, NY, USA, ACM, pp. 342–352 (2004).

[38] Gupta, R., Berson, D. A. and Fang, J. Z.: Path Profile Guided Partial
Redundancy Elimination Using Speculation, Proceedings of the 1998
International Conference on Computer Languages, ICCL ’98, Washing-
ton, DC, USA, IEEE Computer Society, pp. 230–239 (1998).

[39] Gupta, R. and Bodik, R.: Register Pressure Sensitive Redundancy
Elimination, Proceedings of the 8th International Conference on Com-
piler Construction, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’99, CC ’99, London, UK,
UK, Springer-Verlag, pp. 107–121 (1999).

[40] Hailperin, M.: Cost-optimal Code Motion, ACM Trans. Program. Lang.
Syst., Vol. 20, No. 6, pp. 1297–1322 (1998).

95

Bibliography

[41] Hardekopf, B. and Lin, C.: The Ant and the Grasshopper: Fast and
Accurate Pointer Analysis for Millions of Lines of Code, Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’07, New York, NY, USA, ACM,
pp. 290–299 (2007).

[42] Hardekopf, B. and Lin, C.: Semi-sparse flow-sensitive pointer analysis,
Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’09, New York, NY,
USA, ACM, pp. 226–238 (2009).

[43] Hardekopf, B. and Lin, C.: Flow-sensitive Pointer Analysis for Millions
of Lines of Code, Proceedings of the 9th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO ’11,
Washington, DC, USA, IEEE Computer Society, pp. 289–298 (2011).

[44] Hennessy, J. L. and Patterson, D. A.: Computer Architecture, Fifth
Edition: A Quantitative Approach, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2011).

[45] Hind, M. and Pioli, A.: Which Pointer Analysis Should I Use?, Proceed-
ings of the 2000 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’00, New York, NY, USA, ACM, pp. 113–
123 (2000).

[46] Horspool, R. N. and Ho, H. C.: Partial Redundancy Elimination Driven
by a Cost-Benefit Analysis, Proceedings of the 8th Israeli Conference
on Computer-Based Systems and Software Engineering, ICCSSE ’97,
Washington, DC, USA, IEEE Computer Society, pp. 111– (1997).

[47] Ishitobi, Y., Ishihara, T. and Yasuura, H.: Code and Data Placement
for Embedded Processors with Scratchpad and Cache Memories, J. Sig-
nal Process. Syst., Vol. 60, No. 2, pp. 211–224 (2010).

[48] Kawahito, M., Komatsu, H. and Nakatani, T.: Partial redundancy elim-
ination for access expressions by speculative code motion, Softw. Pract.
Exper., Vol. 34, No. 11, pp. 1065–1090 (2004).

[49] Kennedy, R., Chan, S., Liu, S.-M., Lo, R., Tu, P. and Chow, F.: Par-
tial redundancy elimination in SSA form, ACM Trans. Program. Lang.
Syst., Vol. 21, No. 3, pp. 627–676 (1999).

[50] Kildall, G. A.: A Unified Approach to Global Program Optimization,
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’73, New York, NY,
USA, ACM, pp. 194–206 (1973).

96

Bibliography

[51] Knoop, J., Ruthing, O. and Steffen, B.: Lazy code motion, Proceedings
of the ACM SIGPLAN 1992 conference on Programming language de-
sign and implementation, PLDI ’92, New York, NY, USA, ACM, pp.
224–234 (1992).

[52] Knoop, J., Ruthing, O. and Steffen, B.: Optimal code motion: theory
and practice, ACM Trans. Program. Lang. Syst., Vol. 16, No. 4, pp.
1117–1155 (1994).

[53] Knoop, J., Ruthing, O. and Steffen, B.: Partial dead code elimination,
Proceedings of the ACM SIGPLAN 1994 conference on Programming
language design and implementation, PLDI ’94, New York, NY, USA,
ACM, pp. 147–158 (1994).

[54] Lin, J., Chen, T., Hsu, W.-C., Yew, P.-C., Ju, R. D.-C., Ngai, T.-F.
and Chan, S.: A Compiler Framework for Speculative Analysis and
Optimizations, Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, PLDI ’03, New
York, NY, USA, ACM, pp. 289–299 (2003).

