Polynomial realization of sequential codes over finite fields

Manabu Matsuoka

(Received April 5, 2011; Revised January 24, 2012)

Abstract. In this paper we study the relation between polycyclic codes and sequential codes over finite fields. It is shown that, for a sequential code $C \subseteq F^n$, C is realized as an ideal in the quotient ring of the polynomial ring. Furthermore, we characterize the dual codes of polycyclic codes.

AMS 2010 Mathematics Subject Classification. Primary 94B60; Secondary 94B15, 16D25.

Key words and phrases. Polycyclic codes, sequential codes, finite fields.

§1. Introduction

In coding theory, a linear code of length n over a finite field F is a subspace C of the vector space $F^n = \{(a_0, \cdots, a_{n-1}) | a_i \in F\}$. A linear code $C \subseteq F^n$ is called cyclic if $(a_0, a_1, \cdots, a_{n-1}) \in C$ implies $(a_{n-1}, a_0, a_1, \cdots, a_{n-2}) \in C$. S. R. López-Permouth, B. R. Parra-Avila and S. Szabo studied the duality between polycyclic codes and sequential codes in [2]. Polycyclic codes and sequential codes are generalized using skew polynomial rings. That is, θ-polycyclic codes and θ-sequential codes. The properties of them were considered in [3].

By the way, Y. Hirano characterized finite frobenius rings in [1]. And J. A. Wood establish the extension theorem and MacWilliams identities over finite frobenius rings in [5]. Polycyclic codes and sequential codes over finite commutative QF rings were considered in [4].

In this paper, we study the relation between polycyclic codes and sequential codes. And we realize sequential codes as ideals in quotient rings of polynomial
rings. In section 2 we review properties of polycyclic codes and sequential codes over finite field. In section 3 we prove that, for a polycyclic code C, its dual C^\perp is realized as an ideal in the quotient ring of the polynomial ring.

Throughout this paper, \mathbf{F} denotes a finite field with $1 \neq 0$, n denotes a natural number with $n \geq 2$, (g) denotes an ideal generated by $g \in \mathbf{F}[X]$, unless otherwise stated.

§2. Polycyclic codes and sequential codes

A linear $[n, k]$-code over a finite field \mathbf{F} is a k-dimensional subspace $C \subseteq \mathbf{F}^n$. We define polycyclic codes over a finite field.

Definition 1. Let C be a linear code of length n over \mathbf{F}. C is a (right) polycyclic code induced by c if there exists a vector $c = (c_0, c_1, \cdots, c_{n-1}) \in \mathbf{F}^n$ such that for every $(a_0, a_1, \cdots, a_{n-1}) \in C$,

$$(0, a_0, a_1, \cdots, a_{n-2}) + a_{n-1}(c_0, c_1, \cdots, c_{n-1}) \in C.$$

In this case we call c an associated vector of C.

As cyclic codes, polycyclic codes may be understood in terms of ideals in quotient rings of polynomial rings. Given $c = (c_0, c_1, \cdots, c_{n-1}) \in \mathbf{F}^n$, if we let $f(X) = X^n - c(X)$, where $c(X) = c_{n-1}X^{n-1} + \cdots + c_1X + c_0$ then the \mathbf{F}-linear isomorphism $\rho : \mathbf{F}^n \to \mathbf{F}[X]/(f(X))$ sending the vector $a = (a_0, a_1, \cdots, a_{n-1})$ to the polynomial $a_{n-1}X^{n-1} + \cdots + a_1X + a_0$, allows us to identify the polycyclic codes induced by c with the left ideal of $\mathbf{F}[X]/(f(X))$.

Let C be a polycyclic code in $\mathbf{F}[X]/(f(X))$. Then there exists monic polynomials g and h such that $C = (g)/(f)$ and $f = hg$.

Proposition 1. A code $C \subseteq \mathbf{F}^n$ is a polycyclic code induced by some $c \in C$ if and only if it has a $k \times n$ generator matrix of the form

$$G = \begin{pmatrix}
g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\
g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\
g_0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k}
\end{pmatrix}$$

with $g_{n-k} \neq 0$. In this case $\rho(C) = \left(g_{n-k}X^{n-k} + \cdots + g_1X + g_0\right)$ is an ideal of $\mathbf{F}[X]/(f(X))$.

