NOTES ON DIFFERENTIAL IDEALS OF LASKERIAN RINGS

Mamoru Furuya and Hiroshi Niitsuma

(Received April 16, 1996)

Abstract. Let R be a ring and d a derivation of R. We consider the following three conditions: (a) every quasi-prime d-ideal of R is prime, (b) any weak associated prime of every d-ideal of R is a d-ideal and (c) every d-prime d-ideal of R is prime. In this paper we show that if R is a Laskerian ring, then the two conditions (a) and (b) are equivalent. Furthermore we show that if R is a strongly Laskerian ring, then any d-prime d-ideal of R is quasi-prime, and then the three conditions (a), (b) and (c) are equivalent.

AMS 1991 Mathematics Subject Classification. Primary 13B10, 13N99.

Key words and phrases. Differential ideal, d-prime d-ideal, quasi-prime d-ideal, weak associated prime, Laskerian ring, strongly Laskerian ring.

§1. Introduction

All rings in this paper are assumed to be commutative with a unit element. Let R be a ring. A derivation d of a ring R is an additive endomorphism $d : R \to R$ such that $d(ab) = d(a)b + ad(b)$ for every $a, b \in R$. Let d be a derivation of R. An ideal I of R is called a d-ideal if $d(I) \subseteq I$. A proper d-ideal Q of R is called a d-prime d-ideal if for d-ideals I and J of R the relation $IJ \subseteq Q$ implies either $I \subseteq Q$ or $J \subseteq Q$. A proper d-ideal Q of R is called a quasi-prime d-ideal if there is a multiplicative subset S of R such that Q is maximal among d-ideals disjoint from S. Some of the properties of the d-prime d-ideals and the quasi-prime d-ideals are given in [3], [8], [9], [11], [12], [14].

Let I be an ideal of R. A prime ideal P of R is called a minimal prime divisor of I if P is minimal among the prime ideals containing I. A prime ideal P of R is called a weak associated prime of I if there exists $x \in R$ such that P is a minimal prime divisor of $I : (x)$; We denote by $\text{Ass}_f(R/I)$ the set of weak associated primes of I (cf.[1, IV, §1, Exercise 17]). It is known that if R is Noetherian, then the weak associated primes of I coincides with the usual associated primes of I. If I can be expressed as an intersection of a finite number of primary ideals, we say that I has a primary decomposition. A ring R is called Laskerian if every ideal of R has a primary decomposition.
A Laskerian ring R is called strongly Laskerian if each primary ideal of R contains a power of its radical (cf.[1, IV, §2, Exercise 23, 28]).

Let R be a ring and d a derivation of R. A. Nowicki ([11], [12]) obtained the following results under the assumption that the ring R is Noetherian:

(1) An ideal Q of R is a d-prime d-ideal if and only if Q is a quasi-prime d-ideal.

(2) The following three conditions are equivalent:
 (a) every quasi-prime ideal of R is a prime ideal,
 (b) any weak associated prime of every d-ideal of R is a d-ideal,
 (c) every d-prime d-ideal of R is a prime ideal.

The aim of this paper is to try to weaken the condition “Noetherian” of the ring R in A. Nowicki’s results above. The results which we obtained are as follows:

If R is a Laskerian ring, then the conditions (a) and (b) above are equivalent (see Theorem 4.1). Furthermore, if R is a strongly Laskerian ring, the results (1) and (2) above hold (see Theorem 4.2). If the ring R is not strongly Laskerian, then the result (1) is not necessarily true, and then the conditions (a) and (c) of (2) are not equivalent in general, even if R is Laskerian (see Example 4.3).

§2. Preliminaries

Throughout this paper, let R be a ring, d a derivation of R and \mathbb{Z} the rational integers. In this section we record several lemmas for convenience, which are known.

Lemma 2.1 ([4, Proposition (1.4)]). Let I be a d-ideal of R and P a minimal prime divisor of I. Then the primary component $Q (= sat_P(I))$ of I belonging to P is also d-ideal.

Lemma 2.2 ([9, Exercise 3, p.63]). Any quasi-prime d-ideal of R is primary. If R contains the rational numbers, then every quasi-prime d-ideal of R is prime.

For an ideal I of R, we denote by $I_\#$ the biggest d-ideal contained in I. Note that $I_\# = \{ x \in I \mid d^n(x) \in I, \text{ for all } n \geq 1 \}$.

Lemma 2.3 ([8, Proposition 2.2]). For a d-ideal Q of R, the following three conditions are equivalent:

1. Q is quasi-prime.
2. Q is primary and $Q = (\sqrt{Q})_\#$.
3. There is a prime ideal P in R such that $Q = P_\#$.

Lemma 2.4 ([12, Proposition 2.1]). Any quasi-prime d-ideal of R is d-prime.
Lemma 2.5 ([8, Proposition 2.1]). The following four conditions are equivalent:

1. Every quasi-prime \(d \)-ideal of \(R \) is prime.
2. Any minimal prime divisor of every \(d \)-ideal of \(R \) is a \(d \)-ideal.
3. The radical of any \(d \)-ideal of \(R \) is a \(d \)-ideal.
4. For any prime ideal \(P \) of \(R \), the ideal \(P_\# \) is prime.

