Development of Photocatalytic and Photoelectrochemical Systems using Metal Oxides with Tungsten Bronze Structure and Metal Sulfide for CO₂ Reduction and Water Splitting

(CO2還元および水分解のためのタングステンブロンズ構造を持つ金属酸化物および金属硫化物を用いた光触媒および光電気化学系の開発)

Tomoaki Takayama 高山 大鑑

Acknowledgements

The author would like to express his sincere gratitude to his supervisor, Prof. Akihiko Kudo of Faculty of Science, Tokyo University of Science, for Giving very attractive and challenging research of "Development of Photocatalytic and Photoelectrochemical Systems Using Metal Oxides with Tungsten Bronze Structure and Metal Sulfide for CO₂ Reduction and Water Splitting", generous and valuable guidance, fruitful discussion, and kind encouragement throughout this study. The author also would like to express deep gratitude to Dr. Kenji Saito of Nanomaterial Science Laboratory, Niigata University, Graduate School of Science and Technology for many valuable suggestions, helpful discussion, and warm encouragement throughout this study. The author was deeply grateful to Dr. Akihide Iwase for spending a great deal of time with me to discuss and advice. Special thanks are due to all the members of Kudo Laboratory for their much kindness support for the present study. Finally, the author would like to express his heartfelt gratitude to his parents and friends for much kindness, many supports and understanding.

Tomoaki Takayama

Contents

Chapter 1: General introduction	1
1-1. Background	2
1-2. Photocatalysts	6
1-2-1. Photocatalytic water splitting	6
1-2-1-1. Water splitting over metal oxide photocatalysts with wide band gaps	6
1-2-1-2. Development of visible light driven photocatalysts	6
1-2-1-3. Hydrogen evolution over metal sulfide photocatalysts under visible	
light irradiation	10
1-2-1-4. Water splitting using Z-scheme system under visible light irradiation	10
1-2-1-5. Water splitting using photoelectrodes	12
1-2-2. Photocatalytic CO ₂ reduction	12
1-2-2-1. CO ₂ reduction using metal complex photocatalysts	13
1-2-2-2. CO ₂ reduction over semiconductor photocatalysts	16
1-2-2-3. CO ₂ reduction using photoelectrodes	16
1-3. Objects in this thesis	18

References

Chapter 2: Development of KCaSrTa ₅ O ₁₅ of a new photocatalyst with tung	sten
bronze structure prepared by a solid-state reaction and a polymer	ized
complex method for water splitting and CO ₂ reduction	25
2-1. Introduction	26
2-2. Experimental	27
2-3. Results and discussion	29
2-3-1. Development of KCaSrTa ₅ O ₁₅ of a new photocatalyst prepared by a solid-s	tate
reaction	29

2-3-1-1. Characterization of KCaSrTa ₅ O ₁₅ prepared by a solid-state reaction	29
2-3-1-2. Photocatalytic water splitting and CO_2 reduction over KCaSrTa ₅ O ₁₅	
prepared by a solid-state reaction	31
2-3-1-3. Characterization of activated NiO and Ag cocatalysts on the surface	
of KCaSrTa ₅ O ₁₅	40
2-3-2. Development of the single crystalline nanorod KCaSrTa ₅ O ₁₅ photocatalyst	
prepared by a polymerized complex method	47
2-3-2-1. Characterization of the material properties of single crystalline nanoro	od
KCaSrTa ₅ O ₁₅ prepared by a polymerized complex method	47
2-3-2-2. Photocatalytic water splitting and CO ₂ reduction over single crystallin	ie
nanorod KCaSrTa5O15 prepared by a polymerized complex method	61
2-4. Conclusions	66

References

Chapter 3: Preparation of nanorod-shaped K ₃ Ta ₃ Si ₂ O ₁₃ photocatalyst	with
tungsten bronze-like structure for water splitting	72
3-1. Introduction	73
3-2. Experimental	74
3-3. Results and discussion	77
3-3-1. Characterization of nanorod-shaped $K_3Ta_3Si_2O_{13}$ and block-shaped	
$Ba_3Ta_6Si_4O_{26}$ prepared by a solid-state reaction and a flux method	77
3-3-2. Photocatalytic water splitting over nanorod-shaped $K_3Ta_3Si_2O_{13}$ and	
block-shaped $Ba_3Ta_6Si_4O_{26}$ prepared by a solid-state reaction and a flux	
method	79
3-4. Conclusions	85
References	

Chapter 4: Development of Ag/ZnS/Cu _{0.8} Ag _{0.2} GaS ₂ photocathode for	CO_2
reduction using water as an electron donor under visible	light
irradiation	• 87
4-1. Introduction	88
4-2. Experimental	88
4-3. Results and discussion	90
4-3-1. Effect of ZnS modification on photocathodic property of $Cu_{0.8}Ag_{0.2}GaS_2$	90
4-3-2. Improvement of ZnS-modified $Cu_{0.8}Ag_{0.2}GaS_2$ photocathode for CO_2	
reduction by loading cocatalysts	99
4-3-3. Construction of photoelectrochemical cell consisting of	
$Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS_2$ photocathode and CoO/BiVO ₄ photoanode for	
CO ₂ reduction utilizing solar energy without an external bias	105
4-4. Conclusions	105
References	

Chapter 5:	Conclusions	108
------------	-------------	-----

Chapter 1

General introduction

1-1. Background

Energy and chemicals to maintain the modern society depend on fossil fuels. However, the amounts of fossil fuels are limited. Additionally, CO_2 emission in the consuming process brings a green house effect resulting in global warming. The amount of the fossil fuel consumed in the world is steadily increasing. Therefore, development of the next-generation clean energy system and the technology to remove and fix CO_2 has been urged.

"Hydrogen" is an ultimate clean energy. Hydrogen changes to not any pollutants but only water (H_2O) by burning. Moreover, the most of chemicals utilized by the modern society has been produced by using *hydrogen* as shown in Figure 1-1. Thus, *hydrogen* is a very important matter for not only pollutant-free society but also chemical industries. However, the main production process of hydrogen is the steam reforming with consuming fossil fuels and emitting a large amount of CO_2 at the present time. In such a background, the solar hydrogen production from water using *photocatalyst* has been paid attention.

Reduction and oxidation proceed using photogenerated electrons and holes in a photocatalyst. For example, water split into H_2 and O_2 on the photocatalyst being similar to electrolysis (Figure 1-2). Because photocatalytic water splitting is the uphill reaction, it can be regarded as the artificial photosynthesis (Figure 1-3). In this reaction, solar energy is converted the storable chemical energy as hydrogen.

The reducing and oxidizing powers of electrons and holes photogenerated in a photocatalyst depend on elements and crystal structure constructing photocatalyst. As the reducing power is large, the electrons in the photocatalyst become to be able to reduce not only water but also other substrates. One of the applications is CO_2 reduction over a photocatalyst using water as an electron donor. The photocatalytic CO_2 reduction is an uphill reaction being similar to photocatalytic water splitting. It is noteworthy in the photocatalytic CO_2 reduction that various reduction products can be obtained by using suitable cocatalysts. Additionally, stored energy is larger than that of water splitting. Therefore, not only water splitting but also CO_2 reduction have extensively been studied in the world.

H₂S + high purity hydrocarbon

Figure 1-1. The utilization chart of hydrogen in industrial processes.

Figure 1-2. Mechanism of water splitting over semiconductor photocatalyst. (I) photon absorption, (II) charge separation and migration of carrier, (III) H₂ evolution, (IV) O₂ evolution, (V) recombination.

Figure 1-3. The energy diagram of water splitting.

1-2. Photocatalysts

1-2-1. Photocatalytic water splitting

1-2-1-1. Water splitting over metal oxide photocatalysts with wide band gaps

Table 1-1 shows water splitting over metal oxide photocatalysts which have been developed so far. Most of photocatalysts showing activity for water splitting have wide band gaps because large driving forces for reduction and oxidation are necessary to split water. Especially, the photocatalysts containing Ta as a constructing element split water into H₂ and O₂ with high efficiencies. It is due to the conduction band levels formed by Ta5d orbitals. NaTaO₃ photocatalyst shows high activity for water splitting by loading NiO-cocatalyst. It split water even without cocatalysts. Moreover, the efficiency for water splitting is drastically enhanced by doping La and alkaline earth metals. The apparent quantum yield for water splitting over La-doped NaTaO₃ photocatalyst is about 56% under monochromatic light irradiation at 270 nm. Similarly, ZrO₂ and Ga₂O₃ photocatalysts also split water without cocatalyst. Moreover, the efficiency for water splitting over Ga₂O₃ is dramatically improved by doping Zn and loading Rh_{2-y}Cr_yO₃ cocatalyst. Thus, the high efficient water splitting has been achieved by many metal oxide photocatalysts. However, these photocatalysts cannot use for solar hydrogen production because they are wide band gap materials.

1-2-1-2. Development of visible light driven photocatalysts

Development of visible-light-driven photocatalyst is necessary to achieve the solar hydrogen production. Therefore, the band engineering is important to obtain narrow band gap photocatalysts responding to the visible light occupying many parts of a solar spectrum. As the strategy to develop the visible-light-driven photocatalysts, the controlling of a valence band level by substituting metal cations and the forming of an impurity level by doping transition metal cations have been studied.

When Ag⁺, Pb²⁺, Sn²⁺ and Bi³⁺ are doped to wide band gap materials, the band gaps become narrow compared with the original materials. Ag4d, Pb6s, Sn5s and Bi6s orbitals also hybridize

Photocatalyst	Activity/µmol h ⁻¹		Reaction condition	Ref. No.
	H_2	O_2	-	
Rh/TiO ₂	449	_	Water vapor	1
NiO _x /TiO ₂	6	2	3M NaOH aqueous solution	2
Pt/TiO ₂	568	287	Na ₂ CO ₃ aqueous solution	3
NiO _x /SrTiO ₃	24	11	Pure water	4
NiO _x /K ₂ La ₂ Ti ₃ O ₁₀	444	221	KOH (0.1 M) aqueous solution	5
NiO _x /La ₂ Ti ₂ O ₇ :Ba	5000	—	NaOH (24 M) aqueous solution	6
NiO _x /BaLa ₄ Ti ₄ O ₁₅	2300	1154	Pure water	7
$RuO_2/SrLi_2Ti_6O_{14}$	13	7	LiOH (0.01 M) aqueous solution	8
$RuO_2/Na_2Li_2Ti_6O_{14}$	27	14	LiOH (0.01 M) aqueous solution	8
NiO _x /K ₄ Nb ₆ O ₁₇	100	50	Pure water	9
NiO _x /Sr ₂ Nb ₂ O ₇	110	36	Pure water	10
NiO _x /Ba ₅ Nb ₄ O ₁₅	4021	1972	Pure water	7
RuO ₂ /NaNbO ₃ -nanowire	47	23	Pure water	11
NiO _x /K ₂ SmNb ₅ O ₁₅	64	29	Pure water	12
NiO _x /La ₃ NbO ₇	35	17	Pure water	13
NiO _x /Ta ₂ O ₅	199	90	Pure water	14
NiO _x /La ₃ TaO ₇	164	80	Pure water	13
NiO/Sr ₂ Ta ₂ O ₇	1000	480	Pure water	10
NiO/NaTaO ₃	2180	1100	Pure water	15
NiO/NaTaO ₃ :La	19800	9660	Pure water	16
NiO/NaTaO ₃ :Sr	9500	4700	Pure water	17
NiO/K2PrTa5O15	517	238	Pure water	18
$K_3Ta_3B_2O_{12}$	2390	1210	Pure water	19
ZrO_2	72	36	Pure water	14
Rh _{2-y} Cr _y O ₃ /Ga ₂ O ₃	11100	5700	Pure water	20

 Table 1-1 Water splitting over metal oxide photocatalysts with wide band gap.

with O2p orbitals resulting in that the top of new balance band level is more positive than that of only O2p orbitals. Tables 1-2 and 1-3 show the photocatalytic activities for water splitting, hydrogen and oxygen evolution over valence-band-controlled materials. The band gap of AgTaO₃ is narrower than that of NaTaO₃, even if both crystal structures of the materials are perovskite structure. Because the valence band is formed by the hybrid orbitals consisting of Ag4d and O2p orbitals, AgTaO₃ photocatalyst splits water into H₂ and O₂ under UV light irradiation ($\lambda > 300$ nm). Moreover, AgNbO₃, PbTiO₃ and BiVO₄ photocatalysts have narrower band gaps than that of most metal oxide materials such as NaTaO₃, SrTiO₃ and so, because these photocatalysts have not only new valence band levels formed by hybridizing Ag4d, Pb6s, and Bi6s with O2p orbitals than the conduction band levels (Ta5d) of tantalates. These photocatalysts show activities for H₂ and O₂ evolution under visible light irradiation. However, these photocatalysts cannot be used as a single-photocatalyst for water splitting under visible light irradiation.

Metal (oxy)nitrides also show photocatalytic activities for H_2 and O_2 evolution under visible light irradiation because N2p orbitals form the valence band with more negative level than O2p orbitals. Especially, GaN-ZnO solid solution with yellow color can split water into H_2 and O_2 in a stoichiometric amount under visible light irradiation by loading suitable cocatalysts.

To dope transition metal cations into materials with wide band gaps is one of the strategy to develop visible-light-driven photocatalysts. However, although this method gives easily the ability to absorb the visible light to wide band gap photocatalysts, the products don't show photocatalytic activity because the transition metal cations doped in the host materials probably behave as a recombination center to quench photogenerated electrons and holes. Therefore, development of visible-light-driven photocatalysts by doping the transition metal cations has been very difficult. Recently, however, it has been reported that some materials show photocatalytic activity under visible light irradiation by doping the transition metal cations. Among them, Rh-doped SrTiO₃, and Cr and Ta-codoped TiO₂ show activities for H₂ and O₂ evolution from an aqueous medium containing the sacrificial reagents under visible light irradiation.

Photocatalysts	Activity / μ mol h ⁻¹		Reaction conditions	Ref. No.
	H ₂	O ₂	-	
NiO/AgTaO ₃	21	10	Pure water, $\lambda > 300 \text{ nm}$	21
AgNbO ₃	_	37	AgNO _{3 aq.} , $\lambda > 420$ nm	21
PbTiO ₃	_	183	AgNO _{3 aq.} , $\lambda > 420$ nm	22
RuO ₂ /PbWO ₄	24	12	Pure water, UV light	23
$RuO_2/Na_4Ta_8P_4O_{32}$	45	22	Pure water, UV light	24
BiVO ₄	_	31	AgNO _{3 aq.} , $\lambda > 420$ nm	25
Pt/SnNb ₂ O ₆	14	-	MeOH aq., $\lambda > 420$ nm	26
$IrO_2/SnNb_2O_6$	_	63	AgNO _{3 aq.} , $\lambda > 420$ nm	26
Pt/TaON	120	-	MeOH aq., $\lambda > 420$ nm	27
Pt/Ta ₃ N ₅	20	-	MeOH aq., $\lambda > 420$ nm	28
RuO ₂ /ZnO-GaN	60	30	$H_2SO_{4 \text{ aq.}} (pH = 3), \lambda > 400 \text{ nm}$	29

 Table 1-2 Valence band-controlled metal oxide and metal (oxy)nitride photocatalysts.

 Table 1-3 Transition metal-doped metal oxide photocatalysts.

Photocatalysts	Activity / μ mol h ⁻¹		Reaction conditions	Ref. No.
	H_2	O ₂	-	
Pt/SrTiO3:Cr,Ta	70	_	MeOH aq., $\lambda > 440$ nm	30
Pt/SrTiO ₃ : Cr,Sb	78	-	MeOH aq., $\lambda > 420$ nm	31
SrTiO ₃ :Rh	90	-	MeOH aq., $\lambda > 440$ nm	32
TiO ₂ :Cr, Sb	-	32	AgNO ₃ aq., $\lambda > 420$ nm	31
TiO ₂ :Rh, Sb	_	17	AgNO ₃ aq., $\lambda > 440$ nm	33

 Table 1-4 Metal sulfide photocatalysts.

Table 1-4 Wietar Sunde photoedarysts.					
Photocatalysts	Rate of H ₂ evolution	Reaction conditions	Ref. No.		
	$/ \mu mol h^{-1}$				
Pt/(AgIn) _{0.22} Zn _{1.56} S ₂	944	$Na_2S + K_2SO_3 aq., \lambda > 420 nm$	34		
Ru/CuGa2In3S8	3200	$Na_2S + K_2SO_3$ aq., $\lambda > 420$ nm	35		

Thus, the band engineering of wide band gap photocatalyst is useful to develop new visible-light-driven photocatalyst for H_2 and O_2 evolution and water splitting.

1-2-1-3. Hydrogen evolution over metal sulfide photocatalysts under visible light irradiation

Most of metal sulfide photocatalysts have narrow band gap compared with metal oxide photocatalysts with wide band gap because the position of valence band formed by S3p orbitals is more negative than that of O2p orbitals. Moreover, metal sulfide photocatalyst easily makes the solid solution resulting in the elaborate band engineering by using metal sulfide materials with wide and narrow band gaps. Table 1-4 shows H₂ evolution over metal sulfide photocatalysts from an aqueous medium containing the sacrificial reagents. (AgIn)_{0.22}Zn_{1.56}S₂ solid solution (2.33 eV) formed by ZnS (3.55 eV) showing high activity for hydrogen evolution and AgInS₂ (1.80 eV) shows activity for highly efficient hydrogen evolution under visible light irradiation. This photocatalyst is active up to 550 nm. Moreover, CuGa₂In₃S₈ photocatalyst (1.91 eV) shows activity for hydrogen evolution and responds to 680 nm longer than the absorption edge of the (AgIn)_{0.22}Zn_{1.56}S₂ solid solution. Thus, the band gaps of metal sulfide photocatalysts can use visible light occupying many parts of a solar spectrum for H₂ evolution.

1-2-1-4. Water splitting using Z-scheme system under visible light irradiation

In the most of photocatalytic reaction over visible-light driven photocatalysts, the sacrificial reagents are indispensable. In contrast, some visible-light-driven photocatalysts can be used to construct of the Z-scheme type photocatalytic system for water splitting as shown in Figure 1-5. For example, the Z-scheme type system consisting of Pt/SrTiO₃:Cr and Pt/WO₃ photocatalysts, and IO₃⁻/I⁻ as a redox mediator shows activity for water splitting under visible light irradiation.³⁶ Similarly, combined systems with Pt/SrTiO₃:Rh photocatalyst for H₂ evolution, and BiVO₄,

Figure 1-5. The mechanism of water splitting using Z-scheme type photocatalyst system.

