Research of submanifolds in symmetric spaces
by using the complexification and
the infinite dimensional geometry

Naoyuki Koike
(Received July 24, 2014; Revised November 4, 2014)

Abstract. This is a survey for the research of submanifolds in symmetric spaces by using the complexification and the infinite dimensional geometry.

AMS 2010 Mathematics Subject Classification. 53C40; 53C35.

Key words and phrases. Equifocal submanifold, complex equifocal submanifold, isoparametric submanifold, symmetric space, Hilbert space.

Introduction
In 1989, C. L. Terng ([62]) introduced the notion of an isoparametric submanifold in the (separable) Hilbert space as the infinite dimensional version of an isoparametric submanifold in the Euclidean space. In the gauge theoretic aspect, for a compact semi-simple Lie group $G$, so-called the parallel transport map is defined as a Riemannian submersion of the Hilbert space consisting of all $L^2$-integrable paths in the Lie algebra $g$ of $G$ onto $G$, where we give $g$ an $\text{Ad}(G)$-invariant inner product and give $G$ the bi-invariant metric induced from the inner product. Here $\text{Ad}$ is the adjoint representaion of $G$. In 1995, C. L. Terng and G. Thorbergsson [64] introduced the notion of an equifocal submanifold in a (Riemannian) symmetric space. This notion is defined as a compact submanifold with flat section, trivial normal holonomy group and parallel focal structure. Here ”with flat section” means that the images of the normal spaces of the submanifold by the normal exponential map are flat totally geodesic submanifolds and the parallelity of the focal structure means that, for any parallel normal vector field $v$ of the submanifold, the focal radii along the normal geodesic $\gamma_{v_x}$ with $\gamma_{v_x}'(0) = v_x$ are independent of the choice of $x$ (with considering the multiplicities), where $\gamma_{v_x}'(0)$ is the velocity vector...
of $\gamma_{v_x}$ at $0$. Note that the focal radii of the submanifold along the normal geodesic $\gamma_{v_x}$ coincide with the zero points of the real valued function

$$F_{v_x}(s) := \det \left( \cos \left( s \sqrt{R(v_x)} \right) - \frac{\sin \left( s \sqrt{R(v_x)} \right)}{\sqrt{R(v_x)}} \circ A_{v_x} \right)$$

over $\mathbb{R}$ defined in terms of the shape operator $A_{v_x}$ and the normal Jacobi operator $R(v_x) := R(\cdot, v_x)v_x$, where $R$ is the curvature tensor of the ambient symmetric space. In particular, in the case where $G/K$ is a Euclidean space, we have $F_{v_x}(s) = \det(\text{id} - s A_{v_x})$ and hence the focal radii along $\gamma_{v_x}$ coincide with the inverse numbers of the eigenvalues of $A_{v_x}$ (i.e., the principal curvature radii of direction $v_x$). Compact isoparametric submanifolds in a Euclidean space and compact isoparametric hypersurfaces in a sphere or a hyperbolic space are equifocal. They ([64]) proved that the research of an equifocal submanifold in a symmetric space $G/K$ of compact type is reduced to that of an isoparametric submanifold in the Hilbert space through the composition of the parallel transport map for $G$ and the natural projection of $G$ onto $G/K$. In 2002, U. Christ ([8]) proved that a full irreducible equifocal submanifold of codimension greater than one in a symmetric space of compact type is homogeneous. He proved the homogeneity theorem by using the homogeneity theorem (which was proved by E. Heintze and X. Liu ([20])) for an isoparametric submanifold in the Hilbert space.

When a non-compact submanifold $M$ in a symmetric space $G/K$ of non-compact type deforms as its principal curvatures approach to zero, its focal set vanishes beyond the ideal boundary $(G/K)(\infty)$ of $G/K$ (see Figure 1). For example, when an open portion of a totally umbilic sphere in a hyperbolic space of constant curvature $c(<0)$ deforms as its principal curvatures approach to $\sqrt{-c}$, its focal point approach to $(G/K)(\infty)$ and, when it furthermore deforms as its principal curvatures approach to a positive value smaller than $\sqrt{-c}$, the focal point vanishes beyond $(G/K)(\infty)$. The parallelity of the complex focal structure is an essential condition (even if $M$ is not of $C^\omega$). So, we [31] defined the notion of a complex equifocal submanifold as a (properly embedded) complete submanifold with flat section, trivial normal holonomy group and parallel complex focal structure, where we note that this submanifold should be called an equi-complex focal submanifold but that we called it a complex equifocal submanifold for simplicity. Note that equifocal submanifolds in the symmetric space are complex equifocal. In fact, since they are compact, their principal curvatures are not close to zero and hence the parallelity of their focal structure leads to that of their complex focal structure. On the base of this fact, we recognized that, for a non-compact submanifold in a symmetric space of non-compact type, the parallelity of the focal structure is not an essential condition. So, we ([31]) introduced the notion of a complex focal radius of the
submanifold along the normal geodesic $\gamma_{v_x}$ as the zero points of the complex valued function $F_{v_x}^C$ over $\mathbb{C}$ defined by

$$F_{v_x}^C(z) := \det \left( \cos \left( z \sqrt{R(v_x)^C} \right) - \frac{\sin \left( z \sqrt{R(v_x)^C} \right)}{\sqrt{R(v_x)^C}} \circ A_{v_x}^C \right)$$

over $\mathbb{C}$, where $A_{v_x}^C$ and $R(v_x)^C$ are the complexifications of $A_{v_x}$ and $R(v_x)$, respectively. Here we note that complex focal radii along $\gamma_{v_x}$ can be directly calculated from datas of $A_{v_x}$ and $R(v_x)$ according to this definition. In the case where $M$ is of class $C^\omega$ (i.e., real analytic), we can catch the geometrical essence of complex focal radii as follows. We ([32]) defined the complexification $M^C$ of $M$ as an anti-Kaehler submanifold in the anti-Kaehler symmetric space $G^C/K^C$, where we note that $G^C/K^C$ is a space including both $G/K$ and its compact dual $G_\kappa/K$ as submanifolds transversal to each other and that it is interpreted as the complexification of both $G/K$ and $G_\kappa/K$, where we note that the induced metric on $G/K$ coincides with the original metric of $G/K$ and that the induced metric on $G_\kappa/K$ is the $(-1)$-multiple of the metric of $G_\kappa/K$. Also, we note that an anti-Kaehler manifold means a manifold $M$ equipped with a pseudo-Riemannian metric $g$ and a complex structure $J$ satisfying $g(JX, JY) = -g(X, Y)$ ($\forall X, Y \in TM$) and $\nabla J = 0$, and an anti-
Kaehler submanifold in the space means a \( J \)-invariant submanifold, where \( \nabla \) is the Levi-Civita connection of \( g \). We ([32]) showed that \( z \) is a complex focal radius of \( M \) along \( \gamma_v \) if and only if \( \gamma_v^C(z) \) is a focal point of \( M^C \) along the complexified geodesic \( \gamma_v^C \) (see Figures 2 and 3). Here \( \gamma_v^C \) is defined by

\[
\gamma_v^C(z) := \gamma_{av_x + bJv_x}(1) \quad (z = a + b\sqrt{-1} \in \mathbb{C}),
\]

where \( \gamma_{av_x + bJv_x} \) is the geodesic in \( G^C/K^C \) with \( \gamma'_{av_x + bJv_x}(0) = av_x + bJv_x \). Thus the complex focal radii of \( M \) are the quantities indicating the positions of focal points of \( M^C \).

![Figure 2.](image)

**Figure 2.**

![Figure 3.](image)

**Figure 3.**
When $M$ varies as above and real analytically, its focal set vanishes beyond $(G/K)(\infty)$ but the focal set of $M^C$ (i.e., the complex focal set of $M$) does not vanish (see Figure 4). On the base of this fact, for non-compact submanifolds in a symmetric space of non-compact type, we recognize that the parallelity of the complex focal structure is an essential condition (even if $M$ is not of $C^\omega$). So, we [31] defined the notion of a complex equifocal submanifold as a (properly embedded) complete submanifold with flat section, trivial normal holonomy group and parallel complex focal structure, where we note that this submanifold should be called an equi-complex focal submanifold but that we called it a complex equifocal submanifold for simplicity. Note that equifocal submanifolds in the symmetric space are complex equifocal. In fact, since they are compact, their principal curvatures are not close to zero and hence the parallelity of their focal structure leads to that of their complex focal structure.

In 2004, the author ([31]) introduced the notion of a complex isoparametric submanifold in the pseudo-Hilbert space as the infinite dimensional version of an isoparametric submanifold in the pseudo-Euclidean space, and furthermore, he defined the parallel transport map for a semi-simple Lie group $G$ as a pseudo-Riemannian submersion of the pseudo-Hilbert space consisting of certain kind of paths in the Lie algebra $\mathfrak{g}$ of $G$ onto $G$. Also, in 2005, the author ([32]) introduced the notion of an anti-Kaehler isoparametric submanifold in the infinite dimensional anti-Kaehler space, and furthermore, he defined the parallel transport map for $G^C$ as an anti-Kaehler submersion of the infinite dimensional anti-Kaehler space consisting of certain kind of paths in the Lie algebra $\mathfrak{g}^C$ of $G^C$ onto $G^C$. He ([31]) proved that the research of a complex equifocal submanifold in a symmetric space $G/K$ of non-compact type is reduced to that of a complex isoparametric submanifold in the pseudo-Hilbert space through the composition of the parallel transport map for $G$ and the natural projection of $G$ onto $G/K$. Also, he ([32]) proved that the research of a real analytic complex equifocal submanifold in a symmetric space $G/K$ of non-compact type is reduced to that of an anti-Kaehler isoparametric submanifold in the infinite dimensional anti-Kaehler space through the composition of the parallel transport map for $G^C$ and the natural projection of $G^C$ onto $G^C/K^C$. Recently, he ([46]) proved that a certain kind of full irreducible complex equifocal submanifold of codimension greater than one in a symmetric space of non-compact type is homogeneous. He ([46]) proved the homogeneity theorem by using the homogeneity theorem (which also was proved by him ([41,45])) for a certain kind of anti-Kaehler isoparametric submanifold in the infinite dimensional anti-Kaehler space.
§1. Isoparametric submanifolds, complex isoparametric submanifolds and anti-Kaehler isoparametric submanifolds

In 1989, Terng [62] introduced the notion of an isoparametric submanifold in a (separable) Hilbert space. This notion is defined as a (proper) Fredholm submanifold with trivial normal holonomy group and constant principal curvatures, where a (proper) Fredholm submanifold means a (properly embedded) submanifold of finite codimension such that the normal exponential map exp of the submanifold is a Fredholm map (i.e., the differential of exp at each point is a Fredholm operator) and that the restriction of exp to unit ball normal bundle of $M$ is proper. Note that the shape operators of this submanifold are compact operators and that they are simultaneously diagonalizable with respect to an orthonormal base. Also she [62] introduced the notion of the parallel transport map for a compact semi-simple Lie group $G$. This map is defined as a Riemannian submersion of a (separable) Hilbert space $H^0([0,1], \mathfrak{g})$ onto $G$, where $H^0([0,1], \mathfrak{g})$ is the space of all $L^2$-integrable paths in the Lie algebra $\mathfrak{g}$ of $G$. Let $G/K$ be a symmetric space of compact type, $\pi$ the natural projection of $G$ onto $G/K$ and $\phi$ the parallel transport map for $G$. Let $M$ be a submanifold in $G/K$ and $\tilde{M}$ a component of the lifted submanifold $(\pi \circ \phi)^{-1}(M)$. The relation between the focal structures of $M$ and $\tilde{M}$ is as in Figure 5. In 1995, Terng-Thorbergsson [64] showed that $M$ is equifocal if
and only if \( \widetilde{M} \) is isoparametric. Thus the research of an equifocal submanifold in a symmetric space of compact type is reduced to that of an isoparametric submanifold in a (separable) Hilbert space. An advantage of this reduction of the research is as follows. The symmetric space is of non-trivial holonomy group but the Hilbert space is a linear space, that is, it is of trivial holonomy group and is identified with its tangent space at each point. By using this reducement of the research, they proved some facts for an equifocal submanifold in the symmetric space (see [64]). In [64], they proposed the following problem:

**Problem.** Is there a similar method of research for equifocal submanifolds in symmetric spaces of non-compact type?

By private discussion with Thorbergsson at Nagoya University in 2002, I knew that this problem is important and began to tackle to this problem. In 2004-2005, we [31,32] constructed a similar method of research for complex equifocal submanifolds in symmetric spaces of non-compact type in more general. We shall explain this method of research. First we shall recall the notions of an isoparametric submanifold, a real isoparametric submanifold, a complex isoparametric submanifold and a proper complex isoparametric submanifold in a (finite dimensional) pseudo-Euclidean space. Let \( M \) be a (properly embedded) complete submanifold in a pseudo-Euclidean space. Denote by \( A \) the shape tensor of \( M \). Assume that the normal holonomy group of \( M \) is trivial. Let \( v \) be a parallel normal vector field of \( M \). Let each \( x \in M \), the shape operator \( A_{v_x} \) is expressed as in (\( * \)) with respect to a pseudo-orthonormal base of the tangent space (see [57] in detail), where 0 is entered in blank components in each matrix in (\( * \)). If \( S_{i}^{x} = \emptyset \) \( (i \geq 2) \) and \( S_{i}^{x} = \emptyset \) \( (i \geq 2) \), that is, the complexification \( A_{v_x}^{C} \) of \( A_{v_x} \) is diagonalizable with respect to a pseudo-orthonormal base, then \( A_{v_x} \) is called be proper (see [29]). If, for each parallel normal vector field \( v \) of \( M \), the set \( \{ \lambda_{ij}^{x} \mid 1 \leq i \leq n, j \in S_{i}^{x} \} \)
of all real eigenvalues of $A_v$ is independent of the choice of $x \in M$ (with considering the multiplicities), then $M$ is called a real isoparametric submanifold. Also, if, for each parallel normal vector field $v$ of $M$, the set \( \{ \lambda^x_{ij} | 1 \leq i \leq n, j \in S_x^r \} \cup \{ \alpha^x_{ij} \pm \sqrt{-1} \beta^x_{ij} | 1 \leq i \leq \left[ \frac{n}{2} \right], j \in S_x^r \} \)

\[
\left( \begin{array}{ccc}
\lambda^x_{ij} & 1 \\
\ddots & \ddots & \ddots \\
\ddots & \ddots & 1 \\
\lambda^x_{ij} & & & \\
\end{array} \right)
\]

\((i,i)\)-type

\[
\oplus \left( \begin{array}{cccc}
\alpha^x_{ij} & -\beta^x_{ij} & 1 & 0 \\
\beta^x_{ij} & \alpha^x_{ij} & 0 & 1 \\
& & \ddots & \ddots \\
& & \ddots & 1 & 0 \\
& & & \ddots & 0 & 1 \\
& & & & \alpha^x_{ij} & -\beta^x_{ij} \\
& & & & \beta^x_{ij} & \alpha^x_{ij} \\
\end{array} \right)
\]

\((2i,2i)\)-type

of all complex eigenvalues of $A_v$ is independent of the choice of $x \in M$ (with considering the multiplicities), then $M$ is called a complex isoparametric submanifold. In particular, if $M$ is complex isoparametric and each shape operator of $M$ is proper, then $M$ is called a proper complex isoparametric submanifold. Also, if, for any parallel normal vector field $v$ of $M$, the characteristic polynomials of $A_v$ are independent of the choice of $x \in M$, then $M$ is called an isoparametric submanifold (see [15,16,27,49] for example). Clearly we have

\[ M : \text{proper complex isoparametric} \Rightarrow M : \text{isoparametric} \]

\[ \Rightarrow M : \text{complex isoparametric} \Rightarrow M : \text{real isoparametric}. \]

In 2004, we [31] defined the notions of a real isoparametric submanifold, a complex isoparametric submanifold and a proper complex isoparametric submanifold in a pseudo-Hilbert space as Fredholm submanifolds satisfying the similar conditions, where a pseudo-Hilbert space means a topological vector space equipped with a (weak-sense) non-degenerate continuous symmetric bilinear form which is Hilbertable. See [31] about the meaning of the Hilbertability and the definition of a Fredholm submanifold in a pseudo-Hilbert space. Also, we [31] introduced the notion of the parallel transport map for a (not necessarily compact) semi-simple Lie group $G$. This map is defined as a pseudo-Riemannian submersion of a pseudo-Hilbert space $H^0([0,1],\mathfrak{g})$ onto $G$, where
$H^0([0,1], g)$ is the space of all paths in the Lie algebra $g$ of $G$ which are $L^2$-integrable with respect to the positive definite inner product associated with the $\text{Ad}(G)$-invariant non-degenerate inner product of $g$. Let $G/K$ be a symmetric space of non-compact type, $\pi$ the natural projection of $G$ onto $G/K$ and $\phi$ the parallel transport map for $G$. Also, let $M$ be a (properly embedded) complete submanifold in $G/K$ and $\tilde{M}$ a component of the lifted submanifold $(\pi \circ \phi)^{-1}(M)$. We [31] showed that $M$ is complex equifocal if and only if $\tilde{M}$ is complex isoparametric. Thus the research of complex equifocal submanifolds in symmetric spaces of non-compact type is reduced to that of complex isoparametric submanifolds in pseudo-Hilbert spaces. If $\tilde{M}$ is proper complex isoparametric, then we ([33]) called $M$ a proper complex equifocal submanifold.

Since the shape operators of a proper complex isoparametric submanifold is simultaneously diagonalizable with respect to a pseudo-orthonormal base, the complex focal set of the submanifold at any point $u$ consists of infinitely many complex hyperplanes in the complexified normal space at $u$ and the group generated by the complex reflections of order two with respect to the complex hyperplanes is discrete. From this fact, it follows that the complex focal set of a proper complex equifocal submanifold at any point $x$ consists of infinitely many totally geodesic complex hypersurfaces in the complexified flat section through $x$ and the group generated by the complex reflections of order two with respect to the totally geodesic complex hypersurfaces is discrete. In 2005, we [32] introduced the notions of an anti-Kaehler isoparametric submanifold and a proper anti-Kaehler isoparametric submanifold in an infinite dimensional anti-Kaehler space, where an infinite dimensional anti-Kaehler space means a topological complex vector space $(V, J)$ equipped with a non-degenerate continuous symmetric bilinear form $\langle \cdot, \cdot \rangle$ such that $\langle JX, JY \rangle = -\langle X, Y \rangle$ for any $X, Y \in V$ and that $(V, \langle \cdot, \cdot \rangle)$ is Hilbertable. See [32] about the definitions of these notions. Let $\pi^C$ the natural projection of $G^C$ onto $G^C/K^C$ and $\phi^C$ the parallel transport map for $G^C$. Assume that $M$ is of class $C^\omega$. Let $M^C$ be a component of the lifted submanifold $(\pi^C \circ \phi^C)^{-1}(M^C)$ of the complexification $M^C$ of $M$. We [32] showed that $M$ is complex equifocal (resp. proper complex equifocal) if and only if $M^C$ is anti-Kaehler isoparametric (resp. proper anti-Kaehler isoparametric) in the infinite dimensional anti-Kaehlerian space $H^0([0,1], g^C)$. Thus, in the case where $M$ is of class $C^\omega$, the research of complex equifocal (resp. proper complex equifocal) submanifolds is reduced to that of anti-Kaehler isoparametric (resp. proper anti-Kaehler isoparametric) submanifolds.
§2. Hyperpolar actions

Let $H$ be a closed subgroup of $G$. The $H$-action on $G/K$ is called a polar action if $H$ is compact and if, for each $x \in G/K$, there exists a complete embedded submanifold $\Sigma_x$ through $x$ meeting all principal $H$-orbits orthogonally. This

submanifold $\Sigma_x$ is called a section of this action through $x$. Furthermore, if the induced metric on $\Sigma_x$ is flat, then the $H$-action is called a hyperpolar action. Here we illustrate that the assumption of the compactness of $H$ is indispensable in these definitions. Consider the circle $S^1 := \{z \in \mathbb{C} \mid |z| = 1\}$ on $\mathbb{R}^2 (= \mathbb{C})$ by the multiplication in $\mathbb{C}$. This action $S^1 \acts \mathbb{R}^2 (= \mathbb{C})$ is a compact group action with flat section, that is, a hyperpolar action, and the orbits and the sections of this action give the images of parameter curves of the polar coordinate of $\mathbb{R}^2$ (see Figure 7). This action has the only fixed point (i.e., pole) $(0, 0)$. Define the $S^1$-action on the unit sphere $S^2 := \{(x, w) \in \mathbb{R} \times \mathbb{C} \mid x^2 + |w|^2 = 1\}$ by $z \cdot (x, w) = (x, zw)$ ($(z \in S^1, (x, w) \in S^2)$). This action also is hyperpolar and has two fixed points (i.e., poles) $(1, 0)$ and $(-1, 0)$. On the other hand, the group action $\mathbb{R} \acts \mathbb{R}^2$ defined by $t \cdot (x, y) := (x + t, y) \ (t \in \mathbb{R}, (x, y) \in \mathbb{R}^2)$ is a non-compact group action with flat section. This action has no fixed point (i.e., pole) and the orbits and the sections of this action give the images of the parameter curves of the Euclidean coordinate (i.e., non-polar coordinate) of $\mathbb{R}^2$ (see Figure 7). Thus the assumption of the compactness of the group is indispensable in the definition of a polar (or hyperpolar) action. It is known that principal orbits of a hyperpolar action are equifocal. On the other hand, in 1995, E. Heintze, R.S. Palais, C.L. Terng and G. Thorbergsson ([24]) proved that any homogeneous equifocal submanifold in a simply connected symmetric space of compact type occurs as a principal orbit of a hyperpolar action.
If there exists an involution $\sigma$ of $G$ with $(\text{Fix } \sigma)_0 \subset H \subset \text{Fix } \sigma$, then the $H$-action on $G/K$ is called a Hermann action, where $\text{Fix } \sigma$ is the fixed point group of $\sigma$ and $(\text{Fix } \sigma)_0$ is the identity component of $\text{Fix } \sigma$. It is easy to show that Hermann actions are hyperpolar. In 2001, A. Kollross ([47]) proved that hyperpolar actions of cohomogeneity greater than one on an irreducible simply connected symmetric space of compact type are orbit equivalent to Hermann actions. where the curvature-adaptedness means that, If, for any $x \in M$ and any unit normal vector $v$ of $M$ at $x$, the normal Jacobi operator $R(v)$ preserves the tangent space $T_xM$ and $R(v)|_{T_xM}$ and the shape operator $A_v$ of $M$ commute, then it is said to be curvature-adapted. In 2007, O. Goertsches and G. Thorbergsson proved the following fact.

**Proposition 2.1**([13]). **Principal orbits of a Hermann action are curvature-adapted.**

This proposition together with above facts derives the following fact.

**Proposition 2.2.** **All homogeneous equifocal submanifolds of codimension greater than one in an irreducible simply connected symmetric space of compact type are curvature-adapted.**

### §3. Homogeneity of equifocal submanifolds

In this section, we shall state a homogeneity theorem for an equifocal submanifold in a symmetric space of compact type. In 1999, E. Heintze and X. Liu proved the following homogeneity theorem for an isoparametric submanifold in a Hilbert space.
Theorem 3.1([19]). All irreducible isoparametric submanifolds of codimension greater than one in a Hilbert space are homogeneous.

This result is the infinite dimensional version of the homogeneity theorem for isoparametric submanifolds in a (finite dimensional) Euclidean space by G. Thorbergsson ([65]), which states that all irreducible isoparametric submanifolds of codimension greater than two in a Euclidean space are homogeneous. G. Thorbergsson proved this fact by using the building theory. On the other hand, E. Heintze and X. Liu proved the above homogeneity theorem by constructing an isometry of the ambient Hilbert space mapping \( x \) to \( y \) and preserving the submanifold invariantly for any two points \( x \) and \( y \) of the submanifold connected by a certain kind of curve. In both proofs, is used the fact that the ambient space is a linear space. In 2002, by using the result of Heintze-Liu, U. Christ [8] proved the following homogeneity theorem for an equifocal submanifold in a simply connected symmetric space of compact type.

Theorem 3.2([8]). All irreducible equifocal submanifolds of codimension greater than one in a simply connected symmetric space of compact type are homogeneous.

Here we note that C. Gorodski and E. Heintze ([14]) closed a gap in his proof. From this homogeneity theorem and Proposition 2.1, we have the following fact.

Theorem 3.3. All equifocal submanifolds of codimension greater than one in an irreducible simply connected symmetric space of compact type occur as principal orbits of Hermann actions.

Since the principal orbits of a Hermann action is curvature-adapted, we have the following fact.

Corollary 3.4. All equifocal submanifolds of codimension greater than one in an irreducible simply connected symmetric space of compact type are curvature-adapted.

Conversely we have recently proved the following fact.

Theorem 3.5([44]). Let \( M \) be a compact curvature-adapted submanifold with maximal flat section and trivial normal holonomy group in a symmetric space \( G/K \) of compact type, where “with maximal flat section” means that it has flat section and \( \text{codim} M = \text{rank} G/K \). Also, let \( TM = \bigoplus_{i \in I_R} D_i^R \) be the common eigenspace decomposition of the normal Jacobi operator \( R(v) \)'s (\( v \in T^1 M \)) and \( TM = \bigoplus_{i \in I_A} D_i^A \) that of the shape operators \( A_v \)'s (\( v \in T^1 M \)). Assume that, for each \( i \in I_R \), \( \dim D_i^R \geq 2 \) and there exists \( j \in I_A \) such that
$D_i^R \subset D_j^A$. Then $M$ is equifocal.

§4. Complex hyperpolar actions

Let $G/K$ be a symmetric space of non-compact type and $H$ be a closed subgroup of $G$. We ([32]) called the $H$-action on $G/K$ a complex polar action if, for each $x \in G/K$, there exists a complete embedded submanifold $\Sigma_x$ through $x$ meeting all principal $H$-orbits orthogonally. Furthermore, if the induced metric on $\Sigma_x$ is flat, then we ([32]) called $H$-action a complex hyperpolar action, where we note that this action should be called a hyper-complex polar action but that we called it a complex hyperpolar action for simplicity. We illustrate why we named this action thus. Define the $\mathbb{R}$-action on the hyperbolic space $H^2(= SO(1,2)/SO(2)) = \{(x_1, x_2, x_3) | -x_1^2 + x_2^2 + x_3^2 = -1\}(\subset \mathbb{R}^3)$ by $\theta \cdot (x_1, x_2, x_3) = (x_1 \cosh \theta + x_2 \sinh \theta, x_1 \sinh \theta + x_2 \cosh \theta, x_3)$ ($(\theta \in \mathbb{R}, (x_1, x_2, x_3) \in H^2)$, where $\mathbb{R}^3$ is the Lorentzian space equipped with the Lorentzian inner product $-dx_1^2 + dx_2^2 + dx_3^2$. This action is a complex hyperpolar action. By the way, this action has no fixed point (i.e., pole) but the complexified action $\mathbb{C}$ on the anti-Kaehler symmetric space $SO(3, \mathbb{C})/SO(2, \mathbb{C})$ (which is the complexification of $H^2$) has fixed points (i.e. poles). These fixed points should be called complex poles of the original action. In this sense, we named the above action a complex (hyper)polar action. See also Figure 8.

We proved the following facts for a complex hyperpolar action.

**Proposition 4.1** ([32,35]). (i) Principal orbits of a complex hyperpolar ac-
tion are complex equifocal.

(ii) Any homogeneous submanifolds with flat section in a symmetric space of non-compact type occur as principal orbits of complex hyperpolar actions.

If there exists an involution $\sigma$ of $G$ with $(\text{Fix}\sigma)_0 \subset H \subset \text{Fix}\sigma$, then we called the $H$-action on $G/K$ a Hermann type action. We proved the following fact for a Hermann type action.

**Proposition 4.2 ([33]).** Principal orbits of a Hermann type action are proper complex equifocal and curvature-adapted.

Also, we proved the following fact for a complex hyperpolar action.

**Proposition 4.3 ([35]).** Complex hyperpolar actions with a reflective orbit are orbit equivalent to Hermann type actions.

From these facts, we can derive the following facts.

**Proposition 4.4.** Let $M$ be a homogeneous submanifold with flat section in a symmetric space of non-compact type. If it admits a reflective focal submanifold, then it is a principal orbit of a Hermann type action. Hence it is proper complex equifocal and curvature-adapted.

§5. Homogeneity of proper complex equifocal submanifolds

In this section, we shall state a homogeneity theorem for proper complex equifocal submanifolds. In [41], we first proved the following homogeneity theorem for a proper anti-Kaehler isoparametric submanifold in an infinite dimensional anti-Kaehler space.

**Theorem 5.1 ([41]).** All irreducible proper anti-Kaehler isoparametric submanifolds of codimension greater than one in the infinite dimensional anti-Kaehler space are homogeneous.

Denote by $I(V)$ the group of all isometries of $V$ and $I_b(V)$ the (Banach Lie) group of all isometries of $V$ whose associated Killing field is defined over the whole of $V$. The homogeneity in the above theorem means that the submanifold is an orbit of a subgroup action of $I(V)$. We ([45]) have recently proved that the submanifold is an orbit of a subgroup action of $I_b(V)$. Furthermore, by using this improved homogeneity theorem, we proved the following homogeneity theorem for a proper complex equifocal $C^\omega$-submanifold in a symmetric
space of non-compact type.

**Theorem 5.2** ([46]). All irreducible curvature-adapted proper complex equifocal $C^\omega$-submanifolds of codimension greater than one in a symmetric space of non-compact type are homogeneous. Furthermore they are principal orbits of Hermann type actions.

**Remark 1.** In this theorem, we cannot replace "proper complex equifocal" to "complex equifocal". In fact, principal orbits of the $N$-action on an irreducible symmetric space $G/K$ of non-compact type and rank greater than one are irreducible curvature-adapted complex equifocal submanifolds of codimension greater than one but they do not occur as principal orbits of a Hermann type action, where $N$ is the nilpotent part in the Iwasawa's decomposition $G = KAN$ of $G$.

On the other hand, we ([42]) proved the following fact for a curvature-adapted proper complex equifocal $C^\omega$-hypersurface.

**Theorem 5.3** ([42]). All curvature-adapted proper complex equifocal $C^\omega$-hypersurfaces in a symmetric space of non-compact type occur as principal orbits of Hermann type actions.

The proof of this theorem is performed by deriving the Cartan type identity (which is a relation among the principal curvatures and the eigenvalues of the normal Jacobi operators) for the hypersurface and showing the existenceness of a totally geodesic focal submanifold in terms of the identity.

Also, we have recently proved the following fact.

**Theorem 5.5** ([44]). Let $M$ be a complete curvature-adapted submanifold with maximal flat section and trivial normal holonomy group in a symmetric space $G/K$ of non-compact type. Also, let $TM = \oplus_{i \in I_R} D_i^R$ be the common eigenspace decomposition of $R(v)$'s ($v \in T^\perp M$) and $TM = \oplus_{i \in I_A} D_i^A$ that of $A_v$'s ($v \in T^\perp M$). Assume that, for each $i \in I_R$, $\dim D_i^R \geq 2$ and there exists $j \in I_A$ such that $D_i^R \subset D_j^A$. Then $M$ is complex equifocal.

§6. **Isoparametric submanifolds with flat section in the sense of Heintze-Liu-Olmos**

In 2006, Heintze-Liu-Olmos [21] defined the notion of isoparametric submanifold with flat section in a general Riemannian manifold as a (properly embedded) complete submanifold with flat section and trivial normal holonomy.
group whose sufficiently close parallel submanifolds have constant mean curvature with respect to the radial direction. For a compact submanifold with trivial holonomy group and flat section in a symmetric space of compact type, they [21] showed that it is equifocal if and only if, for each parallel normal vector field \( v \), \( F_v \) is independent of the choice of a point \( x \) of the submanifold, where \( F_v \) is the function defined in Page 1. Thus, if it is an isoparametric submanifold with flat section, then it is equifocal. Furthermore, for a compact submanifold in a symmetric space of compact type, they proved the following fact.

**Theorem 6.1** ([21]). Let \( M \) be a compact submanifold in a symmetric space of compact type. Then \( M \) is equifocal if and only if it is an isoparametric submanifold with flat section.

The proof of this fact is performed by investigating the lift \( (\pi \circ \phi)^{-1}(M) \) of \( M \) to the Hilbert space \( H^0([0, 1], g) \).

On the other hand, we [32] showed that, for a (properly embedded) complete submanifold with trivial normal holonomy group and flat section in a symmetric space of non-compact type, it is an isoparametric submanifold with flat section if and only if, for each parallel normal vector field \( v \), \( F_C^v \) is independent of the choice of a point \( x \) of the submanifold, where \( F_C^v \) is the function defined in Page 2. Thus if it is an isoparametric submanifold with flat section, then it is complex equifocal. Conversely, we proved the following fact.

**Theorem 6.2** ([32]). All curvature-adapted complex equifocal submanifolds in a symmetric space of non-compact type are isoparametric submanifolds with flat section.

For a submanifold \( M \) in a Hadamard manifold \( N \), we ([39]) defined the notion of a focal point of non-Euclidean type on the ideal boundary \( N(\infty) \) as follows. Denote by \( \nabla \) the Levi-Civita connection of \( N \) and \( A \) the shape tensor of \( M \). Let \( \gamma_v : [0, \infty) \to N \) be the normal geodesic of \( M \) of direction \( v \in T^\perp_x M \). If there exists a \( M \)-Jacobi field (resp. strongly \( M \)-Jacobi field) \( Y \) along \( \gamma_v \) satisfying \( \lim_{t \to \infty} \frac{||Y_t||}{t} = 0 \), then we call \( \gamma_v(\infty) (\in N(\infty)) \) a focal point (resp. strongly focal point) on the ideal boundary \( N(\infty) \) of \( M \) along \( \gamma_v \) (see Figure 9), where \( \gamma_v(\infty) \) is the asymptotic class of \( \gamma_v \). Also, if there exists a \( M \)-Jacobi field \( Y \) along \( \gamma_v \) satisfying \( \lim_{t \to \infty} \frac{||Y_t||}{t} = 0 \) and \( \text{Sec}(v, Y(0)) < 0 \), then we call \( \gamma_v(\infty) \) a focal point of non-Euclidean type on \( N(\infty) \) of \( M \) along \( \gamma_v \), where \( \text{Sec}(v, Y(0)) \) is the sectional curvature for the 2-plane spanned by \( v \) and \( Y(0) \).

We proved the following fact.
Theorem 6.3([39]). Let $M$ be a curvature-adapted submanifold in a symmetric space $N \equiv G/K$ of non-compact type. Then $M$ is proper complex equifocal if and only if it is an isoparametric submanifold with flat section which admits no focal point of non-Euclidean type on the ideal boundary $N(\infty)$ of $N$.

At the end of this section, we propose the following question.

**Question.** Let $M$ be a (properly embedded) complete submanifold in a symmetric space $N = G/K$ of non-compact type. Is $M$ a proper complex equifocal submanifold if and only if it is an isoparametric submanifold with flat section which admits no focal point of non-Euclidean type on $N(\infty)$?

§7. Duality

In this section, we explain the duality of Hermann actions on symmetric spaces of compact type and Hermann type actions on symmetric spaces of non-compact type. Let $G/K$ be a symmetric space of non-compact type and $G_\kappa/K$ the compact dual of $G/K$. Also, let $\theta$ be the Cartan involution of $G$ with $(\text{Fix } \theta)_0 \subset K \subset \text{Fix } \theta$, where $\text{Fix } \theta$ is the fixed point group of $\theta$ and $(\text{Fix } \theta)_0$ is the identity component of $\text{Fix } \theta$. If $H$ is a symmetric subgroup of $G$ (i.e., $(\text{Fix } \sigma)_0 \subset H \subset \text{Fix } \sigma$ for some involution $\sigma$ of $G$), then the $H$-action on $G/K$ is called a **Hermann type action**. Here we explain the duality between Hermann actions on $G_\kappa/K$ and Hermann type actions on $G/K$. We may assume that $\theta \circ \sigma = \sigma \circ \theta$ by replacing $H$ to a suitable conjugate group if necessary. Then we obtain the involution $\hat{\sigma}$ of $G_\kappa$ with $\theta \circ \hat{\sigma} = \hat{\sigma} \circ \theta$ from $\sigma$. Set $\hat{H} := (\text{Fix } \hat{\sigma})_0$. Thus we obtain a Hermann action $\hat{H} \rhd G_\kappa/K$. Conversely, we may assume that $\theta \circ \tau = \tau \circ \theta$ by replacing $H'$ to a suitable conjugate group if necessary except for three exceptional ones. Then we obtain the involution $\hat{\tau}$ of $G$ with $\theta \circ \hat{\tau} = \hat{\tau} \circ \theta$ from $\tau$. Set $\hat{H}' := (\text{Fix } \hat{\tau})_0$. Thus we obtain a Hermann type action $\hat{H}' \rhd G_\kappa/K$. Thus Hermann type actions on $G/K$
correspond almost one-to-one to Hermann actions on $G_\kappa/K$.

\[ \mathcal{PCI} \subset \mathcal{I} \subset \mathcal{CI} \subset \mathcal{RI} \]

\[ \begin{array}{c}
\mathcal{I}_\infty \\
\mathcal{PCI}_\infty \\
\mathcal{CI}_\infty \\
\mathcal{RI}_\infty \\
\end{array} \]

\[ IWFS = \mathcal{E} \supset \mathcal{HP} \supset \mathcal{HTP} \supset \mathcal{PCE} \supset IWFS \supset \mathcal{CE} \supset \mathcal{E}' \]

duality

Figure 10.

Notations in Figure 10 are as follows.

- $\mathcal{E}$: the set of all congruence classes of equifocal submanifolds in $G_\kappa/K$
- $\mathcal{HP}$: the set of all congruence classes of principal orbits of a Hermann actions on $G_\kappa/K$
- $\mathcal{I}_\infty$: the set of all congruence classes of isoparametric submanifolds in $H^0([0,1],g_0)$
- $\mathcal{E}'$: the set of all congruence classes of equifocal submanifolds in $G/K$, where they may not be compact
- $\mathcal{CE}$: the set of all congruence classes of complex equifocal submanifolds in $G/K$
- $\mathcal{I}_\infty$: the set of all congruence classes of complex isoparametric submanifolds in $H^0([0,1],g_0)$
- $\mathcal{RI}_\infty$: the set of all congruence classes of real isoparametric submanifolds in $H^0([0,1],g_0)$
- $\mathcal{PCI}_\infty$: the set of all congruence classes of proper complex isoparametric submanifolds in $H^0([0,1],g_0)$
- $\mathcal{CI}_\infty$: the set of all congruence classes of complex isoparametric submanifolds in $R^m$
- $\mathcal{RI}$: the set of all congruence classes of real isoparametric submanifolds in $R^m$
- $\mathcal{PCI}$: the set of all congruence classes of proper complex isoparametric submanifolds in $R^m$

\[ \iota : CE \rightarrow CI_\infty \quad \text{def} \quad \iota([M]) := ([\pi \circ \phi]^{-1}(M)) \]
\[ \iota_n : E \rightarrow I_\infty \quad \text{def} \quad \iota_n([M]) := ([\pi \circ \phi]^{-1}(M)) \]

The congruence classes of the orbits of the action of the nilpotent group $N$ on $G/K$ belong to $IWFS \setminus \mathcal{PCE}$, where $N$ is the nilpotent part in the Iwasawa’s decomposition $G = KAN$ of $G$. See [37] about examples other than these classes belonging to $IWFS \setminus \mathcal{PCE}$. Also, for almost all complete submanifolds all of whose principal curvatures are sufficiently close to zero in $G/K$, the $\varepsilon$-tubes over them belong to $\mathcal{E}' \setminus \mathcal{CE}$, where $\varepsilon$ is any positive constant. Thus
\[ E' \] is a very big class.

\section{The mean curvature flows}

In this section, we state the results for the mean curvature flows starting from an equivocal submanifold and a proper complex equivocal submanifold.

In 2009, X. Liu and C.L. Terng proved the following result for the mean curvature flow starting from a compact isoparametric submanifold in a (finite dimensional) Euclidean space.

**Theorem 8.1** ([48]). Let \( M \) be a compact isoparametric submanifold in a Euclidean space. Then the following statements (i) and (ii) hold:

(i) The mean curvature flow \( M_t \) starting from \( M \) collapses to a focal submanifold of \( M \) in a finite time \( T \). If a focal map of \( M \) onto \( F \) is spherical, then the mean curvature flow \( M_t \) has type I singularity, that is,

\[
\lim_{t \to T^{-0}} \max_{v \in S^\perp M_t} ||A^t_v||_\infty^2 (T - t) < \infty,
\]

where \( A^t_v \) is the shape operator of \( M_t \) for \( v \), \( ||A^t_v||_\infty \) is the sup norm of \( A^t_v \) and \( S^\perp M_t \) is the unit normal bundle of \( M_t \).

(ii) For any focal submanifold \( F \) of \( M \), there exists a parallel submanifold of \( M \) collapsing to \( F \) along the mean curvature flow and the set of all parallel submanifolds collapsing to \( F \) along the mean curvature flow is a one-parameter \( C^\infty \)-family.

In 2011, we proved the following result for the mean curvature flow starting from an equivocal submanifold in a symmetric space of compact type.

**Theorem 8.2** ([40]). Let \( M \) be an equivocal submanifold in a symmetric space \( G/K \) of compact type. Then the following statements (i) and (ii) hold:

(i) If \( M \) is not minimal, then the mean curvature flow \( M_t \) starting from \( M \) collapses to a focal submanifold \( F \) of \( M \) in a finite time \( T \). Furthermore, if \( M \) is irreducible, the codimension of \( M \) is greater than one and if the fibration of \( M \) onto \( F \) is spherical, then the flow \( M_t \) has type I singularity.

(ii) For any focal submanifold \( F \) of \( M \), there exists a parallel submanifold of \( M \) collapsing to \( F \) along the mean curvature flow and the set of all parallel submanifolds collapsing to \( F \) along the mean curvature flow is a one-parameter \( C^\infty \)-family.

The proof of this theorem was performed by reducing to the investigation of the mean curvature flow starting from the lift of the submanifold to the Hilbert space \( H^0([0, 1], g) \).
Recently we have recently proved the similar result for the mean curvature flow starting from a certain kind of curvature-adapted and proper complex equifocal submanifold with maximal flat section in a symmetric space $G/K$ of non-compact type (see [43, Theorem A]). The proof of this theorem was performed by reducing to the investigation of the mean curvature flow starting from the lift of the submanifold to the pseudo-Hilbert space $H^0([0, 1], g)$.

Appendix

In this appendix, we shall give models of isoparametric submanifolds in the Hilbert space. For its purpose, we suffice to give examples of polar actions on the Hilbert space because the principal orbits of of the polar action are isoparametric. First we recall the notion of the affine Kac-Moody Lie algebra and the affine Kac-Moody Lie group. Let $g$ be a simple Lie algebra over the field $F = \mathbb{R}$ or $\mathbb{C}$ and $\sigma$ an automorphism of $g$. Then the twisted loop algebra $L(g, \sigma)$ is defined as

$$L(g, \sigma) := \{ u \in C^\infty(\mathbb{R}, g) \mid u(t + 2\pi) = \sigma(u(t)) \text{ for all } t \in \mathbb{R}\}$$

equipped with the bracket product $[,]_0$ defined by $[u, v]_0(t) := [u(t), v(t)]$ ($t \in \mathbb{R}$) for $u, v \in L(\mathbb{R}, g)$. Let $\langle , \rangle$ be the Killing form of $g$. Define an inner product $\langle , \rangle_0$ of $L(\mathbb{R}, g)$ by $\langle u, v \rangle_0 := \int_0^{2\pi} \langle u(t), v(t) \rangle dt$ ($u, v \in L(g, \sigma)$). For $\lambda \in F \setminus \{0\}$, define a skew-symmetric bilinear form $\omega_\lambda$ on $L(g, \sigma)$ by $\omega_\lambda(u, v) := \lambda \langle u', v \rangle_0$ ($u, v \in L(g, \sigma)$). The affine Kac-Moody Lie algebra $\hat{L}(g, \sigma)$ is defined as $\hat{L}(g, \sigma) := L(g, \sigma) + FC + FD$ equipped with the bracket product $[,]$ defined by

$$[u, v] := [u, v]_0 + \omega_\lambda(u, v)c$$
$$[d, u] := u'$$
$$[c, x] := 0$$

for all $u, v \in L(g, \sigma)$ and all $x \in \hat{L}(g, \sigma)$. Note that $\hat{L}(g, \sigma)$ is not simple. The isomorphism class of $\hat{L}(g, \sigma)$ is independent of the choice of $\lambda$. Also, for automorphisms $\sigma_i$ ($i = 1, 2$) of $g$, $\hat{L}(g, \sigma_1) \cong \hat{L}(g, \sigma_2)$ if and only if $\sigma_1$ and $\sigma_2$ are conjugate in $\text{Aut}(g)/\text{Int}(g)$. Hence we may replace $\sigma$ by an element of finite order. In the sequel, we assume that $F = \mathbb{R}$, $g$ is compact and that $\sigma$ is finite order. Let $G$ be a simply connected Lie group with Lie algebra $g$ and denote by the same symbol the involution of $G$ inducing from $\sigma$. Then the twisted loop group $L(G, \sigma)$ is defined as

$$L(G, \sigma) := \{ g \in C^\infty(\mathbb{R}, G) \mid g(t + 2\pi) = \sigma(g(t)) \text{ for any } t \in \mathbb{R}\},$$

which is a Frechet Lie group with Lie algebra $L(g, \sigma)$. The affine Kac-Moody Lie group $\hat{L}(G, \sigma)$ is defined as a torus bundle over $L(G, \sigma)$ as follows. Let $\hat{\omega}_\lambda$
be the left invariant 2-form on \( L(G, \sigma) \) obtained from \( \omega_\lambda \), which is closed. By retaking \( \lambda \) if necessary, we may assume that \( \frac{1}{2\pi} \tilde{\omega}_\lambda \) is an integral cohomology class. Is determined uniquely a \( S^1 \)-bundle over \( L(G, \sigma) \) with a connection whose curvature form is equal to \( \tilde{\omega}_\lambda \) (up to the bundle isomorphism class). Denote by \( \tilde{L}(G, \sigma) \) the total space of this \( S^1 \)-bundle, which is a Frechet Lie group with Lie algebra \( \tilde{L}(\mathfrak{g}, \sigma) := L(\mathfrak{g}, \sigma) + \mathbb{R} c \). We define an action of \( \mathbb{R} \) on \( L(G, \sigma) \) by 
\[
(s \cdot u)(t) := u(t + s) \ (t \in \mathbb{R}).
\]
This action is lifted to \( \tilde{L}(G, \sigma) \) because it leaves \( \tilde{\omega}_\lambda \) invariantly. Furthermore, since \( \sigma \) is of finite order, this lifted action of \( \mathbb{R} \) descends to an action of \( S^1 \). The affine Kac-Moody Lie group \( \tilde{L}(G, \sigma) \) is the semi-direct product \( S^1 \ltimes \tilde{L}(G, \sigma) \) defined in terms of this \( S^1 \)-action, which is a Frechet Lie group. Define an inner product \( \langle \ , \ angle_K \) of \( \tilde{L}(\mathfrak{g}, \sigma) \) by
\[
\langle u_1 \alpha_1 c + \beta_1 d, u_2 + \alpha_2 c + \beta_2 d \rangle_K := -\langle u_1, u_2 \rangle_0 + \alpha_1 \beta_2 + \beta_1 \alpha_2 \ (u_i \in L(G, \sigma), \ \alpha_i, \beta_i \in \mathbb{R} \ (i = 1, 2)).
\]
It is shown that \( (\tilde{L}(G, \sigma), \langle \ , \ \rangle_K) \) is a Lorentzian symmetric space. Next we recall the notion of the affine Kac-Moody symmetric space. Let \( \hat{\rho} \) be an involution of \( \tilde{L}(G, \sigma) \). This involution \( \hat{\rho} \) is said to be of the first kind (resp. the second kind) if \( \hat{\rho} c = c \) (resp. \( \hat{\rho} c = -c \)). For simplicity, set \( \hat{G} := \tilde{L}(G, \sigma) \) and \( \hat{K} := \text{Fix} \hat{\rho} \). Let \( \hat{\mathfrak{g}} \) (resp. \( \hat{\mathfrak{k}} \)) be the Lie algebra of \( \hat{G} \) (resp. \( \hat{K} \)) and \( \hat{p} \) the \((-1)\)-eigenspace decomposition of \( \hat{\rho} e \), which is identified with \( T_{e\hat{K}}(\hat{G}/\hat{K}) \). Give \( \hat{G}/\hat{K} \) the \( \hat{G} \)-invariant (Lorentzian) metric obtained from the restriction \( \langle \ , \ \rangle_K \) to \( \hat{p} \). Then the space \( \hat{G}/\hat{K} \) is a Lorentzian symmetric space. This space \( \hat{G}/\hat{K} \) is called the affine Kac-Moody symmetric space of the first (resp. the second) kind if \( \hat{\rho} \) is of the first (resp. the second) kind. In the sequel, we treat only affine Kac-Moody symmetric spaces of the second kind. For (general) Frechet manifolds, the inverse function theorem is not valid. R.S. Hamilton introduced the class of tame Frechet manifolds. He showed that the inverse function theorem is valid for tame Frechet manifolds. On the other hand, B. Popescu [58] showed that affine Kac-Moody symmetric spaces are tame Frechet manifolds. Define a submanifold \( \mathbb{R}_\sigma^\infty \) in the affine Kac-Moody Lie algebra \( \tilde{L}(\mathfrak{g}, \sigma) \) by
\[
\mathbb{R}_\sigma^\infty := \{ u - (1 - \frac{1}{2}\langle u, u \rangle_0)c + d \mid u \in L(\mathfrak{g}, \sigma) \},
\]
which is a horosphere in the infinite dimensional hyperbolic space \( H_\sigma^\infty := \{ u + \alpha c + d \mid u \in L(\mathfrak{g}, \sigma), \ \alpha \in \mathbb{R} \} \) \((\subset \tilde{L}(\mathfrak{g}, \sigma))\) and is isometric to \( L(\mathfrak{g}, \sigma) (\cong H^0([0, 1], \mathfrak{g})) \).

Here we give examples of the affine Kac-Moody symmetric spaces.

**Example 1.** Let \( \sigma \) be an automorphism of \( G \) and \( \hat{\rho} \) the involution of the second kind of the affine Kac-Moody Lie group \( \tilde{L}(G \times G, \sigma \times \sigma^{-1}) \) satisfying \( \hat{\rho} e(c) = \)
$-c$, $\hat{\rho}_{\sigma E}(d) = -d$ and $\hat{\rho}_{\sigma E}(u,v)(t) := (v(-t), u(-t))$ $(u,v) \in L(\mathfrak{g} \times \mathfrak{g}, \sigma_{\sigma E} \times \sigma_{\sigma E}^{-1})$. Then the affine Kac-Moody symmetric space $\hat{L}(G \times G, \sigma \times \sigma^{-1})/\text{Fix} \hat{\rho}$ is isometric to the affine Kac-Moody Lie group $\hat{L}(G \times G, \sigma \times \sigma^{-1})$. For simplicity, set $\hat{G} \times \hat{G} := \hat{L}(G \times G, \sigma \times \sigma^{-1})$, $\hat{K} := \text{Fix} \hat{\rho}$, $\hat{g} \times \hat{g} := \hat{L}(\mathfrak{g} \times \mathfrak{g}, \sigma_{\sigma E} \times \sigma_{\sigma E}^{-1})$ and $\hat{t} := \text{Fix} \hat{\rho}_{\sigma E}$. Denote by $\hat{\mathfrak{p}}$ the $(-1)$-eigenspace of $\hat{\rho}_{\sigma E}$ and set $V := \hat{\mathfrak{p}} \cap \mathbb{R}_{\sigma,\sigma^{-1}}^\infty$, where $\mathbb{R}_{\sigma,\sigma^{-1}}^\infty$ is the horosphere in the infinite dimensional hyperbolic space in $\mathfrak{g} \times \mathfrak{g}$ corresponding to the above $\mathbb{R}_\sigma^\infty$. Also, set $G(\sigma) := \{(g,\sigma(g)) \mid g \in G\}$.

The isotropy action of $\hat{G} \times \hat{G} \hat{K}$ leaves $V$ invariantly and the restriction of this action to $V$ is equivalent to the gauge action $P(G, G(\sigma)) \curvearrowright H^0([0, 1], \mathfrak{g})$.

Example 2. Let $\rho_\pm$ be involutions of $G$ and set $\sigma := \rho_- \circ \rho_+$. Let $\hat{\rho}$ be the involution of the second kind of the affine Kac-Moody Lie group $\hat{L}(G, \sigma)$ satisfying $\hat{\rho}(g)(t) = \rho_\pm(g(-t))$ $(g \in L(G, \sigma))$. For simplicity, set $\hat{G} := \hat{L}(G, \sigma)$, $\hat{K} := \text{Fix} \hat{\rho}$, $\hat{\mathfrak{g}} := \hat{L}(\mathfrak{g}, \sigma_{\sigma E})$ and $\hat{t} := \text{Fix} \hat{\rho}_{\sigma E}$. Denote by $\hat{\mathfrak{p}}$ the $(-1)$-eigenspace of $\hat{\rho}_{\sigma E}$ and set $V := \hat{\mathfrak{p}} \cap \mathbb{R}_\sigma^\infty$. Also, set $K_\pm := \text{Fix} \rho_\pm$. Denote by $\hat{\text{Ad}}$ the adjoint representation of $\hat{G}$. The isotropy action $\hat{\text{Ad}}(\hat{K}) : \hat{\mathfrak{p}} \to \hat{\mathfrak{p}}$ of $\hat{G} \hat{K}$ leaves $V$ invariantly and the restriction of this action to $V$ is equivalent to the gauge action $P(G, K_+ \times K_-) \curvearrowright H^0([0, 1], \mathfrak{g})$.

The affine Kac-Moody symmetric spaces are classified as follows.

Theorem A.1([17,18]). The affine Kac-Moody symmetric spaces as in Examples 1 and 2 are all of the affine Kac-Moody symmetric space.

C. L. Terng and G. Thorbergsson proved the following fact.

Theorem A.2([62,63,64]). Let $G/K$ be a symmetric space of compact type and $H$ be a symmetric subgroup. Then the gauge action $P(G, H \times K) \curvearrowright H^0([0, 1], \mathfrak{g})$ be a polar action (hence the principal orbits of this action are isoparametric). In particular, the restriction of the isotropy representation of an Affine Kac-Moody symmetric space $\hat{L}(G, \sigma)/\hat{K}$ to $V := \hat{\mathfrak{p}} \cap (\mathbb{R}_\sigma^\infty)$ is a polar action.

Conjecture 1. Is any polar action on a Hilbert space equivalent to the restriction of the isotropy representation of an Affine Kac-Moody symmetric space $\hat{L}(G, \sigma)/\hat{K}$ to $V := \hat{\mathfrak{p}} \cap (\mathbb{R}_\sigma^\infty)$?

According to Theorem A.1, this conjecture can be restated as follows.

Conjecture 1’. Is any polar action on a Hilbert space equivalent to one of polar actions of the following two types:
(I) $P(G, K_+ \times K_-) \cap H^0([0, 1], g)$, where $G$ is a compact simple Lie group and $K_+,$ $K_-$ are the fixed point groups of some involutions $\rho_\pm$ of $G$.

(II) $P(G, G(\sigma)) \cap H^0([0, 1], g)$, where $G$ is a compact simple Lie group, $\sigma$ is an involution of $G$ and $G(\sigma) := \{(g, \sigma(g)) | g \in G\}$.

References


126 N. KOIKE


RESEARCH OF SUBMANIFOLDS IN SYMMETRIC SPACES


Naoyuki Koike
Department of Mathematics, Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
E-mail: koike@ma.kagu.tus.ac.jp