On Some Models of Universal Expansion in General Relativity Using Otsuki Connections

Haruya Nagayama

(Received June 17, 1999)

Abstract. An Otsuki connection Γ is a cross section of the bundle $T(M) \otimes \mathcal{D}^2(M)$ and they can be understood as generalized objects of the affine connections. Briefly, the difference between these two theories is that an Otsuki connection Γ is an affine connection if and only if the principal part $\lambda(\Gamma)$ of Γ, which is a homomorphism of the tangent bundle $T(M)$, is the identity map. We consider some special class $\Gamma(\Psi, G)$ of Γ. Using $\Gamma(\Psi, G)$, this paper presents universal expansion-like models which are exact solutions of some partial differential equations.

AMS 1991 Mathematics Subject Classification. 53B30, 53B50.

Key words and phrases. General connection, Otsuki connection, Relativity.

§1. Basic Concepts and Preliminaries

A cross section Γ on the vector bundle $T(M) \otimes \mathcal{D}^2(M)$ is called an Otsuki connection, where $T(M)$ and $\mathcal{D}^2(M)$ are the tangent bundle and the cotangent bundle of order 2 on a smooth manifold M respectively. Using local coordinates (u^λ), Γ is written as follows:

$$\Gamma = \frac{\partial}{\partial u^\lambda} \otimes \left(P^\lambda_{\mu} d^{2}u^\mu + \Gamma^\lambda_{\mu\nu} d^{\mu}u^\mu \otimes d\nu^\lambda \right).$$

It is easy to see that the $P = (P^\lambda_{\mu})$ transforms as a tensor field of type $(1, 1)$ under coordinates changes. The tensor field $P = (P^\lambda_{\mu})$, which is denoted by $\lambda(\Gamma)$, is called the principal part of Γ. According to Otsuki [6, 7], the covariant derivative $\Gamma_X Y$ is defined by

$$\Gamma_X Y = (X(Y^\lambda) P^\mu_{\lambda} + \Gamma^\mu_{\lambda\nu} X^\lambda Y^\nu) \frac{\partial}{\partial u^\mu},$$

where X, Y and $\Gamma_X Y$ are tangent vector fields on M. The operator Γ_X has the following properties:
1. \(\Gamma_{fX+gY}Z = f\Gamma_XZ + g\Gamma_YZ, \)
2. \(\Gamma_X(Y + Z) = \Gamma_XY + \Gamma_XZ, \)
3. \(\Gamma_X fY = X(f)P(Y) + f\Gamma_XY, \) where \(f,g \) are functions on \(M. \)

It is routine work to extend the covariant derivative to arbitrary tensor fields. For example, if \(F \) is a tensor field of type \((0,2) \), then \(\Gamma_X F \) is defined by

\[
\Gamma_X F(Y, Z) = X(F(PY, PZ)) - F(\Gamma_XY, PZ) - F(PY, \Gamma_XZ).
\]

We put

\[
T(X, Y) = \Gamma_X Y - \Gamma_Y X - P[X, Y].
\]

This element becomes a tensor field of type \((0,2) \) and is called the torsion tensor field of \(\Gamma \). Any geodesic \(\gamma \) in \(M \) with an Otsuki connection \(\Gamma \) is given by a solution of the system of the ordinary differential equation of order 2 on \(M: \)

\[
P_\mu \frac{d^2 u^\mu}{ds^2} + \Gamma^\lambda_{\mu\nu} \frac{du^\mu}{ds} \frac{du^\nu}{ds} = 0,
\]

where \(s \) is an affine parameter of the connection.

Let \(P = (P_\mu^\lambda) \) and \(G = (g_{\mu\nu}) \) be a regular tensor field of type \((1,1) \) and a non-singular tensor field of type \((0,2) \) on \(M \). We put

\[
\bar{G}(X, Y) = G(PX, PY).
\]

Using the terminology of Otsuki connections, the Levi-Civita connection \(\tilde{\nabla} \) with respect to \(\bar{G} \) is written by

\[
\tilde{\nabla} = \frac{\partial}{\partial u^\lambda} \otimes \left(\delta^\lambda_{\mu\nu} d^2 u^\mu + \tilde{\Gamma}^\lambda_{\mu\nu} du^\mu \otimes du^\nu \right),
\]

where \(\tilde{\Gamma}^\lambda_{\mu\nu} \) are the Christoffel symbols of \(\bar{G} = (g_{\mu\nu}). \) We define an Otsuki connection

\[
P\tilde{\nabla} = \frac{\partial}{\partial u^\lambda} \otimes \left(P_\mu^\lambda d^2 u^\mu + P_\delta^\lambda \tilde{\Gamma}^\delta_{\mu\nu} du^\mu \otimes du^\nu \right).
\]

It is easy to see the following fundamental properties of \(P\tilde{\nabla}. \)

1. \(P = \lambda(\Gamma). \)
2. \((P\tilde{\nabla})_X G = 0. \)
3. \(P\tilde{\nabla} \) is torsion free.
4. \(\gamma \) is a geodesic of \(\tilde{\nabla} \) if and only if it is a geodesic of \(P\tilde{\nabla}. \)
Conversely $\Gamma = P \hat{\nabla}$ is uniquely determined by the above 1~3, which we write

$$\Gamma = P \hat{\nabla} = \Gamma(P, G).$$

The Otsuki connection Γ, which we will consider in this paper, is a case $P = \Psi I$ and denoted by $\Gamma(\Psi, G)$, where Ψ is a function on M and I is the fundamental unit tensor field of type $(1, 1)$. $\Gamma(\Psi, G)$ seems to have a meaning only where Ψ does not vanish, but any function Ψ on M is available for $\Gamma(\Psi, G)$ because it can be written locally as follows:

$$\Gamma(\Psi, G) = \frac{\partial}{\partial u^\lambda} \otimes \left(\Psi du^\lambda + \Gamma^\lambda_{\mu \nu} du^\mu \otimes du^\nu \right),$$

$$\Gamma^\lambda_{\mu \nu} = \Psi \{\lambda\}_\mu + \left(\frac{\partial \Psi}{\partial u^\mu} \delta^\lambda_{\nu} + \frac{\partial \Psi}{\partial u^\nu} \delta^\lambda_{\mu} + \frac{\partial \Psi}{\partial u^\sigma} g^{\lambda \mu} g_{\mu \nu} \right),$$

where we use the apparatuses on a Riemannian manifold (M, G). Using an affine parameter s of $\Gamma(\Psi, G)$, equations of a geodesic become

$$(1) \quad \Psi \frac{d^2 u^\lambda}{ds^2} + \Gamma^\lambda_{\mu \nu} \frac{du^\mu}{ds} \frac{du^\nu}{ds} = 0.$$

We define a set $Sing(\Gamma) \subset M$ and a metric \hat{G} by

$$Sing(\Gamma) = \{ x \in M \mid \Psi(x) = 0 \}, \quad \hat{G} = \Psi^2 G.$$

The next lemma is a special case of the above property 4, which says that a space $M \setminus Sing(\Gamma)$ with an Otsuki connection $\Gamma = \Gamma(\Psi, G)$ and a Riemannian manifold $(M \setminus Sing(\Gamma), \hat{G})$ are geodesically equivalent in the following sense.