[55] Lo, R., Chow, F., Kennedy, R., Liu, S.-M. and Tu, P.: Register pro-
motion by sparse partial redundancy elimination of loads and stores,
Proceedings of the ACM SIGPLAN 1998 conference on Programming
language design and implementation, PLDI ’98, New York, NY, USA,
ACM, pp. 26–37 (1998).

[56] Lu, J. and Cooper, K. D.: Register promotion in C programs, Proceed-
ings of the ACM SIGPLAN 1997 conference on Programming language
design and implementation, PLDI ’97, New York, NY, USA, ACM, pp.
308–319 (1997).

[57] Morel, E. and Renvoise, C.: Global optimization by suppression of
partial redundancies, Commun. ACM, Vol. 22, No. 2, pp. 96–103 (1979).

[58] Nasre, R.: Time- and Space-efficient Flow-sensitive Points-to Analysis,
ACM Trans. Archit. Code Optim., Vol. 10, No. 4, pp. 39:1–39:27 (2013).

[59] Nie, J. T. and Cheng, X.: An efficient SSA-based algorithm for complete
global value numbering, Proceedings of the 5th Asian conference on
Programming languages and systems, APLAS’07, Berlin, Heidelberg,
Springer-Verlag, pp. 319–334 (2007).

[60] Odaira, R. and Hiraki, K.: Partial Value Number Redundancy Elim-
ination, Information Processing Society of Japan Transactions on
Programming, Vol. 45, No. SIG09(PRO22), pp. 59–79 (2004). (in
Japanese).

97

Bibliography

[61] Odaira, R., Nakaike, T., Inagaki, T., Komatsu, H. and Nakatani, T.:
Coloring-based coalescing for graph coloring register allocation, Pro-
ceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, CGO ’10, New York, NY, USA,
ACM, pp. 160–169 (2010).

[62] PAPI: http://icl.cs.utk.edu/papi/.

[63] Poletto, M. and Sarkar, V.: Linear scan register allocation, ACM Trans.
Program. Lang. Syst., Vol. 21, No. 5, pp. 895–913 (1999).

[64] Rastello, F., Ferriere, F. d. and Guillon, C.: Optimizing Translation
Out of SSA Using Renaming Constraints, Proceedings of the Interna-
tional Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, CGO ’04, Washington, DC, USA,
IEEE Computer Society, pp. 265– (2004).

[65] Reif, J. H. and Lewis, H. R.: Symbolic Evaluation and the Global Value
Graph, Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’77, New York, NY, USA,
ACM, pp. 104–118 (1977).

[66] Rishi, S., Rajkishore, B., Jisheng, Z. and Vivek, S.: Inter-iteration
Scalar Replacement Using Array SSA Form, Proceedings of the 23rd
international conference on Compiler Construction, CC’14, Berlin, Hei-
delberg, Springer-Verlag, pp. 40–60 (2014).

[67] Rosen, B. K., Wegman, M. N. and Zadeck, F. K.: Global value numbers
and redundant computations, Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’88, New York, NY, USA, ACM, pp. 12–27 (1988).

[68] Ruthing, O.: Optimal Code Motion in the Presence of Large Expres-
sions, Proceedings of the 1998 International Conference on Computer
Languages, ICCL ’98, Washington, DC, USA, IEEE Computer Society,
pp. 216–225 (1998).

[69] Ruthing, O., Knoop, J. and Steffen, B.: Detecting Equalities of Vari-
ables: Combining Efficiency with Precision, Proceedings of the 6th In-
ternational Symposium on Static Analysis, SAS ’99, London, UK, UK,
Springer-Verlag, pp. 232–247 (1999).

[70] Ruthing, O., Knoop, J. and Steffen, B.: Sparse code motion, Proceed-
ings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’00, New York, NY, USA, ACM, pp.
170–183 (2000).

98

Bibliography

[71] Sarkar, S. and Tullsen, D. M.: Compiler techniques for reducing data
cache miss rate on a multithreaded architecture, Proceedings of the 3rd
international conference on High performance embedded architectures
and compilers, HiPEAC’08, Berlin, Heidelberg, Springer-Verlag, pp.
353–368 (2008).

[72] Scholz, B., Horspool, N. and Knoop, J.: Optimizing for Space and Time
Usage with Speculative Partial Redundancy Elimination, Proceedings
of the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers, and Tools for Embedded Systems, LCTES ’04, New York, NY,
USA, ACM, pp. 221–230 (2004).