 Bi_2MoO_6 and WO_3 photocatalysts for O_2 evolution is also active for water splitting in the presence of an Fe^{3+/2+} redox mediator.³⁷ The Z-scheme type photocatalytic system is important to achieve solar water splitting using various visible-light-driven photocatalysts, while the number of photocatalysts is limited.

1-2-1-5. Water splitting using photoelectrodes

In Honda-Fujishima effect,³⁸ it had arisen that TiO_2 photoelectrode can split water with external bias smaller than theoretical potential to split water (1.23 V). In other word, the system has achieved to convert light energy to chemical energy by production of the hydrogen from water, while TiO_2 responds not visible light but UV light. Therefore, the water splitting under visible light irradiation is interesting to achieve by using visible-light-driven photocatalyst electrode instead of TiO_2 electrode.

Rh-doped SrTiO₃ photoelectrode has arisen as a p-type semiconductor and split water H_2 and O_2 in a stoichiometric amount under visible light irradiation at -0.8 V vs. Pt of a counter electrode as an external bias smaller than 1.23 V.³⁹

WO₃ and BiVO₄ electrodes with n-type semiconductor character show high activity for photoelectrochemical water splitting under visible light irradiation with suitable external bias and give 75% of the IPCE at 400 nm (1 V vs. RHE, in 1 M HClO₄),⁴⁰ and 33% at 400 nm (1.3 V vs. Ag/AgCl, in 0.5 M Na₂SO₄),⁴¹ respectively. Moreover, the photoelectrochemical system can use the metal sulfide photocatalyst as a photoelectrode to split water, only if the metal sulfide photocatalyst possesses p-type semiconductor character. For example, Cu₂ZnSnS₄ photoelectrode has p-type semiconductor character and split water under visible light irradiation with an external bias.⁴²

1-2-2. Photocatalytic CO₂ reduction

The technology to remove and convert CO₂ has been extensively studied to solve the energy

and environmental issues being similar to the solar hydrogen production using photocatalyst. The photocatalytic CO₂ reduction is one of the strategies. The reaction has been called the artificial photosynthesis mimicking the natural photosynthesis of the green plants because some carbon-containing materials such as CO, HCOOH, HCHO, CH₃OH, CH₄ and so are produced by using water, CO₂ and light energy.

Figure 1-4 shows the redox potential and the stored energy to convert CO_2 to some products by using water as an electron donor. This figure indicates that the CO_2 reduction is an attractive and challenging reaction. This is because the most of reducing potential are more negative level than that of hydrogen production. Moreover, methanol and methane evolutions are multi-electron reaction by consuming 6 and 8-electrons, respectively, even if the reduction potentials are more positive levels than that for hydrogen evolution. Therefore, the stored energy is larger than that of water splitting. Additionally, CO can be used the raw materials to synthesis the gasoline, and CH_3OH and CH_4 . They can be direct used as energy source for fuel cells. Therefore, CO_2 reduction is interesting term as not only academic knowledge but also the strategy to convert to storable energy and chemicals.

1-2-2-1. CO₂ reduction using metal complex photocatalysts

The green plant uses the metal complex in the photosynthesis. Therefore, the metal complex photocatalyst to reduce CO_2 using light energy has been synthesized and studied.⁵² Among them, the complex photocatalyst consisting of Re as a center metal cation shows activity for CO_2 reduction to form CO using light energy in DMF (N, N-dimethylformamide), while not electrochemical bias but sacrificial reagents are indispensable as shown in Table 1-5. Moreover, Re-Ru super molecule complex with separated absorbing and reacting parts shows high activity for CO_2 reduction with high selectivity for CO evolution. Thus, Re and Ru-metal complexes are the photocatalysts to reduce CO_2 to CO by light energy, while it cannot consumed water as an electron donor.

	(V vs. NHE, j	oH = 0)
$CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$	-0.20	(1)
$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$	-0.12	(2)
$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O$	-0.07	(3)
$2H^+ + 2e^- \rightarrow H_2$	0	(4)
$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$	+0.03	(5)
$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$	+0.17	(6)
$\rm H_2O + 4h^+ \rightarrow 2H^+ + 1/2O_2$	+1.23	(7)
$CO_2 + H_2O \rightarrow HCOOH + 1/2O_2$	∆G ⁰ = 276	(8)
$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{CO} + 1/2\mathrm{O}_2 + \mathrm{H}_2\mathrm{O}$	∆ <i>G</i> ⁰ = 261	(9)
$CO_2 + H_2O \rightarrow HCHO + O_2$	$\Delta G^{0} = 502$	(10)
$CO_2 + 2H_2O \rightarrow CH_3OH + O_2$	$\Delta G^0 = 693$	(11)
$CO_2 + 2H_2O \rightarrow CH_4 + 2O_2$	∆ <i>G</i> ⁰ = 818	(12)
$H_2O \rightarrow H_2 + 1/2O_2$	∆G ⁰ = 237	(13)
	(⊿G⁰ / kJ mol⁻¹	= -nFE)

Figure 1-4. Chemical equation, redox potential⁵² and Gibbs free energy of water splitting and CO₂ reduction.

Photocatalyst	Product	Incident light	Sacrificial reagent	Ref.
				No.
[Re(bpy)(CO) ₃ X]	СО	$\lambda > 400 \text{ nm}$	DMF	43
(X = Cl, Br and HCOO)			(Dimethylformamide)	44
[ReBr(CO) ₃ (bpy)]	СО	$\lambda = 436 \text{ nm}$	TEOA	45
			(Triethanolamine)	46
$[fac-\text{Re(bpy)(CO)}_3-$ $\{P(\text{Oet})_3\}]^+$	СО	$\lambda = 365 \text{ nm}$	DMF+TEOA	47
$\left[\operatorname{Ru-ReP(OEt)_3}\right]^{3+}$	СО	$\lambda = 546 \text{ nm}$	DMF+TEOA+BNAH (BNAH: 1-benzyl-1,4- dihydronicotinamide)	48
<i>fac</i> -[Re(bpy)(CO) ₃ (NCS)] <i>fac</i> -[Re(bpy)(CO) ₃ (CN)]	СО	$\lambda = 365 \text{ nm}$	DMF+TEOA	49
$[(dmb)_2Ru(tb-carbinol)-(Re(CO)_3Cl_2)(PF_6)_2$ $[(dmb_2Ru)_2(tb-carbinol)-Re(CO)_3Cl](PF_6)_4$	СО	λ > 500 nm	DMF+TEOA+BNAH	50
$[(dmb)_2Ru(bpyC_2bpy)-Re(CO)_2\{P(p-FPh)_3\}_2]-(PF_6)_3$	СО	λ > 500 nm	DMF+TEOA+BNAH	51

 Table 1-5 CO2 reduction using metal complex photocatalysts

1-2-2-2. CO₂ reduction over semiconductor photocatalysts

Metal oxide photocatalysts showing activity for water splitting can consume water as an electron donor. Therefore, those photocatalysts will be able to be used for the CO₂ reduction using water as an electron donor. Moreover, the selectivity for CO₂ reduction can be controlled by loading suitable cocatalysts. Table 1-6 shows CO₂ reduction over metal oxide photocatalysts loaded with various cocatalysts. Although various reduction products form in the reaction, oxygen evolution in a stoichiometric amount is not observed in many cases. In contrast, ZrO₂ photocatalyst shows activity for CO₂ reduction and produces H₂, CO and O₂ in stoichiometric amounts. Moreover, the selectivity for CO evolution is enhanced by loading Cu cocatalyst. Similarly, BaLa₄Ti₄O₁₅ and Zn-doped Ga₂O₃ photocatalyst was loaded. Additionally, O₂ as an oxidizing product of water in a stoichiometric amount is produced in these reaction. However, these wide band gap photocatalysts cannot use CO₂ reduction under the sunlight.

Many metal sulfide photocatalysts are also active for CO_2 reduction as shown in Table 1-7. Although ZnS photocatalyst responds not visible light but UV light, the photocatalysts produce various products by using suitable treatment. In contrast, CdS nanoparticle produces CO by reducing CO_2 under visible light irradiation. In this case, the carbon source of CO is confirmed to be not contamination but CO_2 molecule by an isotope experiment using ${}^{13}CO_2$.

Thus, metal oxide and metal sulfide photocatalysts can use CO_2 reduction. However, CO_2 reduction over powdered photocatalyst using sunlight and water as an electron donor has not been achieved.

1-2-2-3. CO₂ reduction using photoelectrodes

 CO_2 reduction has been studied based on not only photocatalysis but also electrocatalysis. In the results, the properties of the metal electrodes for CO_2 reduction have been clarified as follows.⁷⁷⁻⁷⁹

Photocatalyst	Product	Incident light	Electron source	Ref.
				No.
TiO ₂	CO, CH ₄	UV	Water	53
	НСООН			54
	CH ₃ OH etc.			55
BaTiO ₃	НСООН	UV	Water	56
Zn ₂ GeO ₄	CH ₄	UV	Water (Vapor)	57
ZrO ₂ , Cu/ZrO ₂	СО	UV	Water	58
Ag/BaLa ₄ Ti ₄ O ₁₅	СО	UV	Water	59
Ag/La ₂ Ti ₂ O ₇	СО	UV	Water	60
Ag/Ga ₂ O ₃ :Zn	СО	UV	Water	61

Table 1-6 CO₂ reduction over metal oxide photocatalysts

 Table 1-7 CO2 reduction over metal oxide photocatalysts

Photocatalyst	Product	Incident light	Electron source	Ref.
				No.
ZnS	НСООН	$\lambda > 290 \text{ nm}$	2, 5-dihydrofuran	62
ZnS	НСООН	$\lambda > 290 \text{ nm}$	NaPH ₂ O ₂ , Na ₂ S	63
ZnS	НСООН	$\lambda > 320 \text{ nm}$	Na ₂ S (+Me ₄ NCl)	64
CdS	СО	$\lambda > 400 \text{ nm}$	TEA (+DMF)	65
CdS	НСООН, СО	$\lambda > 310 \text{ nm}$	2-propanol	66
CdS	CO, CH ₄	UV	Water	67
Zn _{0.5} Cd _{0.5} S	СО, НСООН	$\lambda > 390 \text{ nm}$	2-propanol	68
$Cu_xAg_yIn_zZn_kS_m$	CH ₃ OH	$\lambda > 400 \text{ nm}$	Na ₂ S	69

Cu: Hydrocarbon

Au, Ag, Zn, Pd, Ga: Carbon monoxide

Pb, Hg, In, Sn, Cd, Tl: Formic acid

Ni, Fe, Pt, Ti: Hydrogen

Table 1-8 shows CO_2 reduction using the electrochemical system. The photoelectrochemical cell consisting of Cu-electrode and GaN-electrode produces CH_4 by using photon energy. Moreover, the electrochemical cell consisting of InP-electrode modified with the polymer of Ru-complex and TiO₂ electrode gives photocurrent and produces HCOOH under pseudo sunlight without any external bias. In this reaction, $H^{13}COOH$, DCOO⁻ and ${}^{18}O_2$ are confirmed by suitable isotope experiments indicating that the CO₂ reduction proceeds using water as an electron donor. The hybrid system gives important information to achieve "*CO₂ reduction based on artificial photosynthesis*". Moreover, N-doped Ta₂O₅ photocatalyst modified with Ru-complex shows activity for CO₂ reduction to form HCOOH under visible light irradiation, although a sacrificial reagents is necessary for this system.

Thus, CO_2 reduction has been extensively studied in multi-fields. In the results, the reaction using pseudo sunlight has been achieved. However, the efficiency is not satisfying. Therefore, the continuous and extensive study for CO_2 reduction is necessary to develop the system which convert highly efficient CO_2 to raw materials.

1-3. Objects in this thesis

The problems for CO_2 reduction are listed below.

1) The number of photocatalysts for efficient CO₂ reduction is limited.

2) The mechanism of the reaction on the surface and relationship between the activity and the bulk property is unclearly.

3) The highly efficient photocatalyst for CO₂ reduction under visible light irradiation has not been developed yet.

Electrode catalysts		Product	Incident light	Ref.
Anode	Cathode	-		No.
TiO ₂	p-GaP	CH ₃ OH	UV	70
GaN	Cu	CO, CH4 HCOOH	UV	71
AlGaN/GaN	Cu	CO, CH4 HCOOH	UV	72
WO ₃	СО	CO, CH4 HCOOH	$\lambda > 420 \text{ nm}$	73
Glassy carbon	RCP/p-InP-Zn	НСООН	$\lambda > 400 \text{ nm}$	74
Glassy carbon	RCP/Cu2ZnSnS4	НСООН	$\lambda > 400 \text{ nm}$	75
Pt/TiO ₂	RCP/p-InP	НСООН	Pseudo sunlight	76

Table 1-8 CO₂ reduction using semiconductor and metal electrode catalyst

RCP: Ru complex polymer

In the present thesis, the author has studied photocatalytic CO_2 reduction over metal oxide photocatalyst with tungsten bronze structure and metal sulfide photoelectrode in order to develop new photocatalyst and photoelectrode and evaluate the reaction mechanism.

In Chapter 2, KCaSrTa₅O₁₅ of a new photocatalyst for water splitting and CO₂ reduction was developed. The effects of loading cocatalysts on photocatalytic properties for water splitting and CO₂ reduction were investigated. Moreover, the bulk properties of KCaSrTa₅O₁₅ prepared by a solid-state reaction and a polymerized complex method were discussed by using photoluminescence.

In Chapter 3, the photocatalytic activities for water splitting over nanorod-shaped $K_3Ta_3Si_2O_{13}$ and block-shaped $Ba_3Ta_6Si_4O_{26}$ were evaluated. Moreover, the relationship among the distortion of the tungsten bronze-like structure, photocatalytic activity, the crystal growth process and carrier migration was discussed.

In Chapter 4, $Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS_2$ of a new photocathode for CO_2 reduction was developed. The effects of comodification of ZnS and Ag on CO_2 reduction over $Cu_{0.8}Ag_{0.2}GaS_2$ photocathode were evaluated. Moreover, the photoelectrochemical cell using $Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS_2$ as a photocathode and $CoO/BiVO_4$ as a photoanode was constructed to convert CO_2 to CO under pseudo sunlight without any external bias.

In Chapter 5, conclusions in Chapters 2-4 were summarized. Additionally, the vision for the future was discussed.

References

- (1) Yamaguti, K.; Sato, S. J. Chem. Soc., Faraday Trans. 1 1985, 81, 1237.
- (2) Kudo, A.; Domen, K.; Maruya, K.; Onishi, T. Chem. Phys. Lett. 1987, 133, 517.
- (3) Sayama, K.; Arakawa, H. J. Chem. Soc., Faraday Trans. 1997, 93, 1647.
- (4) Domen, K.; Kudo, A.; Onishi, T. J. Catal. 1986, 102, 92.
- (5) Takata, T.; Furumi, Y.; Shinohara, K.; Tanaka, A.; Hara, M.; N. Kondo, J.; Domen, K. Chem. Mater. 1997, 9, 1063.
- (6) Kim, J.; W. Hwang, D.; G. Kim, H.; W. Bae, S.; S. Lee, J.; Li, W.; H. Oh, S. *Top. Catal.* **2005**, *35*, 295.
- (7) Miseki, Y.; Kato, H.; Kudo, A. Energy Environ. Sci. 2009, 2, 306.
- (8) Iwase, A.; Y. Teoh, W.; Amal, R. Chem. Lett. 2011, 40, 108.
- (9) A) Domen, K.; Kudo, A.; Shinozaki, A.; Tanaka, A.; Maruya, K.; Onishi, T. J. Chem. Soc.,
- Chem. Commun. 1986, 356. B) Kudo, A.; Sayama, K.; Tanaka, A.; Asakura, K.; Domen, K. J.
- Catal. 1989, 120, 337. C) Domen, K.; Kudo, A.; Shibata, M.; Tanaka, A.; Maruya, K.; Onishi, T. J.
- Chem. Soc., Chem. Commun. 1986, 1706.
- (10) Kudo, A.; Kato, H.; Nakagawa, S. J. Phys. Chem. B 2000, 104, 571.
- (11) Saito, K.; Koga, K.; Kudo, A. Dalton Trans. 2011, 40, 3909.
- (12) Miseki, Y.; Kudo, A. ChemSusChem 2011, 4, 245.
- (13) Abe, R.; Higashi, M.; Sayama, K.; Abe, Y.; Sugihara, H. J. Phys. Chem. B 2006, 110, 2219.
- (14) Sayama, K.; Arakawa, H. J. Photochem. Photobiol. A: Chem. 1994, 77, 243.
- (15) Kato, H.; Kudo, A. J. Phys. Chem. B 2001, 105, 4285.
- (16) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082.
- (17) Iwase, A.; Kato, H.; Okutomi, H.; Kudo, A. Chem. Lett. 2004, 33, 1260.
- (18) Kudo, A.; Okutomi, H.; Kato, H. Chem. Lett. 2000, 1212.
- (19) Kurihara, T.; Okutomi, H.; Miseki, Y.; Kato, H.; Kudo, A. Chem. Lett. 2006, 35, 274.
- (20) Hisatomi, T.; Miyazaki, K.; Takanabe, K.; Maeda, K.; Kubota, J.; Sakata, Y.; Domen, K. *Chem. Phys. Lett.* 2010, 486, 144.