Lemma 1. A curve $\gamma(s)$ in $M \setminus Sing(\Gamma)$ is a geodesic in the sense of Otsuki geometry of $\Gamma(\Psi, G)$ if and only if it is a geodesic in the sense of Riemannian geometry of $(M \setminus Sing(\Gamma), \hat{G})$.

Lemma 1 shows that $\hat{G} = \Psi^2 G$ has an important meaning in $\Gamma(\Psi, G)$ geometry, which we call the essential metric of an Otsuki connection $\Gamma(\Psi, G)$.

In the paper [4] we define a function $S_{\Gamma(\Psi, G)}$ and the condition (A) as follows:

$$(A) \quad \delta \int_M S_{\Gamma(\Psi, G)} dv_G = 0.$$

Using local coordinates (u^λ) and the apparatuses on the Riemannian manifold (M, G), the condition (A) becomes as follows:

$$\Psi(R^{\mu \nu} - \frac{1}{2} g^{\mu \nu} S - \frac{1}{2} \nabla_\lambda \nabla_\kappa (\Psi^2) (g^{\mu \lambda} g^{\nu \kappa} - g^{\mu \nu} g^{\lambda \kappa})$$

$$+ 12(\nabla_\lambda \Psi)(\nabla_\kappa \Psi) (g^{\mu \lambda} g^{\nu \kappa} - \frac{1}{2} g^{\mu \nu} g^{\lambda \kappa}) \Psi = 0,$$

$$\Psi(\Delta - \frac{1}{8} S) + \frac{1}{2} g^{\mu \nu}(\nabla_\mu \Psi)(\nabla_\nu \Psi) = 0,$$
where S, \triangle are the scalar curvature, the Laplace-Beltrami operator of (M, G). It appears very difficult to find non-trivial solutions, which means solutions with Ψ not being constant, of the above equations. However, using a function h and a metric \overline{G}, which are defined by
\[h = \frac{\sqrt{\triangle}}{2} \log \Psi, \quad \overline{G} = \Psi^3 G, \]
the equations become the following simpler forms [5]:
\[\mathcal{R}_{\mu \nu} - \frac{1}{2} g_{\mu \nu} S + (g^{\mu \rho} g^{\alpha \beta} - g^{\alpha \beta} g^{\mu \rho})(\nabla_\alpha h)(\nabla_\beta h) = 0, \]
\[\overline{\Delta}(h) = 0, \]
where we use the apparatus of Riemannian manifold (M, G). Rewriting these equations to the covariant forms, we have
\begin{align}
R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} S &= (2 \delta^\alpha_\mu \delta^\beta_\nu - g_{\mu \nu} g^{\alpha \beta})(\nabla_\alpha h)(\nabla_\beta h), \\
\triangle(h) &= 0,
\end{align}
where we use the apparatus on $(M \setminus Sing(\Gamma), \overline{G})$ but abbreviate the bar for convenience, which we do not think causes any confusion and we will use these notation from now on. (2) and (3) are the Euler-Lagrange equations of a Lagrange density $L(h, \overline{G})$ which is defined as follows [5]:
\[L(h, \overline{G}) = g^{\mu \nu} \left[\{^\alpha_\mu \} \{^\beta_\nu \} - \{^\alpha_\nu \} \{^\beta_\mu \} \right] + 2(\nabla_\mu h)(\nabla_\nu h) \sqrt{-\overline{G}}, \]
where $(M \setminus Sing(\Gamma), \overline{G})$ is a 4-dimensional Lorentz manifold and $|\overline{G}| = det(g_{\lambda \mu})$.
In the same paper [5] we look for solutions $\Gamma(\Psi, G)$ of the above equations under the condition that $\Gamma(\Psi, G)$ has the spherical symmetry and find two interesting families of Otsuki connections, one of which is the Schwartzschild spacetime and the other is peculiar to the theory of Otsuki connections $\Gamma(\Psi, G)$.
In Section 2 we will find exact solutions $\Gamma(\Psi, G)$ of the equations, whose essential metric has the following form:
\[\overline{G} = -dw^2 + R^2(w) D(r)(dx^2 + dy^2 + dz^2). \]
Taking the results in advance, $D(r)$ becomes:
\[D(r) = \left(1 + \frac{\varepsilon r^2}{4}\right)^{-2}, \]
where $\varepsilon = -1, 0, 1$. Some elementary properties of the functions $R(w)$ will be discussed in Section 3.
The following ranges of indices are used throughout this paper:
\[1 \leq i, j, k, \cdots \leq 3, \quad 0 \leq \alpha, \beta, \gamma, \cdots \leq 3. \]
§2. Universal Expansion Models by $\Gamma(\Psi, G)$

We consider a metric \overrightarrow{G} and a function h of the following forms:

$$\overrightarrow{G} = g_{\lambda\mu}dx^\lambda dx^\mu$$
$$= -B(t,r)dt^2 + A(t,r)(dx^2 + dy^2 + dz^2),$$
$$h = h(t),$$

where $r^2 = x^2 + y^2 + z^2$ and we often use t,x,y,z instead of x^0,x^1,x^2,x^3. Using these forms, the Christoffel symbols $\{\gamma_{\mu\nu}^\lambda\} = \{\gamma_{\nu\mu}^\lambda\}$ of \overrightarrow{G} become as follows:

$$\begin{align*}
\{t_{t0}\} &= \{0_{00}\} = \frac{1}{2} B_t \frac{x^i}{r}, \\
\{0_{ij}\} &= \{0_{ji}\} = \frac{1}{2} A_r \delta_{ij}, \\
\{0_{ij}\} &= \{0_{ji}\} = \frac{1}{2} A_r \delta_{ij}, \\
\{i_{00}\} &= \{0_{00}\} = \frac{1}{2} B_r \frac{x^i}{r}, \\
\{i_{j0}\} &= \{i_{0j}\} = \frac{1}{2} A_r \frac{B_r}{A} \left(\frac{x^k}{r} \delta_{ij} + \frac{x^j}{r} \delta_{ik} - \frac{x^i}{r} \delta_{jk} \right),
\end{align*}$$

where $A_t = \frac{\partial A}{\partial t}$, $A_r = \frac{\partial A}{\partial r}$, etc. Components of Ricci tensor and the scalar curvature S of \overrightarrow{G} are given as follows:

$$R_{00} (\equiv R_{tt}) = -\frac{3}{2} \left(\frac{A_t}{A} \right)_t - \frac{3}{2} \left(\frac{A_t}{A} \right)^2 + \frac{3}{4} \left(\frac{A_r}{A} \right) \left(\frac{B_t}{B} \right)$$
$$+ \frac{1}{2} \frac{B_t}{A} \left\{ \left(\frac{B_1}{B} \right)_1 + \left(\frac{B_2}{B} \right)_2 + \left(\frac{B_3}{B} \right)_3 \right\}$$
$$+ \frac{1}{4} \frac{B_t}{A} \left\{ \left(\frac{A_1}{A} \right) \left(\frac{B_1}{B} \right) + \left(\frac{A_2}{A} \right) \left(\frac{B_2}{B} \right) + \left(\frac{A_3}{A} \right) \left(\frac{B_3}{B} \right) \right\}$$
$$+ \frac{1}{4} \frac{B_t}{A} \left\{ \left(\frac{B_1}{B} \right)^2 + \left(\frac{B_2}{B} \right)^2 + \left(\frac{B_3}{B} \right)^2 \right\},$$