§3. \(d \)-prime \(d \)-ideals and quasi-prime \(d \)-ideals

In this section we study some conditions under which a \(d \)-prime \(d \)-ideal is primary. Furthermore we discuss a relation among quasi-prime ideals and prime ideals, and we give some examples.

For a ring \(R \) to be Laskerian, it is necessary and sufficient that it satisfies the following two conditions:

(LA\(_1\)) For every ideal \(I \) of \(R \) and every prime ideal \(P \) of \(R \), the saturation of \(I \) with respect to \(P \) in \(R \) is of the form \(I : (a) \) for some \(a \notin P \).

(LA\(_2\)) For every ideal \(I \) of \(R \), every decreasing sequence \(\text{sat}_{S_n}(I) \) (where \((S_n) \) is any decreasing sequence of multiplicative subset of \(R \)) is stationary.

(cf.[1, IV, x2, Exercise 23]).

Proposition 3.1. Let \(R \) be a ring and \(d \) a derivation of \(R \). If \(R \) satisfies the conditions (LA\(_1\)) above or \(\text{char}(R) \neq 0 \), then every \(d \)-prime \(d \)-ideal of \(R \) is primary. In particular, if the ring \(R \) is Laskerian, then every \(d \)-prime \(d \)-ideal of \(R \) is primary.

Proof. First we assume that \(R \) satisfies the condition (LA\(_1\)). Let \(I \) be a \(d \)-prime \(d \)-ideal of \(R \) and \(P \) a minimal prime divisor of \(I \). Then the primary component \(Q \) of \(I \) belonging to \(P \) is \(d \)-ideal by Lemma 1.1. Since \(R \) satisfies the condition (LA\(_1\)), the saturation \(\text{sat}_P(I) = (Q) \) of \(I \) is of the form \(I : (a) \) for some \(a \notin P \). It follows that \((x) \subset I : Q \) and so \([x] \subset I : Q \), where \([x] \) is the smallest \(d \)-ideal containing \(x \). Hence \([x]Q \subset I \). Since \([x] \notin I \), we have that \(Q \subset I \), and hence \(Q = I \). Therefore \(I \) is primary.

Next we assume that \(\text{char}(R) = n(\neq 0) \). Let \(I \) be a \(d \)-prime \(d \)-ideal. Suppose that \(xy \in I \) and \(x \notin \sqrt{I} \). Then we have \(x^n y \in I \) and hence \(y \in I : (x^n) \). Since \(I : (x^n) \) is a \(d \)-ideal, we have \([y] \subset I : (x^n) \), where \([y] \) is the smallest \(d \)-ideal containing \(y \). Therefore \((x^n)[y] \subset I \). On the other hand, since \((x^n) \notin I \), we have that \([y] \subset I \), and hence \(y \in I \). Therefore \(I \) is primary.

Proposition 3.2. Let \(R \) be a ring and \(d \) a derivation of \(R \). If a \(d \)-prime \(d \)-ideal \(I \) of \(R \) has a primary decomposition, then \(I \) is primary.

Proof. Let \(P \) be a minimal prime divisor of \(I \) and \(Q \) the primary component of \(I \) belonging to \(P \). Since \(I \) has a primary decomposition, it is clear that \(Q = I : (x) \) for some \(x \notin P \). Therefore by the same way as the proof of the first case of Proposition 3.1, we have that \(I \) is primary.
Proposition 3.3. Let R be a ring of characteristic 0 and d a derivation of R. Let I be a d-prime d-ideal of R. If $I \cap \mathbb{Z} \neq (0)$, where \mathbb{Z} is the rational integers, then I is primary.

Proof. Put $I \cap \mathbb{Z} = (n)(n \neq 0)$. Then the residue ring R/I is of characteristic n. Let \overline{d} be the derivation of R/I defined by $\overline{d}(x + I) = d(x) + I$ ($x \in R$). Since I is a d-prime d-ideal of R, (0) is a \overline{d}-prime \overline{d}-ideal of R/I. By Proposition 3.1, (0) is a primary ideal of R/I, and thus I is a primary ideal of R.

Remark. We do not know whether a d-prime d-ideal is a primary ideal in general.

Proposition 3.4. Let R be a ring of characteristic 0 and d a derivation of R. Let Q be a quasi-prime d-ideal of R. If $Q \cap \mathbb{Z} = (0)$, then Q is prime.