- (21) Kato, H.; Kobayashi, H.; Kudo, A. J. Phys. Chem. B 2002, 106, 12441.
- (22) Arney, D.; Watkins, T.; Maggard, A. P. J. Am. Ceram. Soc. 2011, 94, 1483.
- (23) Saito, N.; Hisayoshi, K.; Kobayashi, H.; Ikarashi, K.; Nishiyama, H.; Inoue, Y. Chem. Lett.
 2004, 33, 1452.
- (24) Nishiyama, H.; Kobayashi, H.; Inoue, Y. ChemSusChem 2011, 4, 208.
- (25) Kudo, A.; Ueda, Kazuhiro, Kato, H.; Mikami, I. Catal. Lett. 1998, 53, 229.
- (26) Hosogi, Y.; Shimoda, Y.; Kato, H.; Kobayashi, H.; Kudo, A. Chem. Mater. 2008, 20, 1299.
- (27) Hara, M.; Nunoshige, J.; Takata, T.; Kondo, N. J.; Domen, K. Chem. Comm. 2003, 3000.
- (28) Lee, Y.; Nukumizu, K.; Watanabe, T.; Takata, T.; Hara, M.; Yoshimura, M.; Domen, K. Chem. Lett. 2006, 35, 352.
- Maeda, K.; Teramura, K.; Takata, T.; Hara, M.; Saito, N.; Toda, K.; Inoue, Y.; Kobayashi, H.;
 Domen, K. J. Phys. Chem. B 2005, 109, 20504.
- (30) Ishii, T.; Kato, H.; Kudo, A. J. Photochem. Photobiol. A: Chem. 2004, 163, 181.
- (31) Kato, H.; Kudo, A. J. Phys. Chem. B 2002, 106, 5029.
- (32) Konta, R.; Ishii, T.; Kato, H.; Kudo, A. J. Phys. Chem. B 2004, 108, 8992
- (33) Niishiro, R.; Konta, R.; Kato, H.; Chun, W. J.; Asakura, K.; Kudo, A. J. Phys. Chem. C 2007, 111, 17420.
- (34) Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. J. Am. Chem. Soc. 2004, 126, 13406.
- (35) Kaga, H.; Saito, K.; Kudo, A. Chem. Commun. 2010, 46, 3779.
- (36) Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H. J. Photochem. Photobiol. A: Chem.
 2002, 148, 71.
- (37) Kato, H.; Hori, M.; Konta, R.; Shimodaira, Y.; Kudo, A. Chem. Lett. 2004, 33, 1348.
- (38) Fujishima, A.; Honda, K. Nature 1972, 238, 37.
- (39) Iwashina, K.; Kudo, A. J. Am. Chem. Soc. 2011, 133, 132772.
- (40) Santato, C.; Ulmann, M.; Augustynski, J. J. Phys. Chem. B 2001, 105, 936.
- (41) Sayama, K.; Nomura, A.; Zou, Z.; Abe, R.; Abe, Y.; Arakawa, H. Chem. Comm. 2003, 2908.
- (42) Ma, G.; Minegishi, T.; Yokoyama, D.; Kubota, J.; Domen, K. Chem. Phys. Lett. 2011,

501,619.

- (43) Hawecker, J.; Lehn, J. M.; Ziessel, R. J. Chem. Soc., Chem. Commun. 1983, 536.
- (44) Hawecker, J.; Lehn, J. M.; Ziessel, R. Helv. Chim. Acta 1986, 69, 1990.
- (45) Kutal, C.; Weber, A. M.; Ferraudi, G.; Geiger, D. Organometallics 1985, 4, 2161.
- (46) Kutal, C.; Corbin, J. A.; Ferraudi, G. Organometallics 1987, 6, 553.
- (47) Hori, H.; Johnson, A. P. F.; Koike, K.; Ishitani, O.; Ibusuki, T. J. Photochem. Pahotobiol. A:Chem. 1996, 96, 171.
- (48) Sato, S.; Koike, K.; Inoue, H.; Ishitani, O. Photochem. Photobiol. Sci. 2007, 6, 454.
- (49) Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. J. Am. Chem. Soc. 2008, 130. 2023.
- (50) Bian, Y. Z.; Sumi, K.; Furue, M.; Sato, S.; Koike, K.; Ishitani, O. Dalton Trance. 2009, 983.
- (51)Tamaki, Y.; Watanabe, K.; Koike, K.; Inoue, H.; Morimoto, T.; Ishitani, O. *Faraday Discuss*.**2012**, *155*, 115.
- (52) Takeda, H.; Ishitani, O. Coordination Chemistry Reviews 2010, 254, 346.
- (53) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637.
- (54) Halmann, M.; Katzir, V. Solar Energy Materials 1984, 10, 85.
- (55) Mao, J.; Li, K.; Peng, T. Catal. Sci. Technol. 2013, 3, 2481.
- (56) Ulman, M.; Blajrni, B. A.; Halmann, M. Israel J. Chem. 1982, 22, 177.
- (57) Liu, Q.; Zhou, Y.; Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z. J. Am. Chem. Soc. 2010, 132, 14385.
- (58) Sayama, K.; Arakawa, H. J. Phys. Chem. Lett. 1993, 97, 531.
- (59) Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. J. Am. Chem. Soc. 2011, 133, 20863.
- (60) Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. Appl. Catal. B: Emviron. 2015, 163, 241.
- (61) K. Teramura, Z. Wang, S. Hosokawa, Y. Sakata, T. Tanaka, Chem. Eur. J. 2014, 20, 9906.
- (62) Kisch, H.; Twardzik, G. Chem. Ber. 1991, 124, 1161.
- (63) Kanemoto, M; Shiragami, T.; Pac, C.; Yanagida, S. Chem. Lett. 1990, 931.
- (64) Eggins, R. B.; Robertson, J. K. P.; Stewart, H. J.; Woods, E. J. Chem. Soc., Chem. Commun. 1993, 349.

- (65) Kanemoto, M.; Ishihara, K.; Wada, Y.; Sakata, T.; Mori, H.; Yanagida, S. *Chem. Lett.* 1992, 835.
- (66) Inoue, H.; Nakamura, R.; Yoneyama, H. Chem. Lett. 1994, 1227.
- (67) Praus, P.; Kozak, O.; Koci, K.; Panacek, A.; Dvorsky, R. J. Colloid Interf. Sci. 2011, 360, 574.
- (68) Inoue, H.; Moriwaki, H.; Maeda, K.; Yoneyama, H. J. Photochem. Photobiol. A: Chem. 1995, 86, 191.
- (69) Liu, Y. J.; Garg, B.; Ling, C. Y. Green Chem. 2011, 13, 2029.
- (70) Halmann, M. Nature 1978, 275, 115.
- (71) Yotsuhashi, S.; Deguchi, M.; Zenitani, Y.; Hinogami, R. Hashiba, H.; Yamada, Y.; Ohkawa K. Appl. Phys. Express 2011, 4, 117101.
- (72) Yotsuhashi, S.; Deguchi, M.; Hashiba, H.; Zenitani,Y.; Hinogami, R.; Yamada, Y.; Ohkawa, K. *Appl. Phys. Lett.* 2012, *100*, 243904.
- (73) Magesh, G.; Kim, E. S.; Kang, H. J.; Banu, M.; Kim, J. Y.; Kim, J. H.; Lee, J. S. J. Mater. Chem. A, 2014, 2, 2044.
- (74) Arai, T.; Sato, S.; Uemura, K.; Morikawa, T.; Kajino, T.; Motohiro, T. Chem. Commun. 2010, 46, 6944.
- (75) Arai, T.; Tajima, S.; Sato, S.; Uemura, K.; Morikawa, T.; Kajino, T. Chem. Commun. 2011, 47, 12664.
- (76) Sato, S.; Arai, T.; Morikawa, T.; Uemura, K.; Szuki, M. T.; Tanaka, H.; Kajino, T. J. Am. Chem. Soc. 2011, 133, 15240.
- (77) Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 1695.
- (78) Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833.
- (79) Hatsukade, T.; P. Kuhl, K.; R. Cave, E.; N Abram, D.; F. Jaramillo, T. Phys. Chem. Chem. Phys. 2014, 16, 13814.

Chapter 2

Development of KCaSrTa₅O₁₅ of a new photocatalyst with tungsten bronze structure prepared by a solid-state reaction and a polymerized complex method for water splitting and CO_2 reduction

2-1. Introduction

An artificial photosynthesis system has been extensively studied to develop systems for CO₂ conversion to fuels and chemicals. Photocatalytic CO₂ reduction is one of the potential candidates for the artificial photosynthesis. Homogeneous and heterogeneous photocatalyst systems for CO₂ reduction have been studied. The homogeneous photocatalysts including Re-complex and Re-Ru-complex require sacrificial reducing reagents such as TEOA (Triethanolamine) to reduce CO₂ to CO and HCOOH.¹⁻⁶ Although a heterogeneous CdS photocatalyst shows activity for CO₂ reduction to form CO under visible light irradiation, sacrificial reagents are also indispensable.⁷⁻⁸ Heterogeneous metal oxide photocatalysts which possess the ability for O2 evolution by oxidation of water have been reported for the CO2 reduction to form HCOOH, CO, CH3OH and CH4 in aqueous media without sacrificial reagents. 9-16 However, oxygen evolution in a stoichiometric amount is not observed in many cases. Among them, a ZrO₂ photocatalyst produces CO and H₂ as reduction products and O₂ as an oxidation product in a stoichiometric amount under UV irradiation.¹⁴ Moreover, the activity and selectivity for CO₂ reduction to form CO are enhanced by loading a Cu cocatalyst on the ZrO₂ photocatalyst. BaLa₄Ti₄O₁₅¹⁵ and Zn-doped Ga₂O₃¹⁶ are highly active for CO₂ reduction using water as an electron donor when Ag cocatalyst is employed. Thus, metal oxide photocatalysts for water splitting can be applied to CO₂ reduction using water as an electron donor if suitable cocatalysts are chosen.

We have developed tantalum-based photocatalysts, such as NaTaO₃ and NaTaO₃:A (A = La and Sr) with perovskite structure, and K₂LnTa₅O₁₅ (Ln = La, Pr, Nd, Sm, Gd, Tb, Dy and Tm) with tungsten bronze structure, for highly efficient water splitting under UV irradiation.¹⁷⁻¹⁹ The high activities for the tantalum-based photocatalysts are mainly due to their high conduction bands formed by Ta5d orbitals. We have also reported that a BaLa₄Ti₄O₁₅ photocatalyst²⁰ with two dimensional anisotropy of crystal structure for water splitting also shows activity for CO₂ reduction using water as an electron donor by loading highly dispersed Ag cocatalyst.¹⁵ The selectivity for the CO₂ reduction is superior to that for water reduction to form H₂ even in an aqueous medium. On the other hand, there is a tantalate group that possesses tungsten bronze structure with anisotropy to a

c-axis of the crystal structure and the framework consisting of TaO_6 octahedra with corner sharing being similar to the perovskite structure as seen in NaTaO₃ of a highly efficient photocatalyst for water splitting. Therefore, the tantalates with tungsten bronze structure are expected to be active for water splitting and CO₂ reduction.

The preparation method of the photocatalysts affects the photocatalytic properties. A polymerized complex method provides highly crystalline particles due to well-mixed metal cations at the atomic level during the synthetic process.³⁴ For example, a single phase of BaLa₄Ti₄O₁₅ photocatalyst can be obtained at lower temperature by a polymerized complex method than a solid-state reaction. The particles prepared by a polymerized complex method possess a plate shape with reduction sites separated from oxidation sites.²⁰ Well-crystallized particles of K₂LaNb₅O₁₅ with tungsten bronze structure can also be obtained by a polymerized complex method, resulting in higher photocatalytic activity for water splitting than that prepared by a solid-state reaction.³⁵ Thus, the polymerized complex method is a useful for the synthesis of highly active photocatalyst particles with high crystallinity and a characteristic shape.

In the present study, KCaSrTa₅O₁₅ with tungsten bronze structure²¹ was prepared by a solid-state reaction, and their photocatalytic activities for water splitting and CO₂ reduction were investigated. The photocatalyst particles and cocatalysts were characterized using SEM, XPS and DRS. Moreover, well-crystalline KCaSrTa₅O₁₅ was prepared by a polymerized complex method and its photocatalytic activity for water splitting and CO₂ reduction were evaluated. The relationship between photocatalytic activity and migration of photogenerated electrons and holes was also discussed by monitoring the emission of Tb³⁺ doped in the well-crystalline KCaSrTa₅O₁₅ host as a guest.

2-2. Experimental

Preparation of KCaSrTa₅O₁₅

KCaSrTa₅O₁₅ powder was prepared by a solid-state reaction and a polymerized complex method (denoted as SSR-KCaSrTa₅O₁₅ and PC-KCaSrTa₅O₁₅, respectively). Starting materials of

K₂CO₃ (Kanto Chemical; 99.0%), CaCO₃ (Kanto Chemical; 99.5%), SrCO₃ (Kanto Chemical; 99.9%), and Ta₂O₅ (Rare Metallic; 99.99%) for SSR-KCaSrTa₅O₁₅ were mixed in an atomic ratio of K:Ca:Sr:Ta=1.05:1:1:5. The excess amount of potassium (5 mol%) was to compensate the volatilization.²² The mixed powder was calcined in air at 1173 K for 1 h and subsequent 1423 K for 10 h in a platinum crucible. The excess potassium was washed out with water from the obtained powder. For the synthesis of PC-KCaSrTa₅O₁₅, TaCl₅ (Aldrich Japan; 99.99%), K₂CO₃ (Kanto Chemical; 99.0%), CaCO₃ (Kanto Chemical; 99.5%), and SrCO₃ (Kanto Chemical; 99.9%) were used as starting materials. Those metal compounds and a citric acid were dissolved in a mixed solvent of ethanol and ethylene glycol.^{35, 36} The mixture was heating at 393 K in air to obtain a precursor. The precursor was calcined at 1173 K for 10 h in air to obtain PC-KCaSrTa₅O₁₅. Tb³⁺ was doped into the SSR-KCaSrTa₅O₁₅ and PC-KCaSrTa₅O₁₅ for a photoluminescence measurement using Tb₄O₇ (Soekawa Chemical; 99.9%) and Tb(CH₃COO)₃•4H₂O (Wako Pure Chemical; 99.9%) as starting materials, respectively. Various cocatalysts were loaded by impregnation and photodeposition methods on the surface of KCaSrTa₅O₁₅ photocatalyst. NiO and Ag cocatalysts were loaded by an impregnation method. Photocatalyst powder was dispersed in aqueous solutions dissolving Ni(NO₃)₂ (Wako Pure Chemical: 98.5%) and AgNO₃ (Tanaka Rare Metal) in a porcelain crucible. The slurry solution was stirred with a glass rod during evaporation using a hot plate. Obtained powder was calcined in air at 575 K and 723 K for 1 h for loading the NiO and Ag cocatalysts, respectively. The NiO and Ag cocatalysts were reduced with H₂ at 773 K, if necessary. Ag, Ni, Ru, Rh, Pt, Cu and Au cocatalysts were photodeposited from aqueous solutions dissolving suitable amounts of AgNO₃, Ni(NO₃)₂, RuCl₃, RhCl₃, H₂PtCl₆, Cu(NO₃)₂ and HAuCl₄ in situ.

Characterization of KCaSrTa₅O₁₅

KCaSrTa₅O₁₅ powders prepared by a solid-state reaction at several temperatures were examined by X-ray diffraction using Cu K α radiation (Rigaku: Miniflex). Diffuse reflectance spectra of these powders were obtained using a UV-vis-NIR spectrometer (Jasco: UbestV-570) and were converted from reflection to absorption by the Kubelka-Munk method. Photocatalyst powders were observed by a scanning electron microscope (JEOL: JSM-6700F). Surface species of cocatalysts on photocatalysts were analyzed by X-ray photoelectron spectroscopy (Shimazdu: ESCA-3400; Mg anode). Metallic Ni (Nilaco: 99+%), NiO (Soekawa Chemical: 99.9%) and Ni(OH)₂ (Wako Pure Chemical: 95.0%) were employed as references for the XPS measurements. Binding energies were corrected using C 1s (285.0 eV) on a metallic Au foil (84.0 eV).²³ The surface area was examined by BET measurement (BECKMAN COULTER: SA3100). The emission spectrum of the obtained powder was monitored using a spectrofluorometer (HORIBA JOBIN YVON; SPEX Fluorolog-3).

Photocatalytic water splitting and CO₂ reduction

0.5 g of photocatalyst powder was dispersed in 350 mL of water in an inner irradiation cell made of quartz with a 400 W high-pressure mercury lamp. NaHCO₃ was added into the water for CO₂ reduction, if necessary. Ar or CO₂ gas was continually bubbled into the suspension at 30 mL min⁻¹ of a flow rate during the photocatalytic reactions. The gaseous products of H₂, O₂, and CO were determined using a gas chromatograph (Shimadzu; GC-8A, MS-5A, TCD, Ar carrier for H₂ an O₂; GC-8A, SHINCARBON ST, TCD, He carrier for CO). The isotope measurement was conducted using a ¹³CO₂ (99.5 atom%) gas. The product of ¹³CO was analyzed using a GC-MS (Shimadzu; GC-MS Plus 2010, RESTEK; RT-Msieve 5A). The apparent quantum yield for water splitting was examined using a gas-closed circulation system equipped with a top-irradiation cell made of quartz. 0.5 g of photocatalyst powder was dispersed into 350 mL of water. A 300 W Xe-arc lamp equipped with a band-pass filter was employed as the monochromatic light source at 254 nm.

2-3. Results and discussion

2-3-1. Development of KCaSrTa₅O₁₅ of a new photocatalyst prepared by a solid-state reaction 2-3-1-1. Characterization of KCaSrTa₅O₁₅ prepared by a solid-state reaction

The X-ray diffraction patterns of the materials prepared at different calcination temperatures were assigned to KCaSrTa₅O₁₅ (PDF: 40-351) as shown in Figure 2-1. Calcination below 1573 K

Figure 2-1 X-ray diffraction patterns of KCaSrTa₅O₁₅ prepared at (a) 1173 K, (b) 1423 K, (c) 1573 K and (d)1773 K for 10 h. (e) KCaSrTa₅O₁₅ (PDF:40-351). Closed triangle and closed circle represent Ca₂Ta₂O₇ (PDF: 53-743) and an unknown compound, respectively.

gave small amounts of Ca₂Ta₂O₇ (PDF: 53-743) and an unknown compound as impurities (Figure 2-1 (a), (b) and (c)), while the single phase of highly crystalline KCaSrTa₅O₁₅ was obtained by calcining at 1773 K for 10 h (Figure 2-1 (d)). The band gap of KCaSrTa₅O₁₅ was estimated to be 4.1 eV from the absorption edges except for the material prepared at 1173 K as shown in Figure 2-2. Primary particles of KCaSrTa₅O₁₅ with 200-300 nm of an average diameter aggregated, when they were prepared below 1573 K as shown in Figure 2-3 (a), (b) and (c). In contrast, the morphology of KCaSrTa₅O₁₅ prepared at 1773 K was rod as shown in Figure 2-3 (d), reflecting tungsten bronze structure in which TaO₆ octahedral units were connected with each other along the c-axis.

2-3-1-2. Photocatalytic water splitting and CO₂ reduction over KCaSrTa₅O₁₅ prepared by a solid-state reaction

Table 2-1 shows activity for water splitting over KCaSrTa₅O₁₅ under Ar gas flow. All samples prepared at different temperatures showed the activity for water splitting without cocatalyst. Moreover, the activities were drastically enhanced when NiO cocatalyst was loaded on KCaSrTa₅O₁₅. In contrast, the activities of KCaSrTa₅O₁₅ were not enhanced when Ni cocatalysts were loaded by a photodeposition, and an impregnation and H₂ reduction. NiO-loaded KCaSrTa₅O₁₅ prepared at 1423 K showed the highest activity. Although the initial activity of this photocatalyst was high, the rates of H₂ and O₂ evolution decreased at the initial stage as shown in Figure 2-4. H₂ and O₂ steadily evolved in a stoichiometric amount after the deactivation. The apparent quantum yield was 2.3% at 254 nm for water splitting. Thus, KCaSrTa₅O₁₅ with tungsten bronze structure has arisen as a new photocatalyst for water splitting.

The KCaSrTa₅O₁₅ photocatalyst was applied to CO₂ reduction as shown in Table 2-2. The pristine KCaSrTa₅O₁₅ produced only H₂ and O₂ without any reduction products of CO₂. This indicates that there were no active sites for CO₂ reduction on the surface of the KCaSrTa₅O₁₅ photocatalyst. Therefore, various cocatalysts were loaded to introduce active sites. Water splitting activity of KCaSrTa₅O₁₅ was enhanced when NiO and Au of effective cocatalysts^{17, 24-25} for water

Figure 2-2 Diffuse reflectance spectra of KCaSrTa₅O₁₅ prepared at (a) 1173 K, (b) 1423 K, (c) 1573 K and (d) 1773 K for 10 h.

Figure 2-3 SEM images of KCaSrTa₅O₁₅ prepared at (a) 1173 K, (b) 1423 K, (c) 1573 K and (d) 1773 K for 10 h.

Preparation	Cocatalyst	Loading method	Activity	Activity / μ mol h ⁻¹	
Temperature / K			H_2	O_2	
1173	None	-	271	180	
1173	NiO	Impregnation	639	263	
1423	None	-	102	42	
1423	NiO	Impregnation	1339	700	
1423	Ni	Photodeposition	25	12	
1423	Ni	Impregnation $+ H_2$ red.	115	62	
1573	None	-	106	47	
1573	NiO	Impregnation	1270	644	
1773	None	-	66	31	
1773	NiO	Impregnation	212	95	

 Table 2-1 Photocatalytic water splitting over KCaSrTa₅O₁₅ prepared at different temperatures.

Photocatalyst: 0.5 g, cocatalyst: 0.5 wt%, loading conditions: impregnation (573 K for 1 h in air), impregnation and subsequent H₂ reduction (773 K for 2 h in H₂ flow), photodeposition (*in situ*), reactant solution: water (350 mL), light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Figure 2-4 Water splitting over NiO(0.5 wt%)-loaded KCaSrTa₅O₁₅ photocatalyst. Photocatalyst: 0.5 g, reactant solution: water (350 mL) with Ar gas flow (30 mL min⁻¹), light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h. NiO cocatalyst was loaded by an impregnation method.

Cocatalyst	Loading Condition	Activity / µmol h ⁻¹		
		H_{2}	O_2	СО
None	-	116	48	0
NiO	Impregnation ^a	764	398	0
Ni	Photodeposition	111	58	0
Cu	Photodeposition	216	100	trace
Ru	Photodeposition	28	13	0
Rh	Photodeposition	43	19	0
Ag	Photodeposition	53	37	8.1
Ag	Impregnation ^b	55	28	5.5
Ag	Impregnation ^b +H ₂ red.	96	48	1.0
Pt	Photodeposition	62	23	0
Au	Photodeposition	584	269	0

Table 2-2 Photocatalytic CO₂ reduction over various cocatalysts-loaded KCaSrTa₅O₁₅.

Photocatalyst: 0.5 g, cocatalysts: 0.5 wt%, loading conditions: photodeposition (*in situ*), impregnation (${}^{a}573$ K for 1 h in air, ${}^{b}723$ K for 1 h in air), impregnation and subsequent H₂ reduction (773 K for 2 h in H₂ flow), reactant solution: water (350 mL) dissolved with CO₂ under 1 atm, light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

splitting were loaded as observed for BaLa₄Ti₄O₁₅ photocatalyst.¹⁵ No CO₂ reduction proceeded, when Ni, Ru, Rh, Pd, Pt and Au were loaded. When Cu cocatalyst was loaded, a small amount of CO evolved. In contrast, Ag-loaded KCaSrTa₅O₁₅ photocatalyst produced CO from CO₂ as a reduction product regardless of loading methods of the Ag cocatalyst. In particular, the highest activity for CO₂ reduction was observed, when Ag cocatalyst was loaded by photodeposition and impregnation methods as shown in Table 2-2 and Figure 2-5. The fact that CO₂ was reduced on the Ag-loaded KCaSrTa₅O₁₅, but not on the pristine KCaSrTa₅O₁₅, indicates that Ag cocatalyst works as a reduction site of CO_2 . Metallic Ag is a good electrocatalyst for reduction of CO_2 to CO_2 ²⁶ The process of CO₂ reduction to CO on the Ag cocatalyst would be similar to that on the Ag electrocatalyst²⁷⁻²⁸ as observed for BaLa₄Ti₄O₁₅¹⁵ and Zn-doped Ga₂O₃¹⁶ photocatalysts. A CO₂ molecule is reduced to a CO₂⁻ adsorbed on Ag cocatalyst by a photoexcited electron. As a subsequent further reduction process of the adsorbed CO₂⁻ to CO, following possible ways can be considered. Although the redox potential of CO_2^- formation is -1.9 V²⁷, the redox potential showed become more positive due to stabilization by adsorption. The adsorbed CO₂⁻ is reacted with a H⁺ ion in water to form an adsorbed –COOH. The adsorbed –COOH is subsequently reduced to become CO and OH- by an another electron.²⁷⁻²⁸ H₂, O₂ and CO evolved steadily with a reaction time on the optimized Ag-loaded KCaSrTa₅O₁₅ photocatalyst as shown in Figure 2-6. The turnover number of electrons reacted for CO evolution to the number of the Ag atom in the cocatalyst calculated using the equation (1) was 8.6 at 20 h, and the ratio of electron to hole calculated using the equation (2) was unity. These results indicate that the CO_2 reduction over Ag-loaded KCaSrTa₅O₁₅ proceeded photocatalytically and water was consumed as an electron donor.

 $TON_{CO} = (The number of electrons consumed for CO formation) / (The total number of a Ag atom in cocatalyst on KCaSrTa₅O₁₅) (1)$

 $e^{-}/h^{+} =$ (The number of electrons consumed for H₂ and CO formation) / (The numbers of holes consumed for O₂ formation) (2)

It has been reported that methane forms from not CO₂ but an organic contamination adsorbed

Figure 2-5 CO evolution from CO₂ over KCaSrTa₅O₁₅ photocatalysts with Ag cocatalysts loaded by (a) photodeposition, (b) impregnation and (c) impregnation and subsequent H₂ reduction. Photocatalyst: 0.5 g, reactant solution: water (350 mL), light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Figure 2-6 CO₂ reduction over Ag(0.5 wt%)-loaded KCaSrTa₅O₁₅ photocatalyst in an aqueous medium. Photocatalyst: 0.5 g, reactant solution: water (350 mL) with CO₂ gas flow (30 mL min⁻¹), light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h. The Ag cocatalyst was loaded by a photodeposition.

on the photocatalyst surface.²⁹ Therefore, an isotope experiment using ¹³CO₂ was carried out to clarify the carbon source of CO formed. When the ¹³CO₂ gas was analyzed by a GC-MS using a MS-5A column, no peaks with mass numbers due to ¹²CO and ¹³CO were detected, indicating that the ¹³CO₂ gas contained negligible amounts of ¹²CO and ¹³CO. In contrast, photocatalytic reduction of ¹³CO₂ over Ag-loaded KCaSrTa₅O₁₅ photocatalyst gave ¹³CO and no ¹²CO as shown in Figure 2-7. Additionally, the ratio of electron to hole calculated from the products was about unity also in this isotopic experiment. Therefore, it was proven that CO was produced from CO₂ molecules over the Ag-loaded KCaSrTa₅O₁₅ photocatalyst.

2-3-1-3. Characterization of activated NiO and Ag cocatalysts on the surface of KCaSrTa₅O₁₅

NiO and Ag cocatalysts loaded on KCaSrTa₅O₁₅ before and after photocatalytic water splitting and CO₂ reduction were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS) in order to clarify the active states of these cocatalysts.

The particle size and morphology of NiO and Ni cocatalysts loaded on KCaSrTa₅O₁₅ photocatalysts were observed using SEM before and after photocatalytic water splitting as shown in Figure 2-8. A particle size of NiO loaded by an impregnation method was about 10 nm (Figure 2-8 (a)). Small particle sizes of metallic Ni remained after H₂ reduction, though a part of metallic Ni sintered (Figure 2-8 (c)). The metallic Ni aggregated after the photocatalytic water splitting, and nano-particles of Ni were hardly observed (Figure 2-8 (d)). The shape of Ni loaded by a photodeposition method was not spherical particle being clearly different from that loaded by an impregnation method (Figure 2-8 (e)). Thus, the particle size and the shape of NiO and/or Ni cocatalysts after photocatalytic water splitting depended on the loading methods.

Figure 2-9 shows DRS of NiO and Ni-loaded KCaSrTa₅O₁₅ before and after photocatalytic water splitting. Non-loaded KCaSrTa₅O₁₅ was white and possessed 302 nm of an absorption edge (Figure 2-9 (a)). A color of KCaSrTa₅O₁₅ loaded with NiO by an impregnation method was gray and the background of the DRS arose at visible and near IR regions (Figure 2-9 (b)). A color of

Figure 2-7 GC-MS analysis (MS-5A column) of CO produced by photocatalytic reduction of ${}^{13}CO_2$ over Ag(0.5 wt%)/KCaSrTa₅O₁₅. Photocatalyst: 0.5 g, reactant solution: water (350 mL), Ag cocatalyst was impregnated from AgNO₃ and calcination at 723 K for 1 h in air, light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Figure 2-8 SEM images of NiO(0.5 wt%) and Ni(0.5 wt%)-loaded KCaSrTa₅O₁₅ by various loading methods before and after water splitting. (a) Before and (b) after water splitting for the sample prepared by an impregnation method, (c) before and (d) after water splitting for the sample prepared by an impregnation and subsequent H₂ reduction, (e) after water splitting for the sample prepared by a photodeposition. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Figure 2-9 Diffuse reflectance spectra of (a) pristine KCaSrTa₅O₁₅ and (b)-(f) NiO(0.5 wt%) and Ni(0.5 wt%)-loaded KCaSrTa₅O₁₅ by various methods before and after water splitting. (b) Before and (c) after water splitting for the sample prepared by an impregnation method, (d) before and (e) after water splitting for the sample prepared by impregnation and subsequent H₂ reduction, (f) after water splitting for the sample prepared by a photodeposition. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Ni/KCaSrTa₅O₁₅ obtained by an impregnation and subsequent H₂ reduction was pale brown and gave a broad absorption band with a peak around 400 nm (Figure 2-9 (d)). All Ni or NiO-loaded photocatalysts were dark purple after photocatalytic water splitting giving broad absorption bands in visible light region (Figure 2-9 (c), (e) and (f)). This result suggests that the condition of nickel cocatalysts was similar to each other during photocatalytic water splitting regardless of the loading methods. The dark purple color did not quickly change after exposing to air.

Figure 2-10 shows XPS of Ni 2p of NiO and Ni cocatalysts loaded on KCaSrTa₅O₁₅ before and after photocatalytic water splitting. Binding energies of standard samples of metallic Ni, NiO and Ni(OH)₂ agreed with those of previous reports.³⁰ The surface of the standard NiO powder was covered with surface hydroxyl groups. NiO loaded on KCaSrTa₅O₁₅ by an impregnation method also gave peaks due to NiO and Ni(OH)₂ (Figure 2-10 (a)). Ni/KCaSrTa₅O₁₅ obtained by an impregnation and subsequent H₂ reduction gave XPS signals due to metallic Ni with NiO (Figure 2-10 (c)). All samples showed XPS signals mainly due to Ni(OH)₂ after photocatalytic water splitting (Figure 2-10 (b), (d) and (e)). Ni(OH)₂ is generally green, not dark purple as mentioned above. DRS of the samples after photocatalytic water splitting were different from that of Ni(OH)₂ as shown in Figure 2-11. Therefore, the XPS signals due to Ni(OH)₂ observed for the samples after photocatalytic water splitting indicates the existence of not bulky Ni(OH)₂ but the surface nickel hydroxide as observed for a NiO_x/SrTiO₃ photocatalyst.³⁰ It has been reported that a color of a NiO/InBO₄ photocatalyst also changed to dark purple after photocatalytic water splitting.³¹ Ultra fine NiO cocatalyst loaded on a NaTaO₃:La photocatalyst gives visible light absorption bands which are different from that of Ni(OH)2.32 Thus, active NiO cocatalyst loaded on the photocatalysts with wide band gaps has a unique character.

The impregnation method for loading the nickel cocatalyst was more effective than impregnation and subsequent H_2 reduction, and photodeposition methods for water splitting over the KCaSrTa₅O₁₅ photocatalyst as shown in Table 2-1. SEM and XPS measurements suggested that the most active KCaSrTa₅O₁₅ photocatalyst possessed the cocatalyst of fine NiO particles covered with surface nickel hydroxide.

Figure 2-10 X-ray photoelectron spectroscopy of Ni 2p of NiO(0.5 wt%) and Ni(0.5 wt%)-loaded KCaSrTa₅O₁₅. Nickel cocatalyst on KCaSrTa₅O₁₅ (a) before and (b) after water splitting for the sample prepared by an impregnation method, (c) before and (d) after water splitting for the sample prepared by an impregnation and subsequent H₂ reduction, (e) after water splitting for the sample prepared by a photodeposition. Standard sample of (f) Ni(OH)₂, (g) NiO, (h) metallic Ni foil. Reference data³⁰ are indicated as dashed lines respectively: Ni metal (853.1 eV), NiO (854.5 eV), Ni(OH)₂ (856.6 eV).

Figure 2-11 Diffuse reflectance spectrum of Ni(OH)₂ powder.

SEM images of Ag loaded on KCaSrTa₅O₁₅ photocatalysts were also observed before and after photocatalytic CO₂ reduction as shown in Figure 2-12. An impregnation method gave Ag cocatalyst with about 10 nm of the particle size before and after H₂ reduction (Figure 2-12 (a) and (c)). The Ag cocatalyst aggregated after photocatalytic CO₂ reduction (Figure 2-12 (b) and (d)). The growth of some Ag particles reached up to 50–100 nm. The particle size of Ag after photocatalytic CO₂ reduction was similar to that obtained by a photodeposition method (Figure 2-12 (e) and (f)).

Nano-sized metallic Ag particle generally gives a surface plasmonic absorption band in visible light region.³³ Therefore, DRS of samples before and after photocatalytic CO₂ reduction were measured as shown in Figure 2-13. Ag cocatalyst obtained by H₂ reduction was orange and gave a characteristic surface plasmonic absorption spectrum (Figure 2-13 (c)), while such a spectrum was not observed for Ag cocatalyst obtained by an impregnation method (Figure 2-13 (a)). All samples after photocatalytic CO₂ reduction gave similar absorption spectra to the sample obtained by H₂ reduction (Figure 2-13 (b), (d), (e) and (f)), although the intensities of the absorption spectra decreased after the photocatalytic reduction of CO₂. This result suggests dissolution and re-deposition of Ag during the photocatalytic reaction giving aggregated Ag particles as observed by SEM. Ag cocatalyst prepared by an impregnation method after the photocatalytic reduction of CO₂ also gave the similar absorption spectrum indicating that the Ag cocatalyst was reduced to fine metallic particles by photogenerated electrons. These results indicate that the metallic Ag giving the surface plasmonic absorption spectrum is an active site for the photocatalytic CO₂ reduction.

2-3-2. Development of the single crystalline nanorod KCaSrTa₅O₁₅ photocatalyst prepared by a polymerized complex method

2-3-2-1. Characterization of the material properties of single crystalline nanorod KCaSrTa₅O₁₅ prepared by a polymerized complex method

Figure 2-14 shows XRD patterns of PC-KCaSrTa₅O₁₅ prepared at different temperatures. A single phase of KCaSrTa₅O₁₅ was not obtained by a solid-state reaction even at 1423 K. In contrast, the polymerized complex method gave the single phase even at 1173 K for 10 h (Figure 2-14(c)).

Figure 2-12 SEM images of Ag(0.5 wt%)-loaded KCaSrTa₅O₁₅ by various loading methods before and after CO₂ reduction. (a) Before and (b) after CO₂ reduction for the sample prepared by an impregnation method, (c) before and (d) after CO₂ reduction for the sample prepared by an impregnation and subsequent H₂ reduction, after CO₂ reduction for the sample prepared by a photodeposition (*in situ*) at (e) 2h and (f) 20h. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Figure 2-13 Diffuse reflectance spectra of Ag(0.5 wt%)-loaded KCaSrTa₅O₁₅ by various methods before and after CO₂ reduction. (a) Before and (b) after CO₂ reduction for the sample prepared by an impregnation method, (c) before and (d) after CO₂ reduction for the sample prepared by an impregnation and subsequent H₂ reduction, after CO₂ reduction for the sample prepared by a photodeposition at (e) 2h and (f) 20h, and (g) metallic and bulky Ag. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Figure 2-14. X-ray diffraction patterns of KCaSrTa₅O₁₅ prepared by (a) a solid-state reaction at 1423 K for 10 h, and a polymerized complex method at (b) 773 K for 1 h, and (c) 1173 K for 10 h. (d) KCaSrTa₅O₁₅ (PDF: 40-351). Closed and open triangles indicate Ca₂Ta₂O₇ (PDF: 53-743) and unknown phase as impurities, respectively

The crystallinity of PC-KCaSrTa₅O₁₅ was higher than that of SSR-KCaSrTa₅O₁₅ judging from the full width at half maximum of XRD patterns, even if the preparation temperature was lower. The specific surface areas of PC-KCaSrTa₅O₁₅ and SSR-KCaSrTa₅O₁₅ were 17.4 and 2.4 m² g⁻¹, respectively. It suggests that the PC-KCaSrTa₅O₁₅ particles are small. It was confirmed that the polymerized complex method was also useful for the preparation of the KCaSrTa₅O₁₅ photocatalyst with high quality as observed for K₂LaNb₅O₁₅ with the same crystal structure.

Figure 2-15 shows SEM and TEM of SSR-KCaSrTa₅O₁₅ and PC-KCaSrTa₅O₁₅. The SSR-KCaSrTa₅O₁₅ particles aggregated consisting of primary particles with 100–300 nm of the particle size and no special shape (Figure 2-15(a)). In contrast, the PC-KCaSrTa₅O₁₅ particles were nanorods with 40–100 nm of the diameter and 100–300 nm of the length (Figure 2-15(b) and (c)). This nanorod shape reflected the tungsten bronze structure. TEM showed 0.384 nm of a fringe pattern due to a (001) face of tungsten bronze structure as shown in Figure 2-15(d). Selected-area electron diffraction patterns with regular spots shown in Figure 2-15(e) indicated that the nanorod particle was a single crystal growing to the direction of a c-axis of the tungsten bronze structure as shown in Figure 2-16.

Figure 2-17 shows diffuse reflectance spectra of SSR-KCaSrTa₅O₁₅ and PC-KCaSrTa₅O₁₅. The band gaps were 4.09 and 4.13 eV, respectively.

A migration process of photogenerated carriers affects the activity in semiconductor photocatalysts.¹⁷ Luminescent Ln³⁺ such as Tb³⁺ and Pr³⁺ can be used as a probe to examine the carrier migration process.^{20, 37-39} For example, the usage of Pr³⁺ revealed that the diffusion length of photogenerated carriers in a BaLa₄Ti₄O₁₅ photocatalyst was longer than that of CaLa₄Ti₄O₁₅ agreeing with the order in the photocatalytic activity for water splitting.²⁰ Therefore, we employed Tb³⁺ as a probe to see the carrier behavior in SSR-KCaSrTa₅O₁₅ and PC-KCaSrTa₅O₁₅. XRD and SEM revealed that the Tb-doping did not affect the crystal phase, the particle size, and the morphology of the SSR-KCaSrTa₅O₁₅ and PC-KCaSrTa₅O₁₅ particles as shown in Figures 2-18 and 2-19. It is reported that La³⁺ and Ce³⁺ ions exist at the A1 sites in tungsten bronze structure in K₂LaNb₅O₁₅ and K₂CeTa₅O₁₅ (Figure 2-16).^{40,41} Therefore, the Tb³⁺ ions should also be doped at

Figure 2-15. SEM images of KCaSrTa₅O₁₅ prepared by (a) a solid-state reaction and (b) a polymerized complex method, and (c, d) TEM images of KCaSrTa₅O₁₅ prepared by a polymerized complex method. (e) Selected-area electron diffraction pattern of KCaSrTa₅O₁₅ prepared by a polymerized complex method. Preparation conditions: SSR; 1423 K for 10 h, PC; 1173 K for 10 h.

Figure 2-16. Crystal structure of tungsten bronze indicated as A1A2₂Ta₅O₁₅.⁴¹

Figure 2-17. Diffuse reflectance spectra of KCaSrTa₅O₁₅ prepared by (a) a solid-state reaction, and (b) a polymerized complex method. Preparation conditions: SSR; 1423 K for 10 h, PC; 1173 K for 10 h.

Figure 2-18. X-ray diffraction patterns of Tb(0.03 atom%)-doped KCaSrTa₅O₁₅ prepared by (a) a solid-state reaction and (b) a polymerized complex method. Closed triangle and circles represent Ca₂Ta₂O₇ (PDF: 53-743) of an impurity and an unknown phase, respectively. Preparation conditions: SSR; 1423 K for 10 h, PC; 1173 K for 10 h.

Figure 2-19. SEM images of Tb(0.03 atom%)-doped KCaSrTa₅O₁₅ prepared by (a) a solid-state reaction and (b) a polymerized complex method. Preparation conditions: SSR; 1423 K for 10 h, PC; 1173 K for 10 h.

the A1 site in KCaSrTa₅O₁₅. Tb-doped SSR-KCaSrTa₅O₁₅ and PC-KCaSrTa₅O₁₅ were denoted as SSR-KCaSrTa₅O₁₅:Tb and PC-KCaSrTa₅O₁₅:Tb, respectively.

First, we examined excitation and emission spectra of nondoped SSR-KCaSrTa₅O₁₅ and PC-KCaSrTa₅O₁₅ at 77 K in vacuum as shown in Figure 2-20(A). Those samples gave broad yellow emissions. The luminescence was not observed at room temperature. Onsets of the excitation spectra agreed with those of diffuse reflectance spectra indicating that the yellow emissions were due to radiative transition by the band gap excitation. This is a typical host emission by the host excitation. Figure 2-20(B) shows excitation and emission spectra of SSR-KCaSrTa₅O₁₅:Tb and PC-KCaSrTa₅O₁₅:Tb at room temperature. Green emissions due to ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ (480–500 nm) and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (530–560 nm) were observed by host excitation at 290 nm. This result indicates that electrons and holes photogenerated in the bulk migrate to the Tb³⁺ ions resulting in the radiative transition. In more detail, after photogenerated holes are trapped at Tb³⁺ to form Tb⁴⁺, they recombine with migrating electrons at the Tb⁴⁺ to form Tb³⁺ in an excited state to give luminescence. The intensity of the Tb³⁺ emission of PC-KCaSrTa₅O₁₅:Tb was much higher than that of SSR-KCaSrTa₅O₁₅:Tb. The green emission of the PC-KCaSrTa₅O₁₅:Tb was strong enough for being visual at room temperature as shown in Figure 2-21. These results indicate that the number of the recombination center for nonratiative transition for PC-KCaSrTa₅O₁₅:Tb was smaller than that of SSR-KCaSrTa₅O₁₅:Tb. Figure 2-22 shows the proposed mechanism derived from the photoluminescence behavior for the carrier migration in the PC-KCaSrTa₅O₁₅:Tb and SSR-KCaSrTa₅O₁₅:Tb particles. A grain boundary would work as a recombination center accompanied with nonradiative transition.¹⁷ XRD, SEM, and TEM observations support that the grain boundary hardly exists in the single crystalline nanorod of PC-KCaSrTa₅O₁₅:Tb resulting in the suppression of nonratiative transition and the high intensity of photoluminescence as shown in Figure 2-22(a). In contrast, SSR-KCaSrTa₅O₁₅:Tb possessed a lot of grain boundaries because it was a polycrystalline particle and primary particles aggregated. Photogenerated carriers recombine at the defect of the grain boundary resulting in the decrease in those carriers that can reach the Tb³⁺ ions of the luminescence center as shown in Figure 2-22(b). Therefore, the intensity of

Figure 2-20. Emission and excitation spectra of (A) KCaSrTa₅O₁₅ at 77 K in vacuum and (B) Tb(0.03%)-doped KCaSrTa₅O₁₅ at room temperature. The excitation spectra of (a) SSR-KCaSrTa₅O₁₅ and (b) PC-KCaSrTa₅O₁₅ were obtained by monitoring at 475 nm. The emission spectra of (c) SSR-KCaSrTa₅O₁₅ and (d) PC-KCaSrTa₅O₁₅ were obtained by excitation at 285 nm. The excitation spectra of (e) SSR-KCaSrTa₅O₁₅:Tb and (f) PC-KCaSrTa₅O₁₅:Tb were obtained by monitoring at 543 nm. The emission spectra of (g) SSR-KCaSrTa₅O₁₅:Tb and (h) PC-KCaSrTa₅O₁₅:Tb were obtained by excitation at 290 nm. Preparation conditions: SSR; 1423 K for 10 h, PC; 1173 K for 10 h.

Figure 2-21. Photoluminescence at room temperature of Tb(0.03 atom%)-doped KCaSrTa₅O₁₅ prepared by (a) a solid-state reaction and (b) a polymerized complex method. Excitation wavelength was 254 nm. Preparation conditions: SSR; 1423 K for 10 h, PC; 1173 K for 10 h.

Figure 2-22. Proposed mechanism of carrier migration in single crystalline nanorod and polycrystalline particle of KCaSrTa₅O₁₅.

photoluminescence of SSR-KCaSrTa₅O₁₅:Tb was low.

2-3-2-2. Photocatalytic water splitting and CO₂ reduction over single crystalline nanorod KCaSrTa₅O₁₅ prepared by a polymerized complex method

Table 2-3 shows photocatalytic activity for water splitting over PC-KCaSrTa₅O₁₅ and SSR-KCaSrTa5O15. PC-KCaSrTa5O15 showed the activity even without cocatalyst as well as SSR-KCaSrTa₅O₁₅. The activity of PC-KCaSrTa₅O₁₅ was higher than that of SSR-KCaSrTa₅O₁₅. The activity of PC-KCaSrTa₅O₁₅ drastically increased when a NiO cocatalyst was loaded. The optimum amount of NiO loading was 0.2 wt% as shown in Figure 2-23. NiO-cocatalyst-loaded PC-KCaSrTa₅O₁₅ (NiO/PC-KCaSrTa₅O₁₅) showed higher activity than NiO-loaded SSR-KCaSrTa₅O₁₅ at any loading amounts. This is due to the less recombination probability at the grain boundary in PC-KCaSrTa₅O₁₅ than SSR-KCaSrTa₅O₁₅ as shown in Figure 2-22. Figure 2-24 shows water splitting over the optimized NiO/PC-KCaSrTa₅O₁₅ photocatalyst. Although the photocatalytic activity decreased with the reaction time, the initial activities for H₂ and O₂ evolution using 400-W high-pressure mercury lamp were 4.30 mmol h⁻¹ and 2.26 mmol h⁻¹, respectively. The apparent quantum yield at 254 nm was 6.6%. It was 2.9 times higher than that of SSR-KCaSrTa₅O₁₅.

 CO_2 reduction using water as an electron donor was conducted by the PC-KCaSrTa₅O₁₅ photocatalyst optimized for water splitting as shown in Table 2-4. Nonloaded and NiO/PC-KCaSrTa₅O₁₅ did not show the activity for the CO₂ reduction. When a Ag cocatalyst was loaded, CO_2 reduction proceeded to form CO. A Ag electrode is an excellent electrocatalyst for CO_2 reduction to form $CO.^{26-28}$ The Ag cocatalyst was also effective for BaLa₄Ti₄O₁₅,¹⁵ Zn-doped Ga₂O₃¹⁶ and SSR-KCaSrTa₅O₁₅ photocatalysts. When NaHCO₃ was added in the aqueous solution, the activity for CO formation was improved to give 87% of the selectivity defined by the equation (3).

Table 2-3. Photocatalytic water splitting over SSR- and PC-KCaSrTa₅O₁₅ loaded with NiO cocatalyst

Preparation	Cocatalyst	Activity / mmol h ⁻¹	
Method	(wt%)	H_2	O ₂
SSR	None	0.10	0.04
SSR	NiO (0.5)	1.34	0.70
PC	None	0.17	0.08
PC	NiO (0.2)	4.30	2.26

Catalyst: 0.5 g, loading condition: impregnation (573 K for 1 h in air), reactant solution: 350 mL of water, system: an Ar gas flow system using an inner irradiation cell made of quartz with a 400 W high-pressure mercury lamp. Preparation conditions: SSR; 1423 K for 10 h, PC; 1173 K for 10 h.

Figure 2-23. Effect of a loading amount of NiO-cocatalyst on water splitting over KCaSrTa₅O₁₅ photocatalyst prepared at 1173 K for 10 h by a polymerized complex method. Catalyst: 0.5 g, loading condition: impregnation at 573 K for 1 h in air, reactant solution: 350 mL of water, system: an Ar gas flow system using an inner irradiation cell made of quartz with a 400 W high-pressure mercury lamp.

Figure 2-24. Water splitting over NiO(0.2 wt%)-loaded KCaSrTa₅O₁₅ nanorod photocatalyst prepared at 1173 K for 10 h by a polymerized complex method. Catalyst: 0.5 g, reactant solution: 350 mL of water, system: an Ar gas flow system using an inner irradiation cell made of quartz with a 400 W high-pressure mercury lamp. NiO-cocatalyst was loaded by an impregnation method.

Table 2-4. Photocatalytic CO₂ reduction over PC-KCaSrTa₅O₁₅ loaded with NiO and Ag cocatalysts

Cocatalyst	Loading	Additive	Activity / µmol h ⁻¹		CO selectivity	
(wt%)	Temperature / K		H_2	O_2	CO	%
None	_	None	79	40	0	_
NiO (0.2)	573	None	2001	1077	0	_
NiO (0.2)	573	NaHCO ₃	1198	657	Trace	_
Ag (0.5)	723	None	57	30	9	14
Ag (0.5)	723	NaHCO ₃	15	46	97	87

Catalyst: 0.5 g, loading method: impregnation, reactant solution: 350 mL of water and 0.1 mol L^{-1} of NaHCO_{3 aq.} dissolved with 1 atm of CO₂, system: a CO₂ gas flow system using an inner irradiation cell made of quartz with a 400 W high-pressure mercury lamp. Preparation conditions: 1173 K for 10 h.

CO selectivity (%) = (Rate of CO formation/ μ mol h⁻¹) / (Sum of rates of H₂ and CO formation/ μ mol h⁻¹)×100 (3)

In the case of Ag-loaded NaTaO₃:Sr, the supply of CO₂ molecules to the Ag-cocatalyst is enhanced in the presence of NaHCO₃ resulting in the significant increase in the selectivity to CO formation.⁴² In contrast, CO formation was not observed for NiO/PC-KCaSrTa₅O₁₅ even in the presence of NaHCO₃. Figure 2-25 shows photocatalytic CO₂ reduction over Ag/PC-KCaSrTa₅O₁₅ in the presence of NaHCO₃. CO, H₂ and O₂ evolved, while activity for CO evolution decreased with the reaction time. TON_{CO} and e^-/h^+ calculated from equations (1) and (2) were 56 and 1.1 at 10 h, respectively. This result indicates that the CO₂ reduction proceeds using water as an electron donor.

Diffuse reflectance spectra of Ag-cocatalyst-loaded PC-KCaSrTa₅O₁₅ (Ag/PC-KCaSrTa₅O₁₅) before and after photocatalytic CO₂ reduction were measured to examine the state of the Ag-cocatalyst as shown in Figure 2-26. Ag/PC-KCaSrTa₅O₁₅ before CO₂ reduction did not show surface plasmonic absorption as shown in Figure 2-26(b). In contrast, Ag/PC-KCaSrTa₅O₁₅ after the reaction showed surface plasmonic absorption around 330–600 nm as shown in Figure 2-26(c). This result indicates that the metallic fine Ag-cocatalyst with a small particle size to show the surface plasmonic absorption is the active site for the CO₂ reduction for the PC-KCaSrTa₅O₁₅ photocatalyst in an aqueous NaHCO₃ solution as well as for BaLa₄Ti₄O₁₅¹⁵ and SSR-KCaSrTa₅O₁₅. It is important in photocatalytic reduction of CO₂ to use ¹³CO₂ to see the carbon source of the reduction products.²⁹ Only ¹³CO was obtained by reduction of ¹³CO₂ on the Ag/PC-KCaSrTa₅O₁₅ photocatalyst. Thus, it was confirmed that not contamination but CO₂ was the carbon source of formed CO.

2-4. Conclusions

KCaSrTa₅O₁₅ (BG = 4.1 eV) with tungsten bronze structure has arisen as a new photocatalyst for water splitting and CO₂ reduction under UV light irradiation. KCaSrTa₅O₁₅ showed activity for water splitting without cocatalyst. In addition, NiO was an effective cocatalyst. The NiO cocatalyst activated during water splitting was dark purple and possessed a Ni hydroxide-shell/NiO-core

Figure 2-25. CO_2 reduction in an aqueous NaHCO₃ solution over Ag(0.5 wt%)-loaded KCaSrTa₅O₁₅ nanorod photocatalyst prepared at 1173 K for 10 h by a polymerized complex method. Catalyst: 0.5 g, reactant solution: 0.1 mol L⁻¹ of NaHCO_{3 aq.} (350 mL) dissolved with 1 atm of CO₂, system: a CO₂ gas flow system using an inner irradiation cell made of quartz with a 400 W high-pressure mercury lamp. Ag-cocatalyst was loaded by an impregnation method.

Figure 2-26. Diffuse reflectance spectra of (a) pristine KCaSrTa₅O₁₅ and Ag(0.5 wt%)-loaded KCaSrTa₅O₁₅ nanorods (b) before and (c) after 10 h of photocatalytic CO₂ reduction in an aqueous NaHCO₃ solution. Preparation condition of KCaSrTa₅O₁₅ nanorod: a polymerized complex method at 1173 K for 10 h.

structure as an active site for water reduction. The apparent quantum yield of optimized NiO-loaded KCaSrTa₅O₁₅ was 2.3% at 254 nm for the water splitting. On the other hand, Ag-loaded KCaSrTa₅O₁₅ photocatalyst was active for CO₂ reduction to CO in an aqueous medium. The Ag cocatalyst activated during CO₂ reduction gave surface plasmonic absorption band in visible light region suggesting that fine metallic Ag particle is the active site for the CO₂ reduction. Isotope experiment using ¹³CO₂ revealed that the carbon source of produced CO was CO₂ molecules. Moreover, a stoichiometric amount of O2 evolution and TONCO calculated from products was larger than 1 indicating that the CO₂ reduction to CO photocatalytically proceeded using water as an electron donor. Moreover, KCaSrTa₅O₁₅ single crystalline nanorod photocatalysts prepared by a polymerized complex method showed higher activities for water splitting than KCaSrTa₅O₁₅ prepared by a solid-state reaction with loading NiO-cocatalyst. The KCaSrTa₅O₁₅ nanorod showed photocatalytic activity for CO₂ reduction in an aqueous medium, when Ag-cocatalyst was loaded. The CO₂ reduction was enhanced by addition of NaHCO₃ in the reactant solution giving about 90% of the selectivity for CO formation. Photoluminescence measurement using Tb³⁺ as a probe for migration of electron-hole pairs indicated that the formation of defects such as a grain boundary was suppressed in the single crystalline nanorod photocatalyst than in the photocatalyst obtained by the solid-state reaction. The measurement revealed the suppression of recombination between photogenerated electrons and holes resulting in the high photocatalytic activities for water splitting and CO₂ reduction.

References

- (1) Hawecker, J.; M. Lehn, J.; Ziessel, R. J. Chem. Soc., Chem. Commun. 1983, 536.
- (2) Hawecker, J.; M. Lehn, J.; Ziessel, R. Helv. Chim. Acta. 1986, 69, 1990.
- (3) Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. J. Am. Chem. Soc. 2008, 130, 2023.
- (4) Takeda, H.; Ishitani, O. Coord. Chem. Rev. 2010, 254, 346.
- (5) Yui, T.; Tamaki, Y.; Sekizawa, K.; Ishitani, O. in *photocatalysis*, *Top. Curr. Chem.*, ed. C. A. Bignozzi, Springer, 2011, vol. 303, pp. 151-184.
- (6) Tamaki, Y.; Watanabe, K.; Koike, K.; Inoue, H.; Morimoto, T.; Ishitani, O. *Faraday Discuss.*, **2012**, *155*, 115.
- (7) M. Aliwi, S.; F. Al-Jubori, K. Sol. Energy Mater. 1989, 18, 223.
- (8) Kanemoto, M.; Ishihara, K.; Wada, Y.; Sakata, T.; Mori, H.; Yanagida, S. *Chem. Lett.* 1992, 835.
- (9) Koči, K.; Obalova, L.; Lacny, Z. Chem. Pap. 2008, 62, 1.
- (10) N. Habisreutinger, S.; Schmidt-Mende, L.; K. Stolarczyk, J. Angew. Chem. Int. Ed. 2013, 52, 7372.
- (11) Tahir, M.; S. Amin, N. Energy Convers. Manage. 2013, 76, 194.
- (12) Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. ChemSusChem 2013, 6, 562.
- (13) Mao, J.; Li, K.; Peng, T. Catal. Sci. Technol. 2013, 3, 2481.
- (14) Sayama, K.; Arakawa, H. J. Phys. Chem. 1993, 97, 531.
- (15) Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. J. Am. Chem. Soc. 2011, 133, 20863.
- (16) Teramura, K.; Wang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. Chem. Eur. J. 2014, 20, 9906.
- (17) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.
- (18) Kato, H.; Kudo, A. Catal. Today 2003, 78, 561.
- (19) Kudo, A.; Okutomi, H.; Kato, H. Chem. Lett. 2000, 1212.
- (20) Miseki, Y.; Kato, H.; Kudo, A. Energy Environ. Sci. 2009, 2, 306.
- (21) Nelson, D.; Scheetz, B.; Abate, C. The International Centre for Diffraction Data, # 40-351.
- (22) Kato, H.; Kudo, A. J. Phys. Chem. B 2001, 105, 4285.

- (23) P. Seah, M. Surf. Interface Anal. 1989, 14, 488.
- (24) Iwase, A.; Kato, H.; Kudo, A. Appl. Catal.B: Environ. 2013, 89, 136.
- (25) Negishi, Y.; Mizuno, M.; Hirayama, M.; Omatoi, M.; Takayama, T.; Iwase, A.; Kudo, A. *Nanoscale* **2013**, *5*, 7188.
- (26) Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 1695.
- (27) Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833.
- (28) Hatsukade, T.; P. Kuhl, K.; R. Cave, E.; N Abram, D.; F. Jaramillo, T. *Phys. Chem. Chem. Phys.* **2014**, *16*, 13814.
- (29) Ishitani, O.; Inoue, C.; Suzuki, Y.; Ibusuki, T. J. Photochem. Photobiol. A: Chem. 1993, 72, 269.
- (30) Domen, K.; Kudo, A.; Onishi, T.; Kosugi, N.; Kuroda, H. J. Phys. Chem. 1986, 90, 292.
- (31) Jia, Q.; Miseki, Y.; Saito, K.; Kobayashi, H.; Kudo, A. Bull. Chem. Soc. Jpn. 2010, 83, 1275.
- (32) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082.
- (33) Matsubara, K.; Tatsuma, T. Adv. Mater. 2007, 19, 2802.
- (34) Kakihana, M.; Domen, K. MRS Bull. 2000, 25, 27.
- (35) Miseki, Y.; Kudo, A. ChemSusChem. 2011, 4, 245.
- (36) Yoshioka, K.; Petrykin, V.; Kakihana, M.; Kato, H.; Kudo, A. J. Catal. 2005, 232, 102.
- (37) Kudo, A.; Sakata, T. J. Phys. Chem. 1995, 99, 15963.
- (38) Kudo, A.; Kaneko, E. Chem. Commun. 1997, 349.
- (39) Kudo, A. Chem. Mater. 1997, 9, 664.
- (40) Zhang, W.; Kumada, N.; Takei, T.; Yonesaki, Y.; Kinomura, N. *Mater. Res. Bull.* 2007, *42*, 844.
- (41) Brik, F.; Enjalbert, R.; Roucau, C.; Galy, J. J. Solid State Chem. 1996, 122, 7.
- (42) Nakanishi, H.; Nakamura, A.; Wato, T.; Iwase, A.; Kudo, A. *Abstract of the CATSJ Meeting*2012, Vol. 110, p 547.

Chapter 3

Preparation of nanorod-shaped K₃Ta₃Si₂O₁₃ photocatalyst with tungsten bronze-like structure for water splitting

3-1. Introduction

Water splitting using semiconductor photocatalysts has extensively been studied as a candidate of clean hydrogen production. Water splitting under visible light irradiation has been achieved using single particulate photocatalysts of GaN-ZnO,¹ ZnGeN₂-ZnO,² TaON,³ and Rh and Sb codoped-SrTiO₃.⁴ However, the efficiencies are not satisfying. On the other hand, various metal oxide photocatalysts with wide band gaps have been reported.⁵ NaTaO₃:La⁶ and Zn-doped Ga₂O₃⁷ give high quantum yields for water splitting. These wide band gap photocatalysts are suitable samples for examining the mechanism of photocatalytic reactions as well as TiO₂. For example, dynamics of photogenerated carriers⁸ and relationship among crystal structure, physical property, and photocatalytic activity⁹ have been studied using NaTaO₃ photocatalysts. Therefore, it is important to develop and improve various types of photocatalyst materials even with wide band gaps, because those photocatalysts can be employed for the basic research of the photocatalytic water splitting into H₂ and O₂.

To prepare single crystal-like photocatalyst particles is advantageous to obtaining high photocatalytic performances because recombination between photogenerated electrons and holes is suppressed in such particles. Therefore, the preparation of highly crystalline photocatalysts with shapes reflecting the crystal structures is a potential strategy to improve the activity. Polymerized complex¹⁰⁻¹¹ and flux¹² methods easily give such photocatalyst particles. Nanorod-shaped K₂LaNb₅O₁₅ photocatalyst powder with tungsten bronze structure is obtained by the polymerized complex method.¹¹ SrTiO₃ photocatalyst with a specific crystal face and high crystallinity is also prepared from a precursor obtained by a polymerized complex method and by subsequent flux treatment. This SrTiO₃ photocatalyst shows high activity for water splitting as well as NaTaO₃:La photocatalyst.¹³ Therefore, it is interesting to prepare highly crystalline photocatalyst particles with shapes reflecting the crystal structures by polymerized complex and flux methods and examine the photocatalytic activity.

 $K_3Ta_3Si_2O_{13}$ possesses tungsten bronze-like structure in which three chains of corner-shared TaO_6 octahedra form pillared structure along the c axis and the pillars are connected with SiO₄

tetrahedral units as shown in Figure 3-1.¹⁴ The bond angles of O-Ta-O are 178° and 167°. Although $Ba_3Ta_6Si_4O_{26}$ has the similar crystal structure to $K_3Ta_3Si_2O_{13}$, the bond angles of TaO₆ chains are 163° and 141° that are quite distorted as shown in Figure 3-2.¹⁴ Although the $K_3Ta_3Si_2O_{13}$ and $Ba_3Ta_6Si_4O_{26}$ prepared by a solid-state reaction and an amorphous metal complex method show photocatalytic activities for water splitting, the activities are not high.¹⁵⁻¹⁶ These photocatalyst powders have featureless shapes. Therefore, it is expected that the photocatalytic activities are improved by using highly crystalline particles with the shape of the pillared crystal structure. Moreover, it is interesting to compare the photocatalytic activities from the viewpoints of the distortion of the one-dimensional pillared structure and the morphologies of the particles.

In the present study, highly crystalline $K_3Ta_3Si_2O_{13}$ and $Ba_3Ta_6Si_4O_{26}$ with specific morphologies were prepared by a flux method using KCl. The relationship among the crystal structure, morphology, and the photocatalytic activity was discussed.

3-2. Experimental

Preparation of photocatalysts

K₃Ta₃Si₂O₁₃ and Ba₃Ta₆Si₄O₂₆ powders were prepared by a solid-state reaction and a flux method. These samples are denoted as SSR-K₃Ta₃Si₂O₁₃, Flux-K₃Ta₃Si₂O₁₃, SSR-Ba₃Ta₆Si₄O₂₆, and Flux-Ba₃Ta₆Si₄O₂₆, respectively. SSR-K₃Ta₃Si₂O₁₃ was prepared by the same condition according to a previous report.¹⁵ Starting materials for SSR-Ba₃Ta₆Si₄O₂₆ were BaCO₃ (Kanto Chemical; 99%), Ta₂O₅ (Rare Metallic; 99.99%), and SiO₂ (Kanto Chemical, 50 mol%excess). The mixture of starting materials was calcined at 1423 K for 10 h in air using a platinum crucible. Flux-K₃Ta₃Si₂O₁₃ and Flux-Ba₃Ta₆Si₄O₂₆ were prepared using KCl (Kanto Chemical; 99.5%, melting point; 1043 K) as the flux agent and an alumina crucible. Single phases of K₃Ta₃Si₂O₁₃ and Ba₃Ta₆Si₄O₂₆ were obtained at 1423 K of the preparation temperature by the flux method. The obtained powders were washed out with water to remove the KCl flux. NiO cocatalyst was loaded by an impregnation method (573 K for 1 h in air) from an aqueous Ni(NO₃)₂ solution.

Figure 3-1. Crystal structure of $K_3Ta_3Si_2O_{13}$.¹⁴

Figure 3-2. Crystal structure of $Ba_3Ta_6Si_4O_{26}$.¹⁴

Characterization of photocatalysts

Crystal phases of obtained powders were confirmed by X-ray diffraction using Cu K α radiation (Rigaku; Miniflex). Diffuse reflection spectra of these powders were obtained by using a UV-vis-NIR spectrometer and converted to absorbance from the reflection by using Kubelka-Munk function. The morphology of obtained particles was observed by using a scanning electron microscope (JEOL; JSM-6700F).

Photocatalytic water splitting

Photocatalytic water splitting was conducted using an Ar flow system and an inner irradiation cell made of quartz with a 400 W high-pressure mercury lamp. 0.5 g of photocatalyst powder was dispersed in 350 mL of pure water by using a magnetic stirrer. Ar gas (99.99%) was continuously bubbled into the suspension at about 30 mL min⁻¹ of a flow rate during the photocatalytic reaction. Gaseous products of H_2 and O_2 were determined by using a gas chromatograph (Shimadzu: GC-8A with Molecular Sieve 5A, TCD and Ar carrier). The apparent quantum yield for water splitting was measured using a gas-closed circulation system. 0.5 g of photocatalyst powder was dispersed in 350 mL of pure water in a top-irradiation cell made of quartz. A 300 W Xe-arc lamp with a band-pass filter was employed as a monochromatic light source at 254 nm.

3-3. Results and discussion

3-3-1. Characterization of nanorod-shaped K₃Ta₃Si₂O₁₃ and block-shaped Ba₃Ta₆Si₄O₂₆ prepared by a solid-state reaction and a flux method

Figure 3-3 shows XRD patterns of $K_3Ta_3Si_2O_{13}$ and $Ba_3Ta_6Si_4O_{26}$ prepared by a solid-state reaction and a flux method. SSR- $K_3Ta_3Si_2O_{13}$ was obtained as a single phase by preparation at 1573 K (Figure 3-3a), whereas preparation at 1423 K gave some impurities (Figure 3-3b) as reported.¹⁵ In contrast, the single phase was obtained by the flux method using KCl even at 1423 K (Figure 3-3c).

Figure 3-3. X-ray diffraction patterns of (I) $K_3Ta_3Si_2O_{13}$ and (II) $Ba_3Ta_6Si_4O_{26}$ prepared by a solid-state reaction and a flux method at several temperatures for 10 h. $K_3Ta_3Si_2O_{13}$ prepared by a solid-state reaction at (a) 1573 K, (b) 1423 K, (c) a flux method at 1423 K, and (d) PDF: 1-72-557. $Ba_3Ta_6Si_4O_{26}$ prepared by (e) a solid-state reaction at 1423 K, (f) a flux method at 1423 K, and (g) PDF: 1-72-555.

Although the solid-state reaction gave some impurities for the preparation of $Ba_3Ta_6Si_4O_{26}$ as reported,¹⁶ the single phase was obtained by the flux method (Figure 3-3e, f). Diffuse reflection spectra indicated that band gaps of SSR-K₃Ta₃Si₂O₁₃, Flux-K₃Ta₃Si₂O₁₃, and Flux-Ba₃Ta₆Si₄O₂₆ were 4.1, 4.2, and 4.3 eV, respectively as shown in Figure 3-4.

Figure 3-5 shows SEM images of K₃Ta₃Si₂O₁₃ and Ba₃Ta₆Si₄O₂₆ prepared by a solid-state reaction and a flux method. SSR-K₃Ta₃Si₂O₁₃ was sintered particles with a featureless shape. In contrast, most of Flux-K₃Ta₃Si₂O₁₃ particles were nanorod with 100–150 nm of width and 300–2000 nm of length. The formation of nanorod by the flux method is also observed for KSr₂Ta₅O₁₅ photocatalyst that possesses the similar structure to K₃Ta₃Si₂O₁₃.¹² Although Ba₃Ta₆Si₄O₂₆ was prepared by an amorphous metal complex method using a peroxo complex, the obtained particles were sintered and had featureless shape,¹⁶ Flux-Ba₃Ta₆Si₄O₂₆ possessed not a nanorod shape but a block shape with high crystallinity. The difference in morphology between Flux-K₃Ta₃Si₂O₁₃ and Flux-Ba₃Ta₆Si₄O₂₆ particles is due to the degree of the distortion of pillared structure. The bond angles of O-Ta-O chains in K₃Ta₃Si₂O₁₃ are more liner than those of Ba₃Ta₆Si₄O₂₆ as shown in Figures 3-1 and 3-2. Crystal growth along the c axis seems to be suppressed for Ba₃Ta₆Si₄O₂₆ with zigzag chains of TaO₆ units giving the thick block shape.

3-3-2. Photocatalytic water splitting over nanorod-shaped K₃Ta₃Si₂O₁₃ and block-shaped Ba₃Ta₆Si₄O₂₆ prepared by a solid-state reaction and a flux method

Table 1 shows photocatalytic activities for water splitting over $K_3Ta_3Si_2O_{13}$ and $Ba_3Ta_6Si_4O_{26}$ prepared by a solid-state reaction and a flux method. SSR- $K_3Ta_3Si_2O_{13}$ showed the activity even without loading of any cocatalysts as reported.¹⁵ SSR- $K_3Ta_3Si_2O_{13}$ showed slightly higher activity than Flux- $K_3Ta_3Si_2O_{13}$ without cocatalysts. In this case, a surface reaction for H₂ evolution would be a rate-determining step. Therefore, the bulk property did not significantly affect the photocatalytic activity. So, the large surface area of SSR- $K_3Ta_3Si_2O_{13}$ would be effective for the

Figure 3-4. Diffuse reflectance spectra of $K_3Ta_3Si_2O_{13}$ prepared by (a) a solid-state reaction (1573 K for 10 h) and (b) a flux method (1423 K for 10 h), and (c) $Ba_3Ta_6Si_4O_{26}$ prepared by a flux method (1423 K for 10 h).

Figure 3-5. SEM images of $K_3Ta_3Si_2O_{13}$ prepared by (a and a') a solid-state reaction at 1573 K and (b and b') a flux method at 1423 K for 10 h, and (c and c') Ba₃Ta₆Si₄O₂₆ prepared by a flux method at 1423 K for 10 h

Photocatalyst	Preparation	Band Gap	Surface Area	Cocatalyst	Activity	/ μ mol h ⁻¹	AQY(%)
	Method	/ eV	$/ m^2 g^{-1}$	(wt%)	H_{2}	O_2	at 254 nm
K ₃ Ta ₃ Si ₂ O ₁₃	SSR	4.1	6.1	None	100	47	-
$K_3Ta_3Si_2O_{13}$	SSR	4.1	_	NiO (0.2)	309	132	1.7
$K_3Ta_3Si_2O_{13}$	SSR	4.1	_	NiO (1.3)	214	94	-
$K_3Ta_3Si_2O_{13}$	Flux	4.2	4.4	None	78	36	-
$K_3Ta_3Si_2O_{13}$	Flux	4.2	_	NiO (0.2)	773	406	2.4
$K_3Ta_3Si_2O_{13}$	Flux	4.2	_	NiO (1.3)	458	235	-
$Ba_3Ta_6Si_4O_{26}$	Flux	4.3	1.1	None	17	5	-
$Ba_3Ta_6Si_4O_{26}$	Flux	4.3	_	NiO (0.2)	134	68	0.2
$Ba_3Ta_6Si_4O_{26}$	Flux	4.3	-	NiO (1.3)	95	3	_

Table 1. Photocatalytic water splitting over metal oxide materials with tungsten bronze-like structure prepared by a solid-state reaction (SSR) and a flux method (Flux)

Catalyst: 0.5 g,, reactant solution: pure water (350 mL), system: an Ar gas flow system using an inner irradiation cell made of quartz, light source: a 400 W high-pressure mercury lamp.

high activity. The activity was much improved by loading of a NiO cocatalyst to introduce the surface active site for H₂ evolution. In contrast to the pristine photocatalysts, the activity of NiO/Flux-K₃Ta₃Si₂O₁₃ was higher than that of NiO/SSR-K₃Ta₃Si₂O₁₃, because the bulk property mainly affected the photocatalytic activity rather than the surface area in the presence of an excellent cocatalyst enhancing surface reactions. Apparent quantum vields of NiO/SSR-K₃Ta₃Si₂O₁₃ and NiO/Flux-K₃Ta₃Si₂O₁₃ were 1.7% and 2.4% at 254 nm, respectively. H₂ and O₂ evolved in a stoichiometric amount even under the week UV irradiation using a Xe lamp and a band-pass filter. The major reason for the higher activity of NiO/Flux-K₃Ta₃Si₂O₁₃ than NiO/SSR-K₃Ta₃Si₂O₁₃ is that the amount of defect such as grain boundary in single crystal-like nanorods of Flux-K₃Ta₃Si₂O₁₃ is smaller than that in featureless particles of SSR-K₃Ta₃Si₂O₁₃ as observed by SEM, because the defects work as recombination centers for photogenerated electrons and holes. The anisotropic nanorod structure would also contribute to enhancement of charge separation. Flux-Ba₃Ta₆Si₄O₂₆ also showed the photocatalytic activity for water splitting without cocatalysts as reported.¹⁶ Although the photocatalytic activity was improved with a NiO cocatalyst, it was lower than that of K₃Ta₃Si₂O₁₃. The reason why the activity of Flux-Ba₃Ta₆Si₄O₂₆ was lower than NiO/Flux-K₃Ta₃Si₂O₁₃ is due to the degree of distortion of TaO₆ chains. Excited energy or photogenerated electron-hole pairs will mainly migrate along the c-axis of the pillared structure, because the pillars consisting of TaO₆ chains are separated from each other by SiO₄ units in the direction of an a-axis. As the bond angle of O-Ta-O in corner-shared TaO₆ along the c-axis is close to 180°, migration of the excited energy or photogenerated electron-hole pairs becomes easy as observed in perovskite structure.⁹ Therefore, mobility of excited energy or photogenerated electron-hole pairs in Ba₃Ta₆Si₄O₂₆ is more localized than that of K₃Ta₃Si₂O₁₃. It results in the decrease in excited energy or photogenerated electron-hole pairs that can reach the surface and the decrease in photocatalytic activity.

Figure 3-6 shows photocatalytic water splitting over NiO(0.2 wt%)/Flux-K₃Ta₃Si₂O₁₃. H₂ and O₂ steadily evolved in a stoichiometric amount. The turnover number of electrons and holes consumed for H₂ and O₂ evolutions to molar quantity of Flux-K₃Ta₃Si₂O₁₃ was 5.7 indicating that

Figure 3-6. Photocatalytic water splitting over NiO(0.2 wt%)/K₃Ta₃Si₂O₁₃ prepared by a flux method.

the reaction proceeded photocatalytically. Color of the NiO cocatalyst turned pail purple from gray during photocatalytic water splitting, indicating the activated NiO cocatalyst as observed for many metal oxide photocatalysts with wide band gaps.^{6, 9} Thus, the NiO cocatalyst was also activated on the Flux-K₃Ta₃Si₂O₁₃ photocatalyst to show high activity.

3-4. Conclusions

It was confirmed that the flux method was effective for preparation of high crystalline particles with the morphology reflecting the crystal structure for materials with tungsten bronze-like structure. The effects of distortion of the TaO_6 chains on the crystal growth and the photocatalytic activity for $K_3Ta_3Si_2O_{13}$ and $Ba_3Ta_6Si_4O_{26}$ with one-dimensional pillared structure were clarified by preparing the highly crystalline particles using the flux method.

References

- (1) Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. *Nature* **2006**, *440*, 295.
- (2) Lee, Y.; Terashima, H.; Shimodaira, Y.; Teramura, K.; Hara, M.; Kobayashi, H.; Domen, K.;

Yashima, M. J. Phys. Chem. C 2007, 111, 1042.

- (3) Maeda, K.; Lu, D.; Domen, K. Chem. Eur. J. 2013, 19, 4986.
- (4) Asai, R.; Nemoto, H.; Jia, Q.; Saito, K.; Iwase, A.; Kudo, A. Chem. Commun. 2014, 50, 2543.
- (5) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253, and references therein.
- (6) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082.
- (7) Sakata, Y.; Matsuda, Y.; Nakagawa, T.; Yasunaga, R.; Imamura, H.; Teramura, K.

ChemSusChem 2011, 4, 181.

- (8) Yamakata, A.; Ishibashi, T.; Kato, H.; Kudo, A.; Onishi, H. J. Phys. Chem. B 2003, 107, 14383.
- (9) Kato, H.; Kudo, A. J. Phys. Chem. B 2001, 105, 4285.
- (10) Kakihana, M.; Domen, K. MRS Bull. 2000, 25, 27.
- (11) Miseki, Y.; Kudo, A. ChemSusChem 2011, 4, 245.
- (12) Wang, P.; Schwertmann, L.; Marschall, R.; Wark, M. J. Mater. Chem. A 2014, 2, 8815.
- (13) Kato, H.; Kobayashi, M.; Harab, M.; Kakihana, M. Catal. Sci. Technol. 2013, 3, 1733.
- (14) Choisnet, J.; Nguyen, N.; Groult, D.; Raveau, B. Mat. Res. Bull. 1976, 11, 887.
- (15) Kudo, A.; Kato, H. Chem. Lett. 1997, 867.
- (16) Yanagisawa, R.; Petrykin, V.; Kakihana, M. J. Jpn. Soc. Powder Powder Metallurgy 2010, 57, 701.

Chapter 4

Development of Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS₂ photocathode for CO₂ reduction using water as an electron donor under visible light irradiation

4-1. Introduction

BaLa₄Ti₄O₁₅ and Zn-doped Ga₂O₃ with wide band gaps reduce CO₂ to CO by loading Ag cocatalyst on the surface.^{1, 2} In the chapter 2, KCaSrTa₅O₁₅ has arisen as a new photocatalyst for water splitting and CO₂ reduction. The important point of the CO₂ reduction using these photocatalysts is that H₂, CO and O₂ evolve in the stoichiometric amounts. However, The wide band gap photocatalysts cannot be used in the industry process because it doesn't respond to visible light occupying a lot of part of the sunlight.

Many metal sulfide photocatalysts which have the valence band formed by S3p orbitals with negative level compered with O2p orbitals respond to visible light. Although CdS photocatalyst showed activities for hydrogen evolution and CO₂ reduction under visible light irradiation, sacrificial reagent is indispensable. In contrast, Cu₂ZnSnS₄ and with p-type semiconductor character shows activity for photoelectrochemical hydrogen evolution with external bias under visible light irradiation.⁴ The photoelectrochemical reaction can be called uphill reaction if the external bias is smaller than the theoretical bias to split water (1.23 V) between working and counter electrodes. Therefore, development of metal sulfide photocathodes showing activity for CO₂ reduction has attracted. Cu_{0.8}Ag_{0.2}GaS₂ photocatalyst with chalcopyrite structure has a p-type semiconductor character.^{5, 6} In the present study, photoelectrochemical CO₂ reduction under visible light irradiation over Cu_{0.8}Ag_{0.2}GaS₂ photocathode was studied. Moreover, The improving of activity of Cu_{0.8}Ag_{0.2}GaS₂ photocathode was conducted by comodifying ZnS thin film and various metal cocatalysts.

4-2. Experimental

 $Cu_{0.8}Ag_{0.2}GaS_2$ photocatalyst was prepared by a solid-state reaction. The starting materials were Cu_2S , Ag_2S and Ga_2S_3 . The mixture was sealed in a quartz ampoule tube *in vacuo*, and heat-treated at 1073 K for 10 h. The excess amount of gallium (10%) was added to the mixture. The photocatalyst powder was dispersed in ethanol, and casted on FTO electrode. After drying, the

electrode was annealed at 773 K for 2 h in N₂ atmosphere to prepare photoelectrode. The photoelectrode was modified with ZnS thin film by a chemical bath deposition method according to previous report.⁷ The starting materials were ZnSO₄•4H₂O (Wako Pure Chemical; 99.5%), thiourea (98.0%), citric acid (98.0%) and 25% ammonia solution (Wako Pure Chemical). The mixed solution of 0.03 mol L⁻¹ of ZnSO_{4 aq.}, 0.06 mol L⁻¹ of thiourea _{aq.} and 0.08 mol L⁻¹ of citric acid _{aq.} was heated to 353 K. The photoelectrode was dipped for 10 minute to modify with ZnS thin film on the surface and dried at room temperature after adding 10 vol% of ammonia solution(25%) into the mixture solution. The ZnS thin film-modified photoelectrode was annealed at 773 K for 2 h in N₂ atmosphere. Nonannealed and annealed the photoelectrodes modified with ZnS thin film were denoted as TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode, the Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode modified with ZnS thin film were denoted as TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode was prepared by casting the ZnS suspension in ethanol onto the photoelectrode and drying at room temperature and subsequent annealing at 773 K for 2 h in N₂ atmosphere (denoted as P-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂).

Cocatalysts were loaded according to follows. The aqueous solution dissolved a metallic salt was casted on photoelectrode. The photoelectrode annealed at 773 K for 2 h in N₂ atmosphere after drying up the solution. The method was conducted after that the photoelectrode was dipped in a mixture solution of water and acetone (the ratio of 1:1 as a volume), if necessary. AgNO₃, HAuCl₄, H₂PrCl₆, RuCl₃ and RhCl₃ were employed as starting materials for cocatalysts.

Photoelectrochemical properties were evaluated using a potentiostat (Hokuto Denko; HZ-3000) and an H-type cell divided into working and counter electrode cell by Nafion (Dupont). Pt plate (1 cm^2) and a saturated Ag/AgCl electrode (DKK-TOA) were used as the counter electrode and reference electrode, respectively. 0.1 mol L⁻¹ of K₂SO_{4 aq.} with phosphate buffer (0.025 mol L⁻¹ each of KH₂PO_{4 aq.} and Na₂HPO_{4 aq.}) and 0.1 mol L⁻¹ of KHCO_{3 aq.} were employed for electrolyte, respectively. The electrolyte in both cells was bubbled with N₂ or CO₂ before measurements. The light source was a 300 W Xe-arc lamp. The wavelength of the irradiation light was controlled by cutoff filters, an NIR-absorbing filter, and a plano-convex lens. The light source of pseudo-sun light

was a solar simulator. The gaseous products in H-type glass cell were determined by GC (Shimadzu; TCD, MS-5A, Ar carrier; FID with a methanizer, MS-13X, N₂ carrier). The isotope experiment was conducted by using ¹³CO₂ to confirm carbon source in CO₂ reduction. ¹³CO as a reducing product was analyzed by GC-MS (Shimadzu; GCMS-QP2010 Plus, RESTEK; RT-Msieve 5A).

4-3. Results and discussion

4-3-1. Effect of ZnS modification on photocathodic property of Cu_{0.8}Ag_{0.2}GaS₂

Figure 4-1 shows photoresponse in current vs. potential curves for pristine $Cu_{0.8}Ag_{0.2}GaS_2$ and TF-ZnS(A)/ $Cu_{0.8}Ag_{0.2}GaS_2$ electrodes under N₂ atmosphere. Cathodic photocurrent of the pristine $Cu_{0.8}Ag_{0.2}GaS_2$ electrode was drastically enhanced by modification of ZnS thin film. This would be due to that the charge separation of photogenerated electrons and holes in the $Cu_{0.8}Ag_{0.2}GaS_2$ photoelectrode was enhanced by the p-n junction formed by modification of ZnS thin film. The effect of ZnS modification on photocathodic property of $Cu_{0.8}Ag_{0.2}GaS_2$ electrode for CO₂ reduction was also evaluated by using TF-ZnS(NA)/ $Cu_{0.8}Ag_{0.2}GaS_2$, TF-ZnS(A)/ $Cu_{0.8}Ag_{0.2}GaS_2$ electrodes as shown in Figure 4-2. The cathodic photocurrent of P-ZnS(A)/ $Cu_{0.8}Ag_{0.2}GaS_2$ and TF-ZnS(NA)/ $Cu_{0.8}Ag_{0.2}GaS_2$ electrodes were not enhanced compared with that of pristine $Cu_{0.8}Ag_{0.2}GaS_2$ electrode. In contrast, the cathodic photocurrent of TF-ZnS(A)/ $Cu_{0.8}Ag_{0.2}GaS_2$ electrode was much larger than that of pristine $Cu_{0.8}Ag_{0.2}GaS_2$, P-ZnS(A)/ $Cu_{0.8}Ag_{0.2}GaS_2$, and TF-(NA)/ $Cu_{0.8}Ag_{0.2}GaS_2$ electrodes. The surface and bulk structure were analyzed by using a scanning electron microscope and X-ray photoelectron spectroscopy to clarify the effect of ZnS modification on photocathodic property of $Cu_{0.8}Ag_{0.2}GaS_2$ electrode.

Figure 4-3 shows SEM images of the top and the side of pristine $Cu_{0.8}Ag_{0.2}GaS_2$ and TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrodes. Although ZnS thin film was not observed on the surface of TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂, it was confirmed that both photoelectrodes were consisted of featureless particles.

Figure 4-4 shows the results of XPS measurement for Pristine and ZnS-modified

Figure 4-1. Current vs. potential curves for (a) pristine $Cu_{0.8}Ag_{0.2}GaS_2$ and (b) Thin-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrodes under visible light irradiation and dark. Electrolyte: 0.1 mol L⁻¹ of K₂SO_{4 aq.} with phosphate buffer (0.025 mol L⁻¹ of KH₂PO_{4 aq.} and Na₂HPO_{4 aq.}) with dissolved N₂ atmosphere, light source: a 300 W Xe-arc lamp with a cutoff filter ($\lambda > 420$ nm), sweep range: 0.3—1 vs. Ag/AgCl, a counter electrode: Pt plate.

Figure 4-2. Current vs. potential curves for Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode modified with ZnS by using different method. (a) pristine Cu_{0.8}Ag_{0.2}GaS₂, (b) P-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂, (c) TF-ZnS(NA)/Cu_{0.8}Ag_{0.2}GaS₂, and TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrodes. Modifying conditions: Particle-ZnS: a drop-cast method (773 K for 2 h in N₂), TF-ZnS: a chemical bath deposition (with or without annealing for 2 h in N₂ after the deposition). Open triangles indicate the on-set potential. Electrolyte: 0.1 mol L⁻¹ of KHCO_{3 aq.} with dissolved CO₂ atmosphere, light source: a 300 W Xe-arc lamp with a cutoff filter ($\lambda > 420$ nm), sweep range: 0.3 \rightarrow -1 vs. Ag/AgCl, a counter electrode: Pt plate.

Figure 4-3. SEM images of top and side of (a and b) pristine- $Cu_{0.8}Ag_{0.2}GaS_2$ and (c and d) Thin-ZnS(A)/ $Cu_{0.8}Ag_{0.2}GaS_2$ photocathodes.

Biding energy / eV

Figure 4-4. X-ray photoelectron spectra of (A) $Cu_{0.8}Ag_{0.2}GaS_2$, (B) P-ZnS(A)/ $Cu_{0.8}Ag_{0.2}GaS_2$, (C) TF-ZnS(NA)/ $Cu_{0.8}Ag_{0.2}GaS_2$ and (D) TF-ZnS(A)/ $Cu_{0.8}Ag_{0.2}GaS_2$ photoelectrodes. Ar etching time: (a, e, i and m) 0 s, (b, f, j and n) 5 s, (c, g, k and o) 20 s, (d, h, l and p) 60 s.

 $Cu_{0.8}Ag_{0.2}GaS_2$ photoelectrodes. All ZnS-modified $Cu_{0.8}Ag_{0.2}GaS_2$ photoelectrodes gave the Zn2p peak, while pristine $Cu_{0.8}Ag_{0.2}GaS_2$ photoelectrode did not give the Zn2p peak. Although the Zn2p peak before etching was smaller than that of after etching, P-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS_2 photoelectrode gave the same intensities of the Zn2p peaks even after etching with the time at 5, 20, and 60 s. The Zn2p peaks of TF-ZnS(NA)/Cu_{0.8}Ag_{0.2}GaS_2 and TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS_2 photoelectrodes were drastically decreased by etching, whereas the initial intensity of the peaks were much larger than the Zn2p peaks of P-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS_2 photoelectrode. Especially, the Zn2p peak of TF-ZnS(NA)/Cu_{0.8}Ag_{0.2}GaS_2 photoelectrode disappeared by etching for 60 s of the time. In contrast, the Zn2p peak of TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS_2 photoelectrode was observed even after etching for 60 s of the time.

The structures of Pristine and ZnS-modified Cu_{0.8}Ag_{0.2}GaS₂ photoelectrodes were proposed based on SEM and XPS measurements as shown in Figure 4-5. Pristine Cu_{0.8}Ag_{0.2}GaS₂ is accumulated on FTO substrate without any order (Figure 4-5(a)). The ZnS particles of P-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ accumulate on Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode (Figure 4-5(b)). In contrast, ZnS thin film prepared by a chemical bath deposition without annealing coveres the surface of the Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode judging from the results of XPS measurement (Figure 4-5(c)). The ZnS diffuses in the Cu_{0.8}Ag_{0.2}GaS₂ bulk with concentration gradient by annealing judging from the of XPS measurement with Ar etching (Figure 4-5 (d)). Therefore, the results TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode consists of three-layered structure with ZnS thin film at the surface, (Cu_{0.8}Ag_{0.2}Ga)_{1-x}Zn_{2x}S₂ solid-solution at the interlayer and Cu_{0.8}Ag_{0.2}GaS₂ in the bulk as sown in Figure 4-6(a). The structure gives p-n junction and continuous band gradient resulting in the formation of the band bending to the surface from the bulk as shown in Figure 4-6(b). The band gap of (Cu_{0.8}Ag_{0.2}Ga)_{1-x}Zn_{2x}S₂ solid-solution of a interlayer is probably almost the same as pristine Cu_{0.8}Ag_{0.2}GaS₂. The reason why the photocurrent was drastically enhanced by modification of ZnS thin film is that the band bending improved the charge separation of photogenerated carriers.

Figure 4-7 shows DRS and IPCE of a TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ electrode under N₂ atmosphere. The absorption edge of TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode was almost the

Figure 4-5. Proposed structures of (a) $Cu_{0.8}Ag_{0.2}GaS_2$, (b) P-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂, (c) TF-ZnS(NA)/Cu_{0.8}Ag_{0.2}GaS₂ and (d) TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrodes.

Figure 4-6. Proposed sedimentation and band structure of $Thin-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS_2$ photoelectrodes.

Figure 4-7. IPCEs for cathodic photocurrent of Thin-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ electrode at (a) –1, (b) –0.6 and (c) –0.3 V vs. Ag/AgCl and diffuse reflectance spectra of (d) Cu_{0.8}Ag_{0.2}GaS₂ powder and (e) Thin-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ electrode. Electrolyte: 0.1 mol L⁻¹ of K₂SO_{4 aq.} with phosphate buffer (0.025 mol L⁻¹ of KH₂PO_{4 aq.} and Na₂HPO_{4 aq.}) under N₂ atmosphere, light source: a 300 W Xe-arc lamp with a cutoff filter ($\lambda > 420$ nm), counter electrode: Pt plate.

same as that of pristine $Cu_{0.8}Ag_{0.2}GaS_2$ powder, while the back ground of a diffuse reflectance spectrum arose by annealing TF-ZnS(NA)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode. Onsets of the IPCE at different potentials agreed with a diffuse reflectance spectrum indicating that the cathodic photocurrent was observed by the band gap excitation. Thus, the modification of ZnS thin film on the surface of Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode improved the charge separation of the carriers photogenerated by band gap excitation of Cu_{0.8}Ag_{0.2}GaS₂.

4-3-2. Improvement of ZnS-modified Cu_{0.8}Ag_{0.2}GaS₂ photocathode for CO₂ reduction by loading cocatalysts

Table 4-1 shows CO₂ reduction over pristine Cu_{0.8}Ag_{0.2}GaS₂ and TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrodes. Pristine Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode gave cathodic photocurrent and produced CO at -0.6 V vs. Ag/AgCl under visible light irradiation. The current and amount of CO evolved were improved by modifying ZnS thin film with annealing. The Faradaic efficiency for CO evolution calculated by equation (1) reached at 16%. The efficiency was about five times as high as that of the pristine Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode.

Faradaic efficiency for CO evolution (FE_{CO})

= (the number of electrons consumed for CO formation / μ mol) / (the number of electrons calculated from the quantity of electricity / μ mol)×100 (1)

This result indicates that ZnS thin film on the surface $Cu_{0.8}Ag_{0.2}GaS_2$ photoelectrode functions as not only the layer with n-type character to form p-n junction for improvement of the charge separation but also an active site for CO₂ reduction to form CO. ZnS nanoparticle shows activity for CO₂ reduction even without any cocatalyst. Therefore, the reason why FE_{CO} of Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode was enhanced by modifying ZnS thin film is that the surface of the ZnS has active site to reduce CO₂ to CO. Moreover, CO did not evolve under dark in CO₂ atmosphere and visible

Modification	Gas	Electrolyte	Visible light	Cathodic current	Amounts of prod	ucts (3 h) / µmol	FE _{co}
of ZnS	(1 atm)		irradiation	density / $\mu A \ cm^{-2}$	H_2	CO	%
No	CO ₂	KHCO ₃	Yes	53~65	1.9	0.1	e
Yes	CO_2	KHCO ₃	Yes	190~602	12.1	2.1	16
Yes	CO_2	KHCO ₃	No	I	0	Trace	Ι
Yes	N_2	${}^{\mathrm{a}}\mathrm{K}_{2}\mathrm{SO}_{4}$	Yes	268~604	24.5	Trace	I

FE_{CO}: Faradaic efficiency for CO evolution.

light irradiation in N_2 atmosphere, indicating that CO_2 reduction to form CO proceeded photoelectrochemically.

In CO₂ reduction over wide band gap photocatalysts, Ag and Cu cocatalysts behave as a good active site for CO₂ reduction. Therefore, it is interesting to load metal cocatalysyts onto the TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode. Effects of loading cocatalysts on the activity for CO₂ reduction using TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode were evaluated as shown in Table 4-2. The cathodic photocurrent was increased by loading various cocatalysts except Rh cocatalyst. Especially, when Ag cocatalyst was loaded, the cathodic photocurrent and amount of CO evolved increased compared with that of the TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrodes loaded with other cocatalysts. The stability of cathodic photocurrent for CO₂ reduction using pristine Cu_{0.8}Ag_{0.2}GaS₂, TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ and TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ loaded with Ag cocatalyst were compared as shown in Figure 4-8. The cathodic photocurrent of Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode was enhanced by modifying ZnS thin film, although the stability of the cathodic photocurrent was not satisfying. In contrast, the cathodic photocurrent and the partial current density for CO evolution were drastically not only improved but also stabilized by loading Ag. The partial current density for CO evolution calculated from Faradaic efficiency for CO evolution to the average photocurrent of pristine-Cu_{0.8}Ag_{0.2}GaS₂, TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ and Ag-loaded TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ (Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS₂) photoelectrodes were about 2, 50 and 300 µA cm⁻², respectively. The mixed gases of H₂ and CO produced by the Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode was visually observed as shown in Figure 4-9.

In the CO₂ reduction, it is important to confirm that the products originate from not contamination but CO₂ gas by using ¹³CO₂. Only ¹³CO was obtained by reduction of ¹³CO₂ over the Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrode. This result indicated that the CO evolved from a CO₂ molecule by photoelectrocatalytic reaction.

Cocatalyst	Cathodic current	Amounts of products (3 h) / μ mol		FE _{CO}
_	density / mA cm ⁻²	H_2	CO	%
None	0.2~0.6	12	2.1	16
Cu	1.0~1.8	53	7.8	12
Ru	0.3~0.4	12	0.5	4
Rh	0.1~0.2	7.6	0.3	20
Ag	1.1~1.9	61	14	20
Pt	0.7~0.8	33	1	3
Au	0.3~0.6	20	1.5	7

Table 4-2 Effect of loading cocatalysts on CO_2 reduction using Thin-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂photocathode.

Electrolyte: 0.1 mol L⁻¹ of KHCO_{3 aq.} with dissolved CO₂ at 1 atm, light source: a 300 W Xe-arc lamp with a cutoff filter ($\lambda > 420$ nm), sweep range: -0.6 vs. Ag/AgCl, a counter electrode: Pt plate.

Figure 4-8. Stability of the photocurrent for CO₂ reduction of (a) pristine-Cu_{0.8}Ag_{0.2}GaS₂, (b) TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ and (c) Ag-loaded TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photoelectrodes. Electrolyte: 0.1 mol L⁻¹ of KHCO_{3 aq.} with dissolved CO₂ at 1 atm, light source: a 300 W Xe-arc lamp with a cutoff filter ($\lambda > 420$ nm), sweep range: -0.6 vs. Ag/AgCl, counter electrode: Pt plate.

Figure 4-9. CO₂ reduction using Ag-loaded TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photocathode (20 cm²). Electrolyte: 0.1 mol L⁻¹ of KHCO_{3 aq.} with dissolved CO₂ at 1 atm, light source: a 300 W Xe-arc lamp with a cutoff filter ($\lambda > 420$ nm), sweep range: -0.6 vs. Ag/AgCl, counter electrode: Pt wire

4-3-3. Construction of photoelectrochemical cell consisting of Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS₂ photocathode and CoO/BiVO₄ photoanode for CO₂ reduction utilizing solar energy without an external bias

The photoelectrochemical cell consisting of Rh-doped SrTiO₃ and CoO/BiVO₄ photoelectrodes split water into H₂ and O₂ in stoichiometric amounts under pseudo-sunlight irradiation without any external bias. Therefore, CO₂ reduction without any external bias was evaluated by constructing the photoelectrochemical cell using Ag/Thin-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ and CoO/BiVO₄ photoelectrodes. The cell gave photocurrent and produced H₂ and CO as reduction products of H₂O and CO₂, and O₂ as an oxidation product of H₂O without any external bias under visible light irradiation as shown in Figure 4-10. Moreover, the cell is also active under pseudo-sunlight. This indicates that H₂ and CO evolve by consuming water as an electron donor. The solar energy conversion efficiency for CO evolution was 0.0005%. Thus, the solar energy conversion accompanied with CO₂ reduction to form CO using water as an electron donor was demonstrated by developing Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS₂ of a new photoelectrode.

4-4. Conclusions

 $Cu_{0.8}Ag_{0.2}GaS_2$ photoelectrode reduced CO₂ to CO under visible light irradiation. The cathodic photocurrent and the Faradaic efficiency for CO evolution increased by modification of ZnS thin film prepared by a chemical bath deposition. The cathodic photocurrent increased by loading metal cocatalysts. Especially, the stability of the cathodic photocurrent and the partial current density for CO evolution were drastically improved by loading Ag cocatalyst. The partial current density for CO evolution had achieved at about 300 μ A cm⁻². The electrochemical cell consisting of Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS₂ as a cathode and CoO/BiVO₄ as an anode gave photocurrent and produced CO as a reduction product of CO₂ under pseudo sun light irradiation without any external bias. The solar energy conversion efficiency accompanied with reducing CO₂ to form CO was 0.0005%.

Figure 4-10. CO₂ reduction utilizing water as an electron donor using the photoelectrochemical cell constructing of Ag-loaded TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photocathode and CoO/BiVO₄ photoanode under visible light irradiation and pseudo-sun light with any external bias. Electrolyte: 0.1 mol L⁻¹ of KHCO_{3 aq.} with dissolved CO₂ at 1 atm, light source: a 300 W Xe-arc lamp with a cutoff filter (λ > 420 nm) and solar simulator, electrode area: Ag-loaded TF-ZnS(A)/Cu_{0.8}Ag_{0.2}GaS₂ photocathode; 20 cm² and CoO/BiVO₄ photoanode; 5 cm².

References

- (1) Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. J. Am. Chem. Soc. 2011, 133, 20863.
- (2) Teramura, K.; Wang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. Chem. Eur. J. 2014, 20, 9906.
- (3) Kanemoto, M.; Ishihara, K.; Wada, Y.; Sakata, T.; Mori, H.; Yanagida, S. *Chem. Lett.* 1992, 835.
- (4) Ma, G.; Minegishi, T.; Yokoyama, D.; Kubota, J.; Domen, K. Chem. Phys. Lett. 2011, 501, 619.
- (5) Tsutsui, Y. the master's thesis at Tokyo University of Science 2009.
- (6) Kaga, H. the doctoral thesis at Tokyo University of Science 2015.
- (7) W. J. Chen, et al. Appl. Surf. Sci., 2013, 264, 213.

Chapter 5

Conclusions

In this thesis, a new photocatalyst was developed by focusing on metal oxide with tungsten bronze structure. The reaction mechanism for CO_2 reduction was discussed. Moreover, new visible-light-driven photocathode for CO_2 reduction was developed to consist of the photoelectrochemical cell for CO_2 reduction using water as an electron source of an artificial photosynthesis.

In the chapter 2, KCaSrTa₅O₁₅ of a new photocatalyst for water splitting and CO₂ reduction was developed and the mechanism for CO₂ reduction was discussed based on various characterizations. KCaSrTa₅O₁₅ with tungsten bronze structure prepared by a solid-state reaction showed activity for water splitting without cocatalysts. CO₂ reduction using the photocatalyst was examined. As the result of surveying various cocatalysts, Ag cocatalyst functioned as the active site for CO₂ reduction to form CO. In this reaction, H₂, CO, and O₂ evolved in a stoichiometric ratio. The turnover number calculated from the number of electrons consumed to form CO to the number of Ag atom in cocatalyst was larger than 1. Additionally, an isotope experiment using ¹³CO₂ revealed that the CO produced from a CO₂ molecule by photocatalytic reduction over Ag/KCaSrTa₅O₁₅. These results indicate that the CO₂ reduction over Ag/KCaSrTa₅O₁₅ proceeded photocatalytically using water as an electron donor.

The KCaSrTa₅O₁₅ photocatalyst was prepared as nanorod particles by a polymerized complex method being different from a solid-state reaction. Observation of a scanning electron microscope and a transmission electron microscope indicates that the nanorod particle was a single crystal particle grown along c-axis with tungsten bronze structure.

The Tb-doped nanorod single crystal particle gave green emission originated from the ${}^{5}D_{4}\rightarrow{}^{7}F_{6}$ and ${}^{5}D_{4}\rightarrow{}^{7}F_{5}$ transitions of Tb³⁺ by host excitation at room temperature. In contrast, the Tb-doped polycrystalline particles prepared by the solid-state reaction did not give the emission. This indicates that the single crystalline nanorod particle has a small amount of the recombination center such as the grain boundary and the defect compared with that of polycrystalline particles. The single crystalline nanorod photocatalyst showed relative high activity for water splitting by loading NiO-cocatalyst. The apparent quantum yield was 6.6% at 254 nm. The efficiency was about

three times as high as that of polycrystalline particles. It is clear from the probing the photoluminescence of Tb that the photogenerated carrier migrated smoothly in the single crystalline nanorod particle prepared by a polymerized complex method. The Ag-cocatalyst-loaded single crystalline nanorod photocatalyst showed activity for CO₂ reduction to form CO in a stoichiometric amount using water as an electron donor. The reaction was drastically improved by adding NaHCO₃ into the reactant solution. The selectivity for CO evolution calculated from obtained reduction products was about 90%. The reason why the selectivity was improved by adding NaHCO₃ may be that CO₂ molecules are smoothly supplied to the active site by releasing the CO₂ molecule from HCO₃⁻ in an aqueous medium. Additionally, the photocatalyst after CO₂ reduction gave the surface plasmonic absorption, indicating that Ag-cocatalysts were present at the state of metallic nanoparticles. In contrast, when NiO-cocatalysts were loaded, CO did not evolve even if NaHCO₃ was added into the reactant solution. Thus, it was concluded that the selectivity for CO evolution is improved by smooth supply of the CO₂ molecule to Ag-cocatalyst of an active site for CO₂ reduction to form CO. In conclusion, it was demonstrated that the preparation of the particle having the bulk property which photogenerated carrier migrates smoothly and the supply of the substrate on the suitable active site are important designing guide to achieve highly efficient photocatalytic reaction.

In the chapter 3, the effects of the strain of the crystal structure on the crystal growth process and photocatalytic activities were discussed by using $K_3Ta_3Si_2O_{13}$ and $Ba_3Ta_6Si_4O_{26}$ of the metal oxide materials with the same crystal structure. The band gaps of $K_3Ta_3Si_2O_{13}$ and $Ba_3Ta_6Si_4O_{26}$ with tungsten bronze-like structure prepared by a flux method were 4.2 and 4.3 eV, respectively. The strain of the crystal framework along the c-axis of $Ba_3Ta_6Si_4O_{26}$ photocatalyst is larger than that of $K_3Ta_3Si_2O_{13}$ photocatalyst, indicating that the band gap increases by the localization of the excitation energy. Thus, it was clarified that the strain of the crystal framework affected the band gap not only perovskite structure but also tungsten bronze-like structure. Moreover, the strain affects the crystal growth and photocatalytic activity for water splitting as mentioned bellow.

This effect on photocatalysts with tungsten bronze-like structure was similar to that on

photocatalysts such as ATaO₃ (A = Na and K) with perovskite structure. $K_3Ta_3Si_2O_{13}$ photocatalysts with small strain of the crystal structure along c-axis were obtained nanorod-shaped particles, while $Ba_3Ta_6Si_4O_{26}$ photocatalysts with the large strain were obtained block-shaped particles. The apparent quantum yield for water splitting over NiO-cocatalyst-loaded $K_3Ta_3Si_2O_{13}$ and $Ba_3Ta_6Si_4O_{26}$ photocatalysts were 2.4 and 0.2% at 254 nm, respectively. These results indicate that the large strain of the crystal framework along c-axis may suppress the crystal growing along c-axis and decrease the mobility of the photogenerated carrier in not only perovskite structure but also tungsten bronze-like structure. Thus, the relationship among the strain of the crystal framework with tungsten bronze-like structure, the crystal growth process, and the photocatalytic activity had been clarified.

In the chapter 4, the photocathode using a $Cu_{0.8}Ag_{0.2}GaS_2$ photocatalyst with a p-type semiconductor character was developed for CO_2 reduction utilizing water as an electron donor.

Pristine $Cu_{0.8}Ag_{0.2}GaS_2$ photocathode showed activity for the CO₂ reduction to form CO. The cathodic photocurrent and Faradaic efficiency for CO evolution were improved by modification of ZnS thin film. The results indicated that the modification of ZnS thin film enhanced the charge separation by forming a p-n junction between the ZnS layer and $Cu_{0.8}Ag_{0.2}GaS_2$ and functioned as the active site for CO evolution. Moreover, the cathodic photocurrent and the partial current density for CO evolution were drastically improved by loading Ag-cocatalyst on the ZnS-modified $Cu_{0.8}Ag_{0.2}GaS_2$ photoelectrode. This result suggests that Ag-cocatalyst is suitable active site for CO₂ reduction in not only photocatalyst-powder system but also photocatalyst-electrode system. Moreover, the photoelectrochemical cell consisting of the photocathode and a CoO/BiVO₄ photoanode showed activity for CO₂ reduction using water as an electron donor without any external bias under pseudo-sunlight. Thus, the photoelectrochemical cell which can convert the solar energy by CO₂ reduction using water as an electron donor was successfully constructed by using visible-light driven Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS₂ of a new photocathode for CO₂ reduction.

Figure 5-1 shows the typical strategy to develop highly efficient photocatalyst for water splitting and CO_2 reduction, and the contribution of this thesis to the strategy. It is conducted The

fundamental research to design highly efficient new photocatalyst materials and systems and store scientific knowledge. Additionally, development of new photocatalyst materials and systems based on the fundamental research give the new knowledge. As the result, highly efficient photocatalysts and photocathodes for water splitting and CO₂ reduction have been developed. In this thesis, especially, Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS₂ photocathode developed in chapter 4 have achieved artificial photosynthesis for CO₂ reduction using solar energy without any external bias by consisting photoelectrochemical cell with a CoO/BiVO₄ photoanode, although the activity is not high at the present stage. This insights will probably give new information for multi field such as material science, crystal chemistry, and electrochemistry and so. In future, a new photocathode using metal sulfide photocatalysts with narrower band gap and p-type semiconductor character will be developed by comodification of semiconductor thin film with n-type and suitable cocatalysts such as the Ag/ZnS/Cu_{0.8}Ag_{0.2}GaS₂ photocathode. The new photocathode is also useful to consist of the highly efficient photoelectrochemical cell for CO₂ reduction.

Finally, the author hopes that the knowledge of this thesis is useful to achieve artificial photosynthesis for solar hydrogen production and CO_2 fixation.

The stage to achieve the artificial photosynthesis for water splitting and CO_2 fixation ·Solar hydrogen production

·Conversion of CO₂ to chemicals using water as an electron donor

Figure 5-1. The typical strategy to develop highly efficient photocatalyst for water splitting and CO₂ reduction and the contribution of this thesis to the strategy.

List of publications

1. For the chapter 2; The KCaSrTa₅O₁₅ Photocatalyst with Tungsten Bronze Structure for Water Splitting and CO₂ Reduction

T. Takayama, K. Tanabe, K. Saito, A. Iwase, A. Kudo, *Phys. Chem. Chem. Phys.*, **2014**, *16*, 24417.

2. For the chapter 2; Photocatalytic Water Splitting and CO₂ Reduction over KCaSrTa₅O₁₅ Nanorod prepared by a Polymerized Complex Method

<u>T. Takayama</u>, A. Iwase, A. Kudo, *Bull. Chem. Soc. Jpn., in communication.*

3. For the chapter 3; Photocatalytic Water Splitting over Rod-shaped $K_3Ta_3Si_2O_{13}$ and Block-shaped $Ba_3Ta_6Si_4O_{26}$ prepared by Flux Method

T. Takayama, A. Iwase, A. Kudo, Chem. Lett., in press.

Others

1. Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa₄Ti₄O₁₅ (A=Ca, Sr, and Ba) Using Water as a Reducing Reagent

K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, J. Am. Chem. Soc., 2011, 133, 20863.

2. Enhanced Photocatalytic Water Splitting by $BaLa_4Ti_4O_{15}$ Loaded with ~1nm Gold Nanoclusters using Glutathione-Protected Au25 Clusters

Y. Negishi, M. Mizuno, M. Hirayama, M. Omatoi, <u>T. Takayama</u>, A. Iwase, A. Kudo, *Nanoscale* (communications), 2013, *5*, 7188. Selected as "Outside Back Cover"

3. Effects of cocatalyst on carrier dynamics of a titanate photocatalyst with layered perovskite

structure

M. Yabuta, <u>T. Takayama</u>, K. Shirai, K. Watanabe, A. Kudo, T. Sugimoto, Y. Matsumoto, *J. Phys. Chem. C*, **2014**, *118*, 10972.

4. 微小金クラスター助触媒担持による水分解光触媒の高活性化
御纏真実子,平山道世,<u>高山大鑑</u>,岩瀬顕秀,工藤昭彦,根岸雄一,2013,ナノ学会会報, 第 12 巻, 29-33.