Proof. See [2, Theorem 2.3].
For a \(c = (c_0, c_1, \cdots, c_{n-1}) \in \mathbb{F}^n \), let \(D \) be the following square matrix

\[
D = \begin{pmatrix}
0 & 1 & 0 \\
& \ddots & \ddots \\
0 & c_0 & c_1 & \cdots & c_{n-1}
\end{pmatrix}.
\]

It follows that a code \(C \subseteq \mathbb{F}^n \) is polycyclic with an associated vector \(c \in \mathbb{F}^n \) if and only if it is invariant under right multiplication by \(D \).

Next we define a sequential code.

Definition 2. Let \(C \) be a linear code of length \(n \) over \(\mathbb{F} \). \(C \) is a (right) sequential code induced by \(c \) if there exists a vector \(c = (c_0, c_1, \cdots, c_{n-1}) \in \mathbb{F}^n \) such that for every \((a_0, a_1, \cdots, a_{n-1}) \in C \),

\[
(a_1, a_2, \cdots, a_{n-1}, a_0c_0 + a_1c_1 + \cdots + a_{n-1}c_{n-1}) \in C.
\]

In this case we call \(c \) an associated vector of \(C \).

Let \(c = (c_0, c_1, \cdots, c_{n-1}) \in \mathbb{F}^n \). Then, a code \(C \subseteq \mathbb{F}^n \) is sequential with an associated vector \(c \in \mathbb{F}^n \) if and only if it is invariant under right multiplication by the matrix

\[
^tD = \begin{pmatrix}
0 & 0 & c_0 \\
& \ddots & \ddots \\
1 & c_1 & \ddots & \\
& & & & \ddots \\
0 & 1 & \cdots & c_{n-1}
\end{pmatrix}.
\]

On \(\mathbb{F}^n \) define the standard inner product by

\[
\langle x, y \rangle = \sum_{i=0}^{n-1} x_i y_i
\]

for \(x = (x_0, x_1, \cdots, x_{n-1}) \) and \(y = (y_0, y_1, \cdots, y_{n-1}) \).

The orthogonal of a linear code \(C \) is defined by

\[
C^\perp = \{ a \in \mathbb{F}^n | \langle c, a \rangle = 0 \text{ for any } c \in C \}.
\]

It is well-known that \(\dim C^\perp = n - \dim C \).

Proposition 2. Let \(C \) be a linear code of length \(n \). Then \(C \) is a polycyclic (sequential) code if and only if \(C^\perp \) is a sequential (polycyclic) code.

Proof. See [2, Theorem 3.2].
§.3. Polynomial realization of sequential codes

We define F-linear isomorphism $\tau : F^n \to F[X]/(X^n - c_{n-1}X^{n-1} - \cdots - c_0)$ sending $(a_0, a_1, \cdots, a_{n-1})$ to $b_{n-1}X^{n-1} + \cdots + b_1X + b_0$ where $b_i = a_{n-i-1} - a_{n-i-2}c_{n-1} - a_{n-i-3}c_{n-2} - \cdots - a_0c_{i+1}$, $(i = 0, 1, \cdots, n-2)$ and $b_{n-1} = a_0$.

Theorem 1. If C is a sequential code induced by c, then $\tau(C)$ is an ideal of $F[X]/(X^n - c_{n-1}X^{n-1} - \cdots - c_0)$.

Proof. For any $a \in C$, we can get

$$X\tau(a) = b_{n-1}X^n + b_{n-2}X^{n-1} + \cdots + b_1X^2 + b_0X$$

$$= (b_{n-2} + b_{n-1}c_{n-1})X^{n-1} + \cdots + (b_1 + b_{n-1}c_2)X^2 + (b_0 + b_{n-1}c_1)X + b_{n-1}c_0$$

$$= \tau(a'^D) \in \tau(C),$$

directly. So $\tau(C)$ is an ideal of $F[X]/(X^n - c_{n-1}X^{n-1} - \cdots - c_0)$.