[73] Shang, L., Xie, X. and Xue, J.: On-demand Dynamic Summary-based
Points-to Analysis, Proceedings of the Tenth International Symposium
on Code Generation and Optimization, CGO ’12, New York, NY, USA,
ACM, pp. 264–274 (2012).

[74] Sreedhar, V. C., Ju, R. D.-C., Gillies, D. M. and Santhanam, V.: Trans-
lating Out of Static Single Assignment Form, Proceedings of the 6th In-
ternational Symposium on Static Analysis, SAS ’99, London, UK, UK,
Springer-Verlag, pp. 194–210 (1999).

[75] Sui, Y., Ye, S., Xue, J. and Yew, P.-C.: SPAS: Scalable Path-sensitive
Pointer Analysis on Full-sparse SSA, Proceedings of the 9th Asian Con-
ference on Programming Languages and Systems, APLAS’11, Berlin,
Heidelberg, Springer-Verlag, pp. 155–171 (2011).

[76] Sumikawa, Y., Ojima, R. and Takimoto, M.: Demand-driven Scalar
Replacement, Computer Software (2014). (in Japanese), to appear.

[77] Sumikawa, Y. and Takimoto, M.: Global Load Instruction Aggregation
Based on Code Motion, Proceedings of the 2012 Fifth International
Symposium on Parallel Architectures, Algorithms and Programming,
PAAP ’12, Taipei, IEEE Computer Society, pp. 149–156 (2012).

[78] Sumikawa, Y. and Takimoto, M.: Effective Demand-driven Partial Re-
dundancy Elimination, Information Processing Society of Japan Trans-
actions on Programming, Vol. 6, No. 2, pp. 33–44 (2013).

[79] Sumikawa, Y. and Takimoto, M.: Global Load Instruction Aggregation
Based on Array Dimensions, Proceedings of the 2014 Sixh International
Symposium on Parallel Architectures, Algorithms and Programming,
PAAP ’14, Washington, DC, USA, IEEE Computer Society, pp. 123–
129 (2014).

[80] Takimoto, M.: Speculative Partial Redundancy Elimination Based on
Question Propagation, Information Processing Society of Japan Trans-
actions on Programming, Vol. 2, No. 5, pp. 15–27 (2009). (in Japanese).

99

Bibliography

[81] VanDrunen, T. and Hosking, A. L.: Value-based partial redundancy
elimination, In CC, pp. 167–184 (2004).

[82] Whaley, J. and Lam, M. S.: Cloning-based Context-sensitive Pointer
Alias Analysis Using Binary Decision Diagrams, Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, PLDI ’04, New York, NY, USA, ACM, pp. 131–
144 (2004).

[83] Wimmer, C. and Franz, M.: Linear scan register allocation on SSA
form, Proceedings of the 8th annual IEEE/ACM international sympo-
sium on Code generation and optimization, CGO ’10, New York, NY,
USA, ACM, pp. 170–179 (2010).

[84] Xue, J. and Cai, Q.: A Lifetime Optimal Algorithm for Speculative
PRE, ACM Trans. Archit. Code Optim., Vol. 3, No. 2, pp. 115–155
(2006).

[85] Yu, H., Xue, J., Huo, W., Feng, X. and Zhang, Z.: Level by Level: Mak-
ing Flow- and Context-sensitive Pointer Analysis Scalable for Millions
of Lines of Code, Proceedings of the 8th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO ’10,
New York, NY, USA, ACM, pp. 218–229 (2010).

[86] Zheng, X. and Rugina, R.: Demand-driven alias analysis for C, Pro-
ceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’08, New York, NY, USA,
ACM, pp. 197–208 (2008).

[87] Zhou, H., Chen, W. and Chow, F.: An SSA-based algorithm for optimal
speculative code motion under an execution profile, Proceedings of the
32nd ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’11, New York, NY, USA, ACM, pp. 98–108
(2011).

[88] Zhu, J. and Calman, S.: Symbolic Pointer Analysis Revisited, Proceed-
ings of the ACM SIGPLAN 2004 Conference on Programming Lan-
guage Design and Implementation, PLDI ’04, New York, NY, USA,
ACM, pp. 145–157 (2004).

100

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