Proof. Let R' be the quotient ring $S^{-1}R$ with respect to $S = \mathbb{Z} - \{0\}(\subset \mathbb{R})$ and d' the derivation of R' induced by d. Put $P = \sqrt{Q}$. Then Q is P-primary and $Q = P_0 \subset P$. Put $Q' = QR'$ and $P' = PR'$. Then Q' is a d'-ideal and P'-primary. Furthermore we have $(P')_0 = (P_0)R'$. Thus $(P')_0 = QR' = Q'$ and therefore Q' is a quasi-prime d'-ideal of R'. Since R' contains the rational integers, Q' is a prime ideal by Lemma 2.2. It follows that $Q' = P'$ and so we have $Q = P$. Consequently Q is prime.

In case of $\text{char}(R) \neq 0$, a quasi-prime d-ideal of R is not necessarily prime as in the following example.

Example 3.5. Let k be a field of characteristic $p > 0$ and $R = k[X]$ a polynomial ring over k. Let d be a k-derivation of R such that $d(X) = 1$. Put $P = (X)$ and $Q = (X^p)$. Then Q is a P-primary ideal of R and by a simple calculation we have $Q = P_0$. Thus Q is a quasi-prime d-ideal by Lemma 2.3, but Q is not a prime ideal.

In case of $\text{char}(R) = 0$, let Q be a quasi-prime d-ideal of R such that $Q \cap \mathbb{Z} \neq (0)$. Then Q is not necessarily prime as shown in the following example.

Example 3.6. Let $R = \mathbb{Z}[X]$ be a polynomial ring over the rational integers \mathbb{Z} and d a derivation of R such that $d(X) = 1$. Then $Q := (X^2, 2)$ is a d-ideal of R. Put $P = (X, 2)$. Then Q is a P-primary ideal. It is clear that $Q = P_0$. Thus Q is a quasi-prime d-ideal by Lemma 2.3, but Q is not a prime ideal.

§4. Main results

We are now ready to prove the main results.

Theorem 4.1. Let R be a Laskerian ring and d a derivation of R. The following two conditions are equivalent:

(a) Every quasi-prime d-ideal of R is prime.
(b) Any weak associated prime of every d-ideal of R is a d-ideal.

Proof. (a) \implies (b). Let I be a d-ideal of R. First, we consider the case $\text{char}(R) \neq 0$ or $\text{char}(R) = 0$ and $I \cap \mathbb{Z} \neq (0)$. Then I can be written as an irredundant intersection of a finite number of primary d-ideals $Q_i (i = 1, \ldots, n)$ by [5, Theorem 2 and Proposition 6]. Furthermore we have that irredundant intersection of a finite number of primary non-zero integer ideals. Thus every weak associated prime of I is a d-ideal.

Next, suppose that $\text{char}(R) = 0$ and $I \cap \mathbb{Z} = (0)$. Let $I = Q_1 \cap \cdots \cap Q_n$ be an irredundant primary decomposition such that $P_i \cap \mathbb{Z} = (0) (i = 1, \ldots, t)$ and $P_i \cap \mathbb{Z} \neq (0) (i = t + 1, \ldots, n)$, where $P_i = \sqrt{Q_i} (i = 1, \ldots, n)$. Note that $\text{Ass}_f(R/I) = \{ P_1, \ldots, P_n \}$. By [5, Theorem 1], $P_i (i = 1, \ldots, t)$ are d-ideals. Put $I_1 = Q_1 \cap \cdots \cap Q_t$ and $I_2 = Q_{t+1} \cap \cdots \cap Q_n$. Then $I_2 \cap \mathbb{Z} = (q)$ for some non-zero integer q. Put $I_2' = qR + I$. Then I_2' is a d-ideal and $I \subset I_2' \subset I_2$. Thus we have $I = I_1 \cap I_2'$ and I_2 can be written as an intersection $Q_1' \cap \cdots \cap Q_m'$ of primary d-ideals $Q_i' (i = 1, \ldots, m)$ by [5, Proposition 6]. Therefore we have that $I = Q_1 \cap \cdots \cap Q_n \cap Q_1' \cap \cdots \cap Q_m'$. By the same reason as the first step, each $\sqrt{Q_i}$ is a d-ideal. For any $i (t + 1 \leq i \leq n)$, $P_i = \sqrt{Q_j'}$ for some $j (1 \leq j \leq m)$. Thus $P_i (1 \leq i \leq n)$ are d-ideals.

(b) \implies (a). Let I be a d-ideal of R and P a minimal prime divisor of I. Then clearly P is a weak associated prime of I. Thus P is a d-ideal. Therefore, the assertion follows from Lemma 1.5.