By Theorem 1, we get the following corollary.

Corollary 1. For a sequential code $C \subseteq F^n$, there exists monic polynomials g and h in $F[X]$ such that $\tau(C) = (g)/(f)$ and $f = hg$.

Example 1. For $n = 5$, let $f(X) = X^5 - c_4X^4 - c_3X^3 - c_2X^2 - c_1X - c_0$. $\tau : F^5 \to F[X]/(f(X))$ sending $(a_0, a_1, a_2, a_3, a_4)$ to $b_4X^4 + b_3X^3 + b_2X^2 + b_1X + b_0$, where

$$b_4 = a_0, \\ b_3 = a_1 - a_0c_4, \\ b_2 = a_2 - a_1c_4 - a_0c_3, \\ b_1 = a_3 - a_2c_4 - a_1c_3 - a_0c_2, \\ b_0 = a_4 - a_3c_4 - a_2c_3 - a_1c_2 - a_0c_1.$$

For a sequential code $C \subseteq F^5$, $\tau(C)$ is an ideal of $F[X]/(f(X))$.

Lemma 3. For given $c_1, \cdots, c_{n-1} \in F$,

Put $d_k = \sum_{m=1}^{k} \sum_{l_1 + \cdots + l_m = k} c_{n-l_1}c_{n-l_2} \cdots c_{n-l_m}$, $(1 \leq k \leq n-1)$.

Then $d_k = c_{n-k} + c_{n-k+1}d_1 + c_{n-k+2}d_2 + \cdots + c_{n-1}d_{k-1}$, $(2 \leq k \leq n-1)$.

Proof. $d_k = \sum_{m=1}^{k} \sum_{l_1 + \cdots + l_m = k} c_{n-l_1}c_{n-l_2} \cdots c_{n-l_m}$

$$= c_{n-k} + c_{n-k+1}\sum_{l_1 = 1}^{c_{n-l_1}} + c_{n-k} + \sum_{m=1}^{2} \sum_{l_1 + \cdots + l_m = 2} (c_{n-l_1} \cdots c_{n-l_m}) + \cdots$$

$$+ \cdots + c_{n-1}\sum_{m=1}^{k-1} \sum_{l_1 + \cdots + l_m = k-1} (c_{n-l_1} \cdots c_{n-l_m})$$

$$= c_{n-k} + c_{n-k+1}d_1 + c_{n-k+2}d_2 + \cdots + c_{n-1}d_{k-1}$$. (2 \leq k \leq n-1). \qed
Example 2. For given \(c_1, \ldots, c_{n-1} \in \mathbb{F} \),
\[
\begin{align*}
d_1 &= c_{n-1}, \\
d_2 &= c_{n-2} + c_{n-1}^2, \\
d_3 &= c_{n-3} + c_{n-2}c_{n-1} + c_{n-1}c_{n-2} + c_{n-1}^3 \\
&= c_{n-3} + 2c_{n-2}c_{n-1} + c_{n-1}^3, \\
d_4 &= c_{n-4} + c_{n-3}c_{n-1} + c_{n-2}c_{n-1} + c_{n-1}c_{n-3} + c_{n-2}c_{n-1}^2 + c_{n-1}c_{n-2}c_{n-1} \\
&\quad + c_{n-1}^2c_{n-2} + c_{n-1}^4 \\
&= c_{n-4} + 2c_{n-3}c_{n-1} + c_{n-2}^2 + 3c_{n-2}c_{n-1}^2 + c_{n-1}^4.
\end{align*}
\]

For given \(c_1, \ldots, c_{n-1} \in \mathbb{F} \), let \(M \) be the following square matrix
\[
M = \begin{pmatrix}
-c_{n-1} & 1 \\
-c_{n-2} & 0 & 1 \\
\vdots & \ddots & \vdots \\
-c_{1} & 0 & \cdots & 1 \\
1 & 0 & \cdots & \cdots & 0
\end{pmatrix}.
\]

Lemma 4. For any \(c_1, \ldots, c_{n-1} \in \mathbb{F} \), \(M^{-1} \) is given by the following matrix
\[
M^{-1} = \begin{pmatrix}
0 & 1 & \cdots & \cdots & \cdots \\
\vdots & & \ddots & \ddots & \ddots \\
\vdots & & & \ddots & \ddots \\
0 & \cdots & 1 & 0 & d_1 \\
1 & d_1 & \cdots & \cdots & \cdots & d_{n-1}
\end{pmatrix}
\]

where \(d_k = \sum_{m=1}^{k} \sum_{l_1+l_2+\cdots+l_m=k} c_{n-l_1}c_{n-l_2} \cdots c_{n-l_m}, \quad (1 \leq k \leq n-1) \).

Proof. Put
\[
\begin{pmatrix}
-c_{n-1} & 1 \\
-c_{n-2} & 0 & 1 \\
\vdots & \ddots & \vdots \\
-c_{1} & 0 & \cdots & 1 \\
1 & 0 & \cdots & \cdots & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & \cdots & \cdots & \cdots \\
\vdots & & \ddots & \ddots & \ddots \\
\vdots & & & \ddots & \ddots \\
0 & \cdots & 1 & 0 & d_1 \\
1 & d_1 & \cdots & \cdots & \cdots & d_{n-1}
\end{pmatrix} = (m_{ij}).
\]
It is clear that $m_{11} = \cdots = m_{nn} = 1$ and $m_{ij} = 0, (i > j)$. By Lemma 3,
$m_{ij} = -c_{n-j+i} - c_{n-j+i+1}d_1 - c_{n-j+i+2}d_2 - \cdots - c_{n-1}d_j + d_{j-i} = 0, (i < j)$.

Finally, we characterize the dual code C^\perp of a polycyclic code C.

Theorem 2. Let $C \subseteq \mathbb{F}^n$ be a polycyclic code corresponding to $(g)/(f) \subseteq \mathbb{F}[X]/(f(X))$ via ρ where $f = hg$. Then C^\perp is a sequential code such that $\tau(C^\perp) = (h)/(f)$.

Proof. Put $f(X) = X^n - c_{n-1}X^{n-1} - \cdots - c_1X - c_0$, $h(X) = h_kX^k + \cdots + h_1X + h_0$ and $g(X) = g_{n-k}X^{n-k} + \cdots + g_1X + g_0$, where $g_{n-k} \neq 0$ and $h_k \neq 0$. Let E be a linear subspace generated by $\{h, Xh, \ldots, X_{n-k-1}h\}$ in $\mathbb{F}[X]/(f(X))$. Suppose $\tau(a_0, \ldots, a_{n-1}) = b_{n-1}X^{n-1} + \cdots + b_1X + b_0$. Then $(b_0, \ldots, b_{n-1}) = M(a_0, \ldots, a_{n-1})$. By $c_u = \sum_{s+t=u} g_sh_t$, we have

$$<\rho^{-1}(X^ig), \tau^{-1}(X^jh)> = <X^i g, M^{-1}(X^j h)> = -c_{n-i-j-1} - c_{n-i-j}d_1 - c_{n-i-j+1}d_2 - \cdots - c_{n-1}d_j + d_{i+j+1}.$$

Then we get $<\rho^{-1}(X^ig), \tau^{-1}(X^jh)> = 0$ by Lemma 3. Therefore $E \subseteq C^\perp$. Since E and C^\perp are the same dimension $n-k$ and \mathbb{F} is a finite field, we get $E = C^\perp$.

By Theorem 2, for a polycyclic code C, C^\perp is represented by $C^\perp = \tau^{-1}((h)/(f))$.

In coding theory, the Hamming distance is very important. Thus we have the following problem.

Problem 1. Study the relation of the Hamming distance between C and $\tau(C)$ for a sequential code C.

Acknowledgement. The author wishes to thank Prof. Y. Hirano, Naruto University of Education, for his helpful suggestions and valuable comments.

References

Manabu Matsuoka
Kuwanakita-Highschool
2527 Shimofukayabe Kuwana Mie 511-0808, JAPAN
E-mail: e-white@hotmail.co.jp