$$R_{0k} (\equiv R_{k0}) = \left(\frac{A_t}{A} \right)_k + \frac{1}{2} \left(\frac{A_t}{A} \right) \left(\frac{B_k}{B} \right),$$

$$R_{kk} = \frac{1}{2} \frac{A}{B} \left(\frac{A_t}{A} \right)_k + \frac{3}{4} \frac{A}{B} \left(\frac{A_t}{A} \right)^2 - \frac{3}{4} \frac{A}{B} \left(\frac{A_r}{A} \right) \left(\frac{B_t}{B} \right)$$
$$- \frac{1}{2} \left\{ \left(\frac{A_1}{A} \right)_1 + \left(\frac{A_2}{A} \right)_2 + \left(\frac{A_3}{A} \right)_3 \right\}$$
$$- \frac{1}{4} \left\{ \left(\frac{A_1}{A} \right)^2 + \left(\frac{A_2}{A} \right)^2 + \left(\frac{A_3}{A} \right)^2 \right\}$$
$$- \frac{1}{2} \left\{ \left(\frac{A_k}{A} \right)_k + \left(\frac{B_k}{B} \right)_k \right\} + \frac{1}{4} \left(\frac{A_k}{A} \right)^2 - \frac{1}{4} \left(\frac{B_k}{B} \right)^2,$$
\[R_{km} \quad (= R_{mk}) \quad = \quad -\frac{1}{2} \left(\frac{A_m}{A} \right)_k - \frac{1}{2} \left(\frac{B_m}{B} \right)_k + \frac{1}{4} \left(\frac{A_k}{A} \right) \left(\frac{A_m}{A} \right)
\quad + \frac{1}{4} \left(\frac{A_k}{A} \right) \left(\frac{B_m}{B} \right) + \frac{1}{4} \left(\frac{A_m}{A} \right) \left(\frac{B_k}{B} \right) - \frac{1}{4} \left(\frac{B_k}{B} \right) \left(\frac{B_m}{B} \right) , \]

where \(k \neq m, \)

\[S \quad = \quad \frac{3}{B} \left(\frac{A_t}{A} \right)_t + \frac{3}{B} \left(\frac{A_t}{A} \right)^2 - \frac{3}{2} \left(\frac{A_t}{A} \right) \left(\frac{B_t}{B} \right)
\quad - \frac{2}{A} \left\{ \left(\frac{A_1}{A} \right)_1 + \left(\frac{A_2}{A} \right)_2 + \left(\frac{A_3}{A} \right)_3 \right\}
\quad - \frac{1}{A} \left\{ \left(\frac{B_1}{B} \right)_1 + \left(\frac{B_2}{B} \right)_2 + \left(\frac{B_3}{B} \right)_3 \right\}
\quad - \frac{11}{2} \frac{A}{A} \left\{ \left(\frac{A_1}{A} \right)^2 + \left(\frac{A_2}{A} \right)^2 + \left(\frac{A_3}{A} \right)^2 \right\}
\quad - \frac{1}{4} \left\{ \left(\frac{A_1}{A} \right) \left(\frac{B_1}{B} \right) + \left(\frac{A_2}{A} \right) \left(\frac{B_2}{B} \right) + \left(\frac{A_3}{A} \right) \left(\frac{B_3}{B} \right) \right\}
\quad - \frac{11}{2} \frac{B}{B} \left\{ \left(\frac{B_1}{B} \right)^2 + \left(\frac{B_2}{B} \right)^2 + \left(\frac{B_3}{B} \right)^2 \right\} , \]

where we use the following formulas and notations:

\[R_{\mu \nu} \quad = \quad R_{\nu \mu} \quad = \quad \frac{\partial}{\partial x^\lambda} \{^\lambda \}_{\mu \nu} \quad - \quad \frac{\partial}{\partial x^\sigma} \{^\sigma \}_{\mu \lambda} \quad - \quad \{^\lambda \}_{\kappa \lambda} \{^\kappa \}_{\mu \nu} \quad - \quad \{^\lambda \}_{\mu \sigma} \{^\sigma \}_{\kappa \lambda} , \]

\[S \quad = \quad g^{\mu \nu} R_{\mu \nu} , \]

\[A_1 \quad = \quad \frac{\partial A}{\partial x^1} , \quad A_2 \quad = \quad \frac{\partial A}{\partial x^2} , \quad A_3 \quad = \quad \frac{\partial A}{\partial x^3} \quad etc. \]

Using these equalities, the left side of (2), which are denoted by \(G_{\mu \nu} \) become as follows:

\[G_{tt} \quad = \quad R_{tt} - \frac{1}{2} g_{tt} S \quad = \quad R_{tt} + \frac{1}{2} BS \]
\[= \quad \frac{3}{4} \left(\frac{A_t}{A} \right)^2 - \frac{A}{B} \left\{ \left(\frac{A_1}{A} \right)_1 + \left(\frac{A_2}{A} \right)_2 + \left(\frac{A_3}{A} \right)_3 \right\}
\quad - \frac{1}{4} \frac{B}{A} \left\{ \left(\frac{A_1}{A} \right)^2 + \left(\frac{A_2}{A} \right)^2 + \left(\frac{A_3}{A} \right)^2 \right\}
\quad + \frac{1}{8} \frac{B}{A} \left\{ \left(\frac{A_1}{A} \right) \left(\frac{B_1}{B} \right) + \left(\frac{A_2}{A} \right) \left(\frac{B_2}{B} \right) + \left(\frac{A_3}{A} \right) \left(\frac{B_3}{B} \right) \right\} , \]

\[G_{kk} \quad = \quad R_{kk} - \frac{1}{2} g_{kk} S \quad = \quad R_{kk} - \frac{1}{2} AS \]
\[= \quad -\frac{A}{B} \left(\frac{A_k}{A} \right)_t - \frac{3 A}{4 B} \left(\frac{A_t}{A} \right)^2 + \frac{1}{2} \frac{A}{B} \left(\frac{A_k}{A} \right) \left(\frac{B_t}{B} \right) \]
+ \frac{1}{2} \left\{ \left(\frac{A_1}{A} \right)_1 + \left(\frac{A_2}{A} \right)_2 + \left(\frac{A_3}{A} \right)_3 \right\} \\
+ \frac{1}{2} \left\{ \left(\frac{B_1}{B} \right)_1 + \left(\frac{B_2}{B} \right)_2 + \left(\frac{B_3}{B} \right)_3 \right\} \\
+ \frac{1}{8} \left\{ \left(\frac{A_1}{A} \right) \left(\frac{B_1}{B} \right) + \left(\frac{A_2}{A} \right) \left(\frac{B_2}{B} \right) + \left(\frac{A_3}{A} \right) \left(\frac{B_3}{B} \right) \right\} \\
+ \frac{1}{4} \left\{ \left(\frac{B_1}{B} \right)^2 + \left(\frac{B_2}{B} \right)^2 + \left(\frac{B_3}{B} \right)^2 \right\} \\
- \frac{1}{2} \left(\frac{A_k}{A} \right)_k - \frac{1}{2} \left(\frac{B_k}{B} \right)_k + \frac{1}{4} \left(\frac{A_k}{A} \right)^2 - \frac{1}{4} \left(\frac{B_k}{B} \right)^2 \\
G_{km} = R_{km} - \frac{1}{2} g_{km} S = R_{km} \\
= - \frac{1}{2} \left(\frac{A_m}{A} \right)_k - \frac{1}{2} \left(\frac{B_m}{B} \right)_k + \frac{1}{4} \left(\frac{A_k}{A} \right) \left(\frac{A_m}{A} \right) \\
+ \frac{1}{4} \left(\frac{A_k}{A} \right) \left(\frac{B_m}{B} \right) + \frac{1}{4} \left(\frac{A_m}{A} \right) \left(\frac{B_k}{B} \right) - \frac{1}{4} \left(\frac{B_k}{B} \right) \left(\frac{B_m}{B} \right),
\]
where \(k \neq m \). On the other hand, the right sides of (2), which are denoted by \(H_{\mu\nu} \), become as follows:
\[
H_{tt} = (2 \delta_t^\alpha \delta_t^\beta - g_{tt} g^{\alpha\beta}) \nabla_\alpha (h) \nabla_\beta (h) = (h_t)^2, \\
H_{kk} = (2 \delta_k^\alpha \delta_k^\beta - g_{kk} g^{\alpha\beta}) \nabla_\alpha (h) \nabla_\beta (h) = \frac{A}{B} (h_t)^2, \\
the \ others \ = \ 0,
\]
where \(h_t = \frac{\partial h}{\partial t} \). (2) becomes as follows:
\[
(4) \quad G_{00} = (h_t)^2, \\
(5) \quad G_{kk} = \frac{A}{B} (h_t)^2, \\
(6) \quad G_{0k} = G_{k0} = 0, \\
(7) \quad G_{km} = G_{mk} = 0,
\]
where \(k \neq m \). Now we assume that \(A(t, r) \) has a form of \(A(t, r) = C(t) D(r) \), then (6) becomes \(B_r C_t = 0 \). We assume \(B_r = 0 \) i.e. \(B = B(t) \) and rewrite \(\overline{G} \) and \(h \) using the following new variable \(\overline{t} \) such that \(\overline{t} = \int^t \sqrt{B(s)} ds \) for \(t \). Now \(\overline{G} \) and \(h \) become as follows:
\[
\overline{G} = - d\overline{t}^2 + \tilde{A}(\overline{t}, r) (dx^2 + dy^2 + dz^2), \\
h(\overline{t}) = \tilde{h}(\overline{t}),
\]
where \(\tilde{A}(\overline{t}, r) = C(t) D(r) = \tilde{C}(\overline{t}) D(r) \). Without loss of generality, we can assume as follows:
\[
\overline{G} = - d\overline{t}^2 + A(t, r) (dx^2 + dy^2 + dz^2),
\]
\[h = h(t), \]

where \(A(t,r) = C(t)D(r) \). Using these forms of \(C \) and \(h \), (4), (5) and (7) become as follows:

\begin{align*}
(8) \quad & \frac{3}{4} \left(\frac{C_t}{C} \right)^2 + \frac{1}{CD^2} \left\{ D_{rr} + \frac{2}{r} D_r - \frac{3}{4D} (D_r)^2 \right\} = (h_t)^2, \\
(9) \quad & - \left\{ C_t \frac{1}{4C} (C_t)^2 \right\} + \frac{1}{2D} \left\{ D_{rr} + \frac{1}{r} D_r - \frac{1}{D} (D_r)^2 \right\} = CD(h_t)^2, \\
(10) \quad & -\frac{1}{2D} \left\{ D_{rr} - \frac{1}{r} D_r - \frac{3}{2D} (D_r)^2 \right\} = 0.
\end{align*}

Equality (6) becomes as follows:

\begin{align*}
(11) \quad & h_{tt} + \frac{3}{2C^2C_t} (C_t h_t) = \frac{1}{2h_t C^3} \left\{ (h_t)^2 C^3 \right\}_t = 0.
\end{align*}

(8)~(11) are the fundamental equations of this paper.

Using a new function: \(f = f^2 \), (10) becomes as follows:

\[-\frac{2}{f^3} \left(f_{rr} - \frac{1}{r} f_r \right) = 0, \]

where \(f_r = \frac{\partial f}{\partial r} \), \(f_{rr} = \frac{\partial^2 f}{\partial r^2} \). Integrating this equality, we have

\[f(r) = 1 + \frac{\epsilon r^2}{4}, \quad \epsilon = -1,0,1, \]

and \(D(r) \) becomes as follows:

\[D(r) = \left(1 + \frac{\epsilon r^2}{4} \right)^{-2}, \quad \epsilon = -1,0,1, \]

where we use a boundary condition such that

\[\lim_{r \to +\infty} D(r) = 1. \]

Putting these \(D(r) \) into (8),(9) and (11), we have the following:

\begin{align*}
(12) \quad & \frac{3}{4} \left(\frac{C_t}{C} \right)^2 + \frac{3\epsilon}{C} = (h_t)^2, \\
(13) \quad & \frac{C_{tt}}{C} - \frac{1}{4} \left(\frac{C_t}{C} \right)^2 + \frac{\epsilon}{C} = -(h_t)^2, \\
(14) \quad & \left\{ (h_t)^2 C^3 \right\}_t = 0.
\end{align*}
Differentiating (12) by \(t \), we have

\[
\frac{3}{2} \left(\frac{C_t}{C} \right) \left(\frac{C_{tt}}{C} \right) - \frac{3}{2} \left(\frac{C_t}{C} \right)^3 - \frac{3\varepsilon}{C} \left(\frac{C_t}{C} \right) = 2(h_t)(h_{tt}).
\]

Using (14) to the right side of the above equality, we have as follows:

\[
\begin{align*}
\frac{3}{2} \left(\frac{C_t}{C} \right) & \left\{ \frac{3}{4} \left(\frac{C_t}{C} \right)^2 + \frac{3\varepsilon}{C} - (h_t)^2 \right\} \\
+ \frac{3}{2} \left(\frac{C_t}{C} \right) & \left\{ \frac{C_{tt}}{C} - \frac{1}{4} \left(\frac{C_t}{C} \right)^2 + \frac{\varepsilon}{C} + (h_t)^2 \right\} = 0.
\end{align*}
\]

This equality shows that (12) and (14) imply (13). Integrating (14), we have

\[
(h_t)^2 = \frac{3\eta^2}{C^3}, \quad \eta \geq 0.
\]

Substituting this equality into (12), we have

\[
\frac{1}{4} \left(\frac{C_t}{C} \right)^2 + \frac{\varepsilon}{C} - \frac{\eta^2}{C^3} = 0.
\]

Summerizing the preceding results of this section, we have

Lemma 2. Let \(\Gamma(\Psi, G) \) be an Otsuki connection with the condition (A) and \(\overline{\mathcal{G}} \) and \(h \) have forms such that

\[
\begin{align*}
\overline{\mathcal{G}} &= -B(t, r)dt^2 + A(t, r)(dx^2 + dy^2 + dz^2), \\
h &= h(t),
\end{align*}
\]

where \(B_t \neq 0 \) and \(A(t, r) = C(t)D(r) \). Then \(\overline{\mathcal{G}} \) becomes

\[
\overline{\mathcal{G}} = -dt^2 + C(t)D(r)(dx^2 + dy^2 + dz^2)
\]

and \(h(t), C(t) \) and \(D(r) \) satisfy the following equalities:

\[
\begin{align*}
(15) \quad \left(h_t \right)^2 &= \frac{3\eta^2}{C^3}, \quad \eta \geq 0, \\
(16) \quad D(r) &= \left(1 + \frac{\varepsilon r^2}{4} \right)^{-2}, \quad \varepsilon = -1, 0, 1, \\
(17) \quad \frac{1}{4} \left(\frac{C_t}{C} \right)^2 + \frac{\varepsilon}{C} - \frac{\eta^2}{C^3} &= 0.
\end{align*}
\]
A case $\eta = 0$ in Lemma 2 is easy to treat. Then, (15) implies $h \equiv 0$, which means that $\Gamma(\Psi, G)$ is the Levi-Civita connection of Riemannian manifold (M, G), where $M \subseteq \mathbb{R}^4$. (17) implies that $C(t) = \dot{t}^2$ for $\varepsilon = -1$, $C(t) \equiv 1$ for $\varepsilon = 0$ and no solution for $\varepsilon = 1$. Now we have

Lemma 3. For a case $\eta = 0$ in Lemma 2, $\Gamma(\Psi, G)$ becomes the Levi-Civita connection of Riemannian manifold (M, G), $M \subseteq \mathbb{R}^4$, such that G is either of the following two:

\[
G = -dt^2 + \dot{t}^2 \left(1 - \frac{\eta^2}{4}\right)^{-2} (dx^2 + dy^2 + dz^2),
\]

\[
G = -dt^2 + dx^2 + dy^2 + dz^2.
\]

From now on we suppose $\eta > 0$ and we define a function $\zeta(t)$ by

\[
C(t) = \eta^2 \zeta^2(t).
\]

It is tedious to display every detail of calculations for all the cases $\varepsilon = -1, 0, 1$, but we give details of calculations for one case $\varepsilon = -1$ and only the results for other two. Using $\zeta(t)$, (17) is written as follows:

\[
(\zeta_t)^2 = \frac{1}{\eta^2} \left(1 + \frac{\zeta^4}{\zeta^2}\right).
\]

Defining a non-negative function $\vartheta(t)$ by

\[
\zeta^2(t) = \sinh(\vartheta(t))
\]

and inserting it into the above equality, we have

\[
\cosh^2(\vartheta)(\vartheta_t)^2 = \frac{4}{\eta^2} \left(1 + \frac{\zeta^4}{\zeta^2}\right).
\]

This equality is rewritten as follows:

\[
(18) \quad dt = \frac{1}{2} \eta \sqrt{\sinh(\vartheta)} d\vartheta.
\]

(18) shows that $\vartheta(t)$ is the inverse function of

\[
t(\vartheta) = \frac{1}{2} \int_0^\vartheta \sqrt{\sinh(s)} ds.
\]

Using

\[
C(t) = \eta^2 \zeta^2(t) = \eta^2 \sinh(\vartheta(t))
\]
and (18) in (15), we have

\[
(h_t)^2 = \frac{3}{\eta^2 \sinh^3(\theta)},
\]

\[
h_{\vartheta} = h_t \frac{dt}{d\vartheta} = \pm \frac{\sqrt{3}}{2} \left(\frac{1}{\sinh(\vartheta)} \right),
\]

where \(h_{\vartheta} = \frac{\partial h}{\partial \vartheta} \). Integrating the second equality of the above, we have

\[
h(t) = \pm \frac{\sqrt{3}}{2} \int_{\vartheta(t)}^{\infty} \frac{ds}{\sinh(s)}.
\]

Now we find \(\mathcal{G} \) and \(h \), i.e. Otsuki connections \(\Gamma(\Psi, G) \), as follows:

\[
\mathcal{G} = -dt^2 + \eta^2 \sinh(\vartheta(t)) \left(1 - \frac{r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2),
\]

\[
h(t) = \pm \frac{\sqrt{3}}{2} \int_{\vartheta(t)}^{\infty} \frac{ds}{\sinh(s)}.
\]

The other cases are similar to the above calculations.

Theorem 1. Under the same conditions as Lemma 2, \(\mathcal{G} \) and \(h(t) \) are given as follows:

Riemannian Type

1. \(\varepsilon = 0 \)

\[
\mathcal{G} = -dt^2 + dx^2 + dy^2 + dz^2.
\]

2. \(\varepsilon = -1 \)

\[
\mathcal{G} = -dt^2 + t^2 \left(1 - \frac{r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2).
\]

Otsuki Type

1. \(\varepsilon = -1 \)

\[
\mathcal{G} = -dt^2 + \eta^2 \sinh(\vartheta(t)) \left(1 - \frac{r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2),
\]

\[
h(t) = \pm \frac{\sqrt{3}}{2} \int_{\vartheta(t)}^{\infty} \frac{ds}{\sinh(s)}.
\]
2. $\varepsilon = 0 \ (t > 0)$

$$\mathcal{G} = -dt^2 + \mu^2 t^\frac{1}{3} \left(1 - \frac{r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2), \quad \mu^3 = 3\eta^2,$$

$$h(t) = \pm \frac{1}{\sqrt{3}} \log(t).$$

3. $\varepsilon = 1 \ (0 \leq \vartheta \leq \pi)$

$$\mathcal{G} = -dt^2 + \eta^2 \sin(\vartheta(t)) \left(1 + \frac{r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2),$$

$$h(t) = \pm \frac{\sqrt{3}}{2} \int_{\vartheta(t)}^{\frac{\pi}{2}} \frac{ds}{\sin(s)},$$

where $\vartheta(t)$ is the inverse function of

$$t(\vartheta) = \frac{1}{2} \int_{0}^{\vartheta} \sqrt{\sinh(s)} ds.$$

§3. The Essential Metrics, the Variable w and the Function $R(w)$

As discussed in Section 1, neither a metric G nor \mathcal{G} but $\tilde{G} \equiv \Psi^2 G = \Psi^{-1}\mathcal{G}$, which is called the essential metric of $\Gamma(\Psi, G)$, has an important meaning on a manifold M with an Otsuki connection $\Gamma(\Psi, G)$. Lemma 1 says that any geodesic in $M\setminus \text{Sing}(\Gamma)$ with Otsuki connection $\Gamma(\Psi, G)$ is a geodesic in a Riemannian manifold $(M\setminus \text{Sing}(\Gamma), \tilde{G})$ and vice versa, where $\text{Sing}(\Gamma) \subseteq M$ is defined as follows:

$$\text{Sing}(\Gamma) = \{x \in M \mid \Psi(x) = 0\}.$$

Using a new variable w, which is defined by

$$w(t) = \int_{0}^{t} \Psi^{-\frac{1}{2}}(s) ds,$$

the essential metric \tilde{G} i.e.

$$\tilde{G} \equiv \Psi^{-1}G = -\Psi^{-1}(t)dt^2 + \Psi^{-1}(t)C(t) \left(1 + \frac{r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2),$$
becomes as follows:

$$\bar{G} = -dw^2 + R^2(w) \left(1 + \frac{\varepsilon r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2),$$

where $R^2(w) = \Psi^{-1}(t)C(t)$. The induced metric of \bar{G} on a hyperplane $H_w \subset M \subset \mathbb{R}^4$ such that

$$H_w = \{(w, x, y, z) \in M \mid w = \text{const.}\} \hookrightarrow M$$

is given as follows:

$$i^*(\bar{G}) = R^2 \left(1 + \frac{\varepsilon r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2) = \left(1 + \frac{\varepsilon r^2}{4R^2} \right)^{-2} (dx^2 + dy^2 + dz^2),$$

where $R = R(w), \bar{x} = Rx, \bar{y} = Ry, \bar{z} = Rz, \bar{r}^2 = \bar{x}^2 + \bar{y}^2 + \bar{z}^2$. Since this metric is just that of a sphere with a radius $R = R(w)$ for $\varepsilon = 1$, $R = R(w)$, which can be understood as the radius of the model at w. Rewriting Theorem 1 using the variable w, we have

Theorem 2. Let $\Gamma(\Psi, G)$ be an Otsuki connection with the condition (A) which has the forms as follows:

$$\bar{G} = -dt^2 + C(t)D(r)(dx^2 + dy^2 + dz^2),$$

$$h = h(t)$$

and $\Gamma(\Psi, G)$ be an Otsuki type i.e. $h \neq \text{const.}$, then the corresponding essential metric \bar{G} and the function $R(w)$ become as follows:

$$\bar{G} = -dt^2 + \eta^2 \sinh(\vartheta(t)) \left(1 - \frac{\eta^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2),$$

$$h(t) = \frac{\sqrt{3}}{2} \int_{\vartheta(t)}^{\infty} \frac{ds}{\sinh(s)},$$

$$\bar{G} = -dw^2 + R^2(w) \left(1 - \frac{\eta^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2),$$

$$R^2(w) = \eta^2 \exp \left(\int_{\vartheta(t)}^{\infty} \frac{ds}{\sinh(s)} \right) \sinh(\vartheta(t)), $$

where $w(t) = \int_{0}^{t} \Psi^{-1}(s)ds = \int_{0}^{t} d\exp \left(-\int_{\vartheta(s)}^{\infty} \frac{du}{\sinh(u)} \right)$ and $\vartheta(t)$ is the inverse function of $t(\vartheta) = \frac{1}{2} \eta \int_{0}^{\vartheta} \sinh^{\frac{1}{2}}(s)ds$.

\[II \]

\[\mathcal{G} = -dt^2 + \eta^2 \sinh(\theta(t)) \left(1 - \frac{r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2), \]

\[h(t) = -\frac{\sqrt{3}}{2} \int_{\theta(t)}^{\infty} \frac{ds}{\sinh(s)}, \]

\[\tilde{G} = -dw^2 + R^2(\omega) \left(1 - \frac{r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2), \]

\[R^2(\omega) = \eta_0^2 \exp \left(-\int_{\theta(t)}^{\infty} \frac{ds}{\sinh(s)} \right) \sinh(\theta(t)), \]

where \(w(t) = \int_0^t \psi^{-\frac{1}{2}}(s) ds = \int_0^t ds \exp \left(+ \int_{\theta(s)}^{\infty} \frac{du}{\sinh(u)} \right) \)
and \(\theta(t) \) is the inverse function of \(t(\theta) = \frac{1}{2\eta} \int_0^\theta \sinh^2(s) ds \).

\[III \]

\[\mathcal{G} = -dt^2 + \sqrt{3} \eta \sqrt{t}(dx^2 + dy^2 + dz^2), \]

\[h(t) = \frac{1}{\sqrt{3}} \log(t), \]

\[\tilde{G} = -dw^2 + (3\eta^2)^{\frac{2}{3}}(dx^2 + dy^2 + dz^2), \]

\[R^2(\omega) = (3\eta^2)^{\frac{2}{3}} = \text{const.}, \]

where \(w(t) = \int_0^t \psi^{-\frac{1}{2}}(s) ds = \frac{3}{2} t^{\frac{2}{3}}. \)

\[IV \]

\[\mathcal{G} = -dt^2 + (3\eta^2)^{\frac{2}{3}} t^{\frac{2}{3}}(dx^2 + dy^2 + dz^2), \]

\[h(t) = -\frac{1}{\sqrt{3}} \log(t), \]

\[\tilde{G} = -dw^2 + \frac{4}{3} (3\eta^2)^{\frac{2}{3}} w(dx^2 + dy^2 + dz^2), \]

\[R^2(\omega) = \frac{4}{3} (3\eta^2)^{\frac{2}{3}} w, \]

where \(w(t) = \int_0^t \psi^{-\frac{1}{2}}(s) ds = \frac{3}{4} t^{\frac{1}{3}}. \)

\[V \]

\[\mathcal{G} = -dt^2 + \eta^2 \sin(\theta(t)) \left(1 + \frac{r^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2), \]

\[h(t) = \frac{\sqrt{3}}{2} \int_{\theta(t)}^{\infty} \frac{ds}{\sinh(s)}. \]
\[
\dot{G} = -dw^2 + R^2(w) \left(1 + \frac{\eta^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2),
\]
\[
R^2(w) = \eta^2 \exp \left(- \int_{\vartheta(t)}^{\vartheta} \frac{ds}{\sin(s)} \right) \sin(\vartheta(t)),
\]
where \(w(t) = \int_{0}^{t} \Psi^{-\frac{1}{2}}(s)ds = \int_{0}^{t} ds \exp \left(- \int_{\vartheta(s)}^{\vartheta} \frac{du}{\sin(u)} \right) \) and \(\vartheta(t) \) is the inverse function of \(t(\vartheta) = \frac{1}{2} \eta \int_{0}^{\vartheta} \sin^{-\frac{1}{2}}(s)ds. \)

VI

\[
\ddot{G} = -dt^2 + \eta^2 \sin(\vartheta(t)) \left(1 + \frac{\eta^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2),
\]
\[
h(t) = -\frac{\sqrt{3}}{2} \int_{\vartheta(t)}^{\vartheta} \frac{ds}{\sin(s)},
\]
\[
\ddot{G} = -dw^2 + R^2(w) \left(1 + \frac{\eta^2}{4} \right)^{-2} (dx^2 + dy^2 + dz^2),
\]
\[
R^2(w) = \eta^2 \exp \left(- \int_{\vartheta(t)}^{\vartheta} \frac{ds}{\sin(s)} \right) \sinh(\vartheta(t)),
\]
where \(w(t) = \int_{0}^{t} \Psi^{-\frac{1}{2}}(s)ds = \int_{0}^{t} ds \exp \left(+ \int_{\vartheta(s)}^{\vartheta} \frac{du}{\sin(u)} \right) \) and \(\vartheta(t) \) is the inverse function of \(t(\vartheta) = \frac{1}{2} \eta \int_{0}^{\vartheta} \sin^{-\frac{1}{2}}(s)ds. \)

The functions \(R(w) \) in Theorem 2, which are measured by the variables \(w \), have some elementary properties. Especially for type I in Theorem 2, we have

Lemma 4. The range of \(w \) becomes \(0 \leq w < +\infty \) and there exists positive constants \(\alpha, \beta \) such that

1. \[
\lim_{w \to +\infty} R(w) = \alpha.
\]

2. \[
\frac{1}{\beta} \leq \lim_{w \to +\infty} \frac{R(w)}{w^2} \leq \beta.
\]

3. \[
\frac{dR(w)}{dw} > 0
\]

for any \(0 < w < +\infty. \)
4.

\[
\lim_{w \to 0} \frac{dR(w)}{dw} = 0.
\]

Proof. Since

(19) \[s \leq \sinh(s) \leq (e + e^{-1})s, \]

(20) \[\left(\frac{1 - e^{-1}}{2} \right) e^s \leq \sinh(s) \leq \frac{1}{2} e^s \]

for any \(0 \leq s \leq 1, 1 \leq s < +\infty \) respectively, we have

(21) \[\exp \left(\int_{\vartheta(t)}^{\frac{1}{\vartheta(t)}} \frac{ds}{\sinh(s)} \right) \leq \exp \left(\int_{\vartheta(t)}^{\frac{1}{\vartheta(t)}} \frac{ds}{\sinh(s)} \right) \leq \vartheta(t) \]

for any \(0 \leq \vartheta(t) \leq 1 \) and

(22) \[\exp(2e^{-\vartheta(t)}) \leq \exp \left(\int_{\vartheta(t)}^{\frac{1}{\vartheta(t)}} \frac{ds}{\sinh(s)} \right) \leq \exp \left(\left(\frac{2}{1 - e^{-1}} \right) e^{-\vartheta(t)} \right) \]

for any \(1 \leq \vartheta(t) < +\infty \). By (19), (20) and an explicit form of \(w(t) \):

(23) \[w(t) = \frac{1}{2} \eta \int_{0}^{\vartheta(t)} d\xi \sinh^{\frac{1}{2}}(\xi) \exp \left(\frac{1}{2} \int_{\xi}^{\frac{1}{\vartheta(t)}} \frac{ds}{\sinh(s)} \right), \]

there exist \(0 < \lambda_{1} < \delta_{1} \) such that

(24) \[\lambda_{1} \xi + \left(1 - \frac{s}{\sinh(s)} \right) \leq \sinh^{\frac{1}{2}}(\xi) \exp \left(\frac{1}{2} \int_{\xi}^{\frac{1}{\vartheta(t)}} \frac{ds}{\sinh(s)} \right) \leq \delta_{1} \]

for any \(0 \leq \xi \leq 1 \) and by (20) and (22), there exist \(0 < \lambda_{2} < \delta_{2} \) such that

(25) \[\lambda_{2} e^{\frac{s}{2}} \leq \sinh^{\frac{1}{2}}(\xi) \exp \left(\frac{1}{2} \int_{\xi}^{\frac{1}{\vartheta(t)}} \frac{ds}{\sinh(s)} \right) \leq \delta_{2} e^{\frac{s}{2}} \]

for any \(1 \leq \xi < +\infty \). Using (23) \(\sim (25) \) and

\[
\frac{dw}{dt} = \Psi^{-\frac{1}{2}}(t) = \exp \left(-\frac{1}{2} \int_{\vartheta(t)}^{\frac{1}{\vartheta(t)}} \frac{ds}{\sinh(s)} \right),
\]

we have \(\frac{dw}{dt} > 0 \) for any \(0 \leq t < +\infty, \lim_{t \to +\infty} w(t) = 0 \) and \(\lim_{t \to +\infty} w(t) = +\infty \). Under these preparations, we will prove \(1 \sim 4 \). By (24), (25) and the explicit form such that

(26) \[R^{2}(w) = \eta^{2} \sinh(\vartheta(t)) \exp \left(+\int_{\vartheta(t)}^{\frac{1}{\vartheta(t)}} \frac{ds}{\sinh(s)} \right), \]
there exist $\lambda_3, \delta_3 > 0$ such that
\begin{equation}
\eta^2((\lambda_2)^2 e^\vartheta + \lambda_3) \leq R^2(w) \leq \eta^2((\delta_2)^2 e^\vartheta + \delta_3)
\end{equation}
for any $1 \leq \vartheta < +\infty$. On the other hand by (23) \sim (25), there exist $\lambda_4, \delta_4 > 0$ such that
\begin{equation}
\eta \left(\lambda_2 e^{\frac{\vartheta}{\varphi}} + \lambda_4 \right) \leq u(t) \leq \eta \left(\delta_2 e^{\frac{\vartheta}{\varphi}} + \delta_4 \right)
\end{equation}
for any $0 \leq t < +\infty$. By (26) \sim (28), we have
\[
\lim_{w \to +\infty} R(w) = \eta \sqrt{\mu_1}, \quad \frac{\lambda_2}{\delta_2} \leq \lim_{w \to +\infty} \frac{R(w)}{w^2} \leq \frac{\delta_2}{\lambda_2},
\]
where $\mu_1 = \lim_{\vartheta \to +\infty} \sinh(\vartheta) \exp \left(\int_{\vartheta}^{\infty} \frac{ds}{\sinh(s)} \right)$. Using an equality:
\[
\frac{dR(w)}{dw} = \frac{1}{\sinh(\vartheta)} \left\{ \cosh(\vartheta) - 1 \right\} \exp \left(\frac{1}{2} \int_{\vartheta}^{\infty} \frac{ds}{\sinh(s)} \right),
\]
we have $\frac{dR(w)}{dw} > 0$ for any $0 < w < +\infty$ and $\lim_{w \to +\infty} \frac{dR(w)}{dw} = 0$.

Next we discuss the functions $R(w)$ of type V in Theorem 2.

Lemma 5. For the type V in Theorem 2, there exist $\delta, \nu > 0$ such that

1. $\frac{dR(w)}{dw} < 0$ for any $0 < w < \nu$,
2. $\lim_{w \to 0} \frac{dR(w)}{dw} = 0$,
3. $\lim_{w \to \nu-0} \frac{dR(w)}{dw} = 0$,
4. $\lim_{w \to +\infty} R(w) = \delta$,
5. $\lim_{w \to +\infty} R(w) = 0$.

Proof. Since
\begin{equation}
\frac{2}{\pi} s \leq \sin(s) \leq s,
\end{equation}
\begin{equation}
\frac{2}{\pi} (\pi - s) \leq \sinh(s) \leq \pi - s
\end{equation}
for any $0 \leq s \leq \frac{\vartheta}{2}, \frac{\vartheta}{2} \leq s \leq \pi$ respectively, we have
\begin{equation}
\frac{\pi}{2\vartheta} \leq \exp \left(\int_{0}^{\frac{\vartheta}{2}} \frac{ds}{\sin(s)} \right) \leq \left(\frac{\pi}{2\vartheta} \right)^{\frac{\vartheta}{2}}
\end{equation}
for any $0 \leq \vartheta \leq \frac{\pi}{2}$ and
\[
\left\{ \frac{2}{\pi}(\pi - \vartheta) \right\}^{\frac{\pi}{2}} \leq \exp \left(\frac{1}{\eta} \int_{\vartheta}^{\pi} \frac{ds}{\sin(s)} \right) \leq \frac{2}{\pi}(\pi - \vartheta)
\]
for any $\frac{\pi}{2} \leq \vartheta \leq \pi$. By (29), (31) and an explicit form of $w(t)$ such that
\[
w(t) = \frac{1}{2\eta} \int_{0}^{\vartheta} d\xi \sin^{\frac{1}{2}}(\xi) \exp \left(\frac{1}{2} \int_{\vartheta}^{\pi} \frac{ds}{\sin(s)} \right),
\]
we have
\[
1 \leq \sin^{\frac{1}{2}}(\xi) \exp \left(\frac{1}{2} \int_{\vartheta}^{\pi} \frac{ds}{\sin(s)} \right) \leq \left(\frac{\pi}{2} \right) ^{\frac{\pi}{2}} \left(\frac{1}{\xi} \right) ^{\frac{\pi}{2} - 1}
\]
for any $0 < \xi \leq \frac{\pi}{2}$ and by (30) and (32), we have
\[
\left\{ \frac{\pi}{2}(\pi - \xi) \right\} ^{\frac{\pi}{2} + 1} \leq \sin^{\frac{1}{2}}(\xi) \exp \left(\frac{1}{2} \int_{\vartheta}^{\pi} \frac{ds}{\sin(s)} \right) \leq \sqrt{\frac{\pi}{2}}(\pi - \xi)
\]
for any $\frac{\pi}{2} \leq \xi \leq \pi$. Using the explicit form of $\vartheta(t)$, (33) \sim (35) and
\[
\frac{dw}{dt} = \Psi^{-\frac{1}{2}}(t) = \exp \left(\frac{1}{2} \int_{0}^{\pi} \frac{ds}{\sin(s)} \right),
\]
we have $\frac{dw}{dt} > 0$ for any $0 < \vartheta < \pi$, $\lim_{\vartheta \to +0} w(t) = 0$ and $\lim_{\vartheta \to \pi - 0} w(t) = \nu < +\infty$, where
\[
\nu = \frac{1}{2\eta} \int_{0}^{\pi} d\xi \sin^{\frac{1}{2}}(\xi) \exp \left(\int_{0}^{\pi} \frac{ds}{\sin(s)} \right).
\]
Under these preparations we will prove 1 \sim 5. By (33) \sim (35) and the formula:
\[
R^2(w) = \eta^2 \sin(\vartheta) \exp \left(\int_{0}^{\pi} \frac{ds}{\sin(s)} \right),
\]
we have
\[
\frac{dR(w)}{dw} = \left(\cos(\vartheta) - \frac{1}{\sin(\vartheta)} \right) \exp \left(\frac{1}{2} \int_{0}^{\pi} \frac{ds}{\sin(s)} \right)
\]
The right side of (36) is negative on $0 < w < \nu$ and tends to zero when $\vartheta \to +0$ i.e. $w \to +0$, so is a bounded function on $0 \leq w \leq \nu_1$, where ν_1 is a small positive number. Thus $R(w)$ is a bounded function on $0 \leq w \leq \nu$ and has the following properties:
\[
\frac{dR[w]}{dw} < 0 \quad \text{for any } 0 < w < \nu, \\
\lim_{w \to +0} R(w) = \eta \sqrt{\lambda_1} = \delta < +\infty, \\
\lim_{w \to -\nu} R(w) = 0, \quad \lim_{w \to +0} \frac{dR[w]}{dw} = 0, \\
\lim_{w \to -\nu} \frac{dR[w]}{dw} = -\infty,
\]

where

\[
\lambda_1 = \lim_{\theta \to +0} \sin(\theta) \exp\left(\int_0^\theta \frac{d\theta}{\sin(s)} \right) < +\infty.
\]

Regarding properties of the functions \(R(w) \), the other cases in Theorem 2 are trivial or almost the same as Lemma 4 or Lemma 5. Now we have the following

Theorem 3. The functions \(R(w) \) in Theorem 2, which are measured by the variables \(w \), have the following properties:

I The range of \(w \) becomes \(0 \leq w < +\infty \) and there exist \(\alpha, \beta > 0 \) such that

1. \(\lim_{w \to +0} R(w) = \alpha, \)
2. \(\frac{1}{\beta} \leq \lim_{w \to +\infty} \frac{R(w)}{w} \leq \beta, \)
3. \(\frac{dR[w]}{dw} > 0 \quad \text{for any } 0 < w < +\infty, \)
4. \(\lim_{w \to +0} \frac{dR[w]}{dw} = 0. \)

II The range of \(w \) becomes \(0 \leq w < +\infty \) and there exists \(\delta > 0 \) such that

1. \(\lim_{w \to +0} R(w) = 0, \)
2. \(\frac{1}{\delta} \leq \lim_{w \to +\infty} \frac{R(w)}{w} \leq \delta, \)
3. \(\frac{dR[w]}{dw} > 0 \quad \text{for any } 0 < w < +\infty, \)
4. \(\lim_{w \to +0} \frac{dR[w]}{dw} = +\infty. \)

III \(R(w) = \text{const.} \). Thus, this case is trivial.

IV \(R(w) = \text{const.} \sqrt{w} \). Thus, this case is trivial.

V There exist \(\delta, \nu > 0 \) such that

1. \(R(w) \) is defined on \(0 \leq w \leq \nu, \)
2. \(\frac{dR[w]}{dw} < 0 \quad \text{for any } 0 < w < \nu, \)
3. \(\lim_{w \to +0} \frac{dR[w]}{dw} = 0, \)
4. \(\lim_{w \to -0} \frac{dR(w)}{dw} = -\infty \),
5. \(\lim_{w \to +0} R(w) = \delta \),
6. \(\lim_{w \to +0} R(w) = 0 \).

VI The functions \(R(w) \) of these models are the same as \(R(\nu - w) \) in \(V \).

References

Haruya Nagayama
Royal Haitsu Hirabari 302
Hirabari 3-709 , Tenpaku-ku
Nagoya-shi, Aichi-ken, Japan 468-0011