Remark. By the same way as the proof of Theorem 4.1, we get the following result:

Let R be a Laskerian ring of characteristic 0, d a derivation of R and I a proper d-ideal of R. Let \mathbb{Z} be the rational integers. Then I can be represented as an irredundant intersection $Q_1 \cap \cdots \cap Q_t \cap \cdots \cap Q_n (0 \leq t \leq n)$ of primary ideals Q_i of R such that: (1) $P_i \cap \mathbb{Z} = (0) (i = 1, \ldots, t)$, $P_j \cap \mathbb{Z} \neq (0) (j = t + 1, \ldots, n)$ (where $P_i = \sqrt{Q_i}$). (2) $P_i (i = 1, \ldots, t)$, $Q_j (j = t + 1, \ldots, n)$ are d-ideals. Obviously, (i) if the ring R contains the rational numbers, then the number t equal to n, and (ii) if $I \cap \mathbb{Z} \neq (0)$, then the number t equal to 0.

When R is a Noetherian ring, the following Theorem 4.2 was proved by A. Nowicki in [11] and [12].

Theorem 4.2. Let R be a strongly Laskerian ring and d a derivation of R, then the following statements hold.

1. For a d-ideal Q, Q is d-prime if and only if Q is quasi-prime.
2. The following three conditions are equivalent:
 a. Every quasi-prime d-ideal of R is prime.
 b. Any weak associated prime of every d-ideal of R is a d-ideal.
 c. Every d-prime d-ideal of R is prime.

Proof. (1) In virtue of Lemma 1.4, it suffices to show that if a d-ideal Q is d-prime, then Q is quasi-prime. Put $\sqrt{Q} = P$. Then P is prime by Proposition
3.1. Furthermore we have that $Q \subseteq P^\# \subseteq P$. Since Q is P-primary, $P^n \subseteq Q$ for some $n \geq 1$, and hence $(P^\#)^n \subseteq Q$. Since Q is d-prime, we have that $P^\# \subseteq Q$ and therefore $Q = P^\#$. Thus Q is quasi-prime by Lemma 1.3.

(2) The equivalence of (a) and (b) follows from Theorem 4.1 and the equivalence of (a) and (c) follows from (1).

Remarks. (1) Let R be a ring and d a derivation of R. If every quasi-prime d-ideal of R is prime, then R is called a d-MP ring (cf. [11]), or a special differential ring (cf. [8]).

(2) In Example 4.3 below we show that there is a Laskerian ring R which is not a strongly Laskerian and there is a derivation d of R such that R has a d-prime d-ideal which is neither prime nor quasi-prime. Therefore Example 4.3 shows that if R is not strongly Laskerian, Theorem 4.2 is not necessarily true even if R is Laskerian.

Example 4.3 (cf. [2, Example 2.1]). Let $T = k[X_1, X_2, \ldots]$ be a polynomial ring over the field $k(= \mathbb{Z}/(p))$ of prime characteristic p. For the ideal $A = (X_1^p, X_2^p, \ldots)$, put $R = T/A = k[x_1, x_2, \ldots]$, where $x_n = X_n + A$. Then R is a local ring with the maximal ideal $M = (x_1, x_2, \ldots)$. Let d be a derivation of R such that $d(x_n) = x_{n+1}$ for every $n \geq 1$.

In this situation, the following properties hold.

1. (0) is a d-prime d-ideal of R, but it is not prime.
2. M is the only one quasi-prime d-ideal of R.
3. Every quasi-prime d-ideal of R is prime.
4. R is a Laskerian ring.
5. R is not a strongly Laskerian ring.

Proof. (1) Assume that I and J are d-ideals of R such that $IJ = (0)$. If $I \neq (0)$ and $J \neq (0)$, then $I \ni x_1^{p-1} \cdots x_n^{p-1}$ and $J \ni x_{n+1}^{p-1} \cdots x_{n+m}^{p-1}$ for some $n \geq 1$ and $m \geq 1$ (see the proof of Lemma 2.3 (p. 291) of [2]). Hence we have $IJ \ni x_1^{p-1} \cdots x_{n+m}^{p-1} \neq 0$, which is a contradiction. Consequently, (0) is a d-prime d-ideal.

(2) Since Spec$(R) = \{ M \}$ and M is a d-ideal, M is the only one quasi-prime d-ideal of R.

(3) This is an immediate consequence of (2).

(4) Let I be any ideal of R. Then $\sqrt{I} = M$, and so I is primary. Hence R is a Laskerian ring.

(5) Note that (0) is a M-primary ideal of R and $\{ x_1, x_2, \ldots \}$ is a p-basis of R over R^p. For every $n \geq 1$, M^n contains $x_1 x_2 \cdots x_n \neq 0$, and hence we have $M^n \neq (0)$. Therefore R is not a strongly Laskerian ring.

References

Mamoru Furuya
Department of Mathematics, Meijo University
Shiogamaguchi, Tenpaku, Nagoya 468, Japan

Hiroshi Niitsuma
Faculty of Science, Science University of Tokyo
1-3, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan