平成13年度1月月例会記録

平成14年1月19日
東京理科大学薬学部校舎

フリートーキング「2次方程式の解の公式は基礎・基本か？」
司会 新井田和人 記録 徳竹成之

参加者(50音順・敬称略・参加者名簿による):
赤沢寿一 飯田洋市 池田文男 磯脇一男 伊藤良彦 植竹恒男 上脇正次
大久保緒香 奥迫秀貴 風間賢士 加藤竜吾 岸理恵子 小泉真悦 小林徹也
沢田利夫 白川兼敏 勢子公男 瀧本玲子 田中成和 徳竹成之 長野東
中村明 新井田和人 林恵津雄 福田晴一 牧下英世 松崎昭雄 松本明
(以上28名)

(以下のまとめは、討論を逐一記録したものではなく、発言者の意見の大意を要約したものである。)

長野：[講上討論会からの流れについて説明。講上討論会の論文のまとめ(資料参照)を提示。]
まず、基礎・基本のとらえ方が人によって様々である。解の公式のとらえ方(資料最終ページのメモ参照)がいろいろあるので、これを話題のきっかけとした。

田中：人間は生まれてから、つねに拡張していくべきである。2次方程式の解の公式を数の拡張という面でとらえたい。

小泉：フリートーキングの進め方について提案したい。テーマを絞って意見を求めた方が議論が収束しやすい。

徳竹：[研究部からの資料説明]

加藤：基礎・基本のとらえ方が人によって違う。そのことを教師側が考えることも必要だが、生徒側にどういう意識があるのか、ということを調べてみた(資料参照)。解の公式を基礎・基本に掲げるなら、そのことを教師側が生徒に納得させられなければならない。

植竹：計算式はアルゴリズム(計算の手順)を表す。2次方程式をやって解の公式をやらないのは時代錯誤である。なぜなら、コンピュータで扱うときは、式がなければ意味がない。解の公式が重要なのだ、四則計算以外に「平方根」「判斷機能」を含むことにある。アルゴリズムが進
化していく過程を生徒に見せたい。アルゴリズムを学ぶことは、数学教育において無視できない(資料参照)。

伊藤：中学から解の公式がなくなったのは、どういう意味合いなのか。暗記しなくてもいいということなのか、全く扱わないということなのか。関数電卓などで2次方程式的解を見つけることができる現代では、公式よりも解と係数の関係を利用して検算する習慣が重要である(資料参照)。

風間：指導要領の変遷に関してまとめてみた(資料参照)。1958年告示の指導要領がもっとも内容豊富であった。1957年にスプートニクショックがあったことに関連があるだろう。過去を振り返ると、解の公式は中学で軽くしか扱っていない時期もあり、中学からなくなることがそれほど大問題ではないのかも知れない。もともとは生活の必要性から生まれたものだと思っていたが、数学史を見るとそうでもないようだ。1次の次は2次という知的な好奇心から生まれたものなのか。

小泉：内容豊富な1958年告示のものでも、中学生は案外ついてくる時代であった。それが系統学習の時代であった。

林：今回2次方程式が話題になったので考えたことだが、xとx^2が区別できない生徒が多い。数についての体験が少ないということだ。x^2 + x^2が2x^2になってしまったりする。

長野：平方完成を使わない2次方程式解法の試みもあるが、平方完成は本当によらなくてはならないのか。

沢田：解の公式を提示していてもできないということを、解の公式を暗記していないということを区別しなくてはならない。

田中：どんなときでもできるのが、数学の一般的法則と呼べるものである。

したがって、解の公式はまさしく一般的法則であり、これが基礎・基本である。

植竹：平方完成は実質的には整数係数でしか使えないのだから、平方完成に習熟させるのはナンセンス。実際の応用面では、整数係数の2次方程式ばかりで出てくるわけではない。

磯脇：グラフをかく場合と方程式を解く場合に平方完成が必要になる。しかし、平方完成ができないためにグラフをかくことにまずいてはよくない。私は、平方完成を使わずにグラフをかくことを試みた(日数教會誌参照)。この方法でも、グラフをかく精神は伝わったと思う。ただ、平方完成を手計算できる、つまり手法として学ぶということは必要であると思う。解の公式を暗記させて代入させるだけの勉強では

-118-
意味がない。
飯田：グラフをかくときには平方完成も必要だが、2次方程式が目的前にある場合には、まず解ける。すなわち解の公式に代入して解が求まることが必要である。その結果を見ておもしろいと思うのである。まず、代入できるようになることを、基礎・基本として中学でしっかりやってほしい。そうしているうちに、演算のしくみが理解されていく。
小泉：文部科学省のいう「生きる力」とは真っ向から反対する考え方ですね。
飯田：最初から結論が見えないままに「考え方」を強調しても生きる力にはならない。できる喜びを味わわせていくうちに、式の意味なども捉えられるようになる。
小泉：新しい学力観による生徒が増えてきて、結論がでないままに次へ進むやり方が学んだ生徒が高校へきたとき、どうなってしまうのか。
沢田：全員がわかることを基礎・基本と考えると大変だが、8割くらいが理解できるればよいと考えれば気が楽になる。
風間：十教えて十わからない生徒がいてもいいのではなくかと思う。
長野：いつの段階でやるかということも問題である。中学でわからないなくても、スパイラル的にやって高校でわかればいいという考え方もある。
上脇：基礎と基本はどう違うのか。基礎は公理や定理、基本は解の公式などの公式と考えている。
小林：中学校的先生と高校の先生で見方が違う。会誌の討論を読んでも、義務教育の中では最終目標、高校では基礎・基本と見ているようだ。平方完成では、xの係数の半分の2乗に気づかせるという、教材としての魅力がある。
白川：これまでの議論は、2次方程式の有用性を前提としている。
牧下：工業高校で指導していたとき、そこでの最終目標は解の公式であると考えていた。また、特定のところが抜けている生徒がいる。中学では、義務教育ということもあり全員に近い生徒が理解できるようにしたが、高校に目を向けると、2次関数の中で方程式をやるの、電卓を使ってx軸に着目したら、などという指導ができるといいと思う。フランスでTGVに乗ったとき、ウェイター（19歳）に2次方程式の解の公式を知っているかどうかを聞いたなら、$(-b \pm \sqrt{D})/2a$, $D = b^2 - 4ac$と書いてくれた。日本では、高校を卒業するのが楽すぎると思う。いろんな学校があって、いろんなやり方でやっていくのがいいことだと思う。
磯脇：2 次方程式が中学校の最終目標、高校で基礎・基本という意見があっ
tたが、義務教育でいう最終目標というのは、国民としての基礎・基本
dと思う。電卓やパソコンを用いていろいろな問題を解くことも1つ
の教育目標だが、数学において、1次から2次に次数が上がる際の飛
躍を高校生にわかってもらいたい。手法として理解してもらいたい。
松崎：この企画についていいたいことが3つある。1つ目は、フリートーキ
ングをすることは、現場の生の声などが聞けていいことだということ。
2つ目は、フリートーキングの成果が積み重ねられていないということ。
3つ目に、フリートーキングは話題を決めてからやってほしいという
こと。
福田：中学で2割の生徒ができなくてもいいとすると、工業高校に来る生徒
の多くはわかっていない生徒ということになる。そういう生徒たちが、
電気や機械の勉強をしている。1年から3次方程式がでてくる。そう
いう意味からすると、工業の授業と数学の授業は全く乖離している。
工業に対するアプローチや社会に対するアプローチとは何かを考えて
ほしい。
長野：4月の会誌でさらに立体的に誌上討論をしてほしい。

以上

※各先生のご意見の趣旨を損なわないようにまとめたつもりですが、記録者
の勘違いや記録間違いがあるかも知れません。もし、重大な誤りなどお気
づきのことがありましたら、お知らせください。（徳